Skip to main content

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

Biodiesel and bio-ethanol are two most common biofuels which can be good substitutes for diesel and gasoline, respectively. The carbon neutral nature and low pollution are the advantages of biofuels. Transesterification of fatty material is a common process to produce biodiesel. The transesterification process is well established, and scientists throughout the world are busy searching for low-cost and easily and fast producible lipid-rich biomass. The well-known raw material Jatropha was not successful due to the limited availability of wasteland and high maintenance cost. Vegetable oil and animal fat are not sufficient to fulfil the raw material demand required for biofuels. Still, now, biofuels are more costly than fossil fuels, and on the other hand, the cost of raw materials consists of 60–75% of the total biofuel cost. Second- and third-generation biofuels, such as algal biodiesel, could be a solution by reducing the cost, time, and size of production land. Growth of microalgae could be done phototrophically (open pond and closed photo bioreactor), heterotrophically, or even mixotrophically depending upon the strain and local conditions. Algal biomass has been utilized for production of biofuels and other valuable co-products. The algae biodiesel production involves two important steps. The first step is drying of algal biomass followed by extraction of lipid. Later, lipid is converted to biodiesel through transesterification. In this chapter, the benefits, effective pathways, involved complexities, and future direction of biodiesel research through algae have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abomohra AEF, Jin W, Tu R, Han SF, Eid M, Eladel H (2016) Microalgal biomass production as a sustainable feedstock for biodiesel: current status and perspectives. Renew Sust Energ Rev 64:596–606

    Article  CAS  Google Scholar 

  • Adesanya VO, Cadena E, Scott SA, Smith AG (2014) Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresour Technol 163:343–355

    Article  CAS  PubMed  Google Scholar 

  • Al Rey CV, Mayol AP, Ubando AT, Biona JBMM, Arboleda NB, David MY, Tumlos RB, Lee H, Lin OH, Espiritu RA, Culaba AB (2016) Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production. Clean Techn Environ Policy 18(8):2441–2451

    Article  Google Scholar 

  • Alberts B, Bray D, Hopkin K, Johnson AD, Lewis J, Raff M, Roberts K, Walter P (2015) Essential cell biology. Garland Science

    Google Scholar 

  • Ananthi V, Balaji P, Sindhu R, Kim SH, Pugazhendhi A, Arun A (2021) A critical review on different harvesting techniques for algal based biodiesel production. Sci Total Environ 780:146467

    Article  CAS  PubMed  Google Scholar 

  • Andrade MR, Costa JA (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264(1–4):130–134

    Article  Google Scholar 

  • Ashok Kumar V, Salam Z, Tiwari ON, Chinnasamy S, Mohammed S, Ani FN (2015) An integrated approach for biodiesel and bioethanol production from Scenedesmus bijugatus cultivated in a vertical tubular photobioreactor. Energy Convers Manag 101:778–786

    Article  CAS  Google Scholar 

  • Avagyan AB, Singh B (2019) Biodiesel from algae. In: Biodiesel: feedstocks, technologies, economics and barriers. Springer, Singapore, pp 77–112

    Chapter  Google Scholar 

  • Baldev E, Mubarakali D, Saravanakumar K, Arutselvan C, Alharbi NS, Alharbi SA, Sivasubramanian V, Thajuddin N (2018) Unveiling algal cultivation using raceway ponds for biodiesel production and its quality assessment. Renew Energy 123:486–498

    Article  CAS  Google Scholar 

  • Banerjee S, Rout S, Banerjee S, Atta A, Das D (2019) Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: a biorefinery approach. Energy Convers Manag 195:844–853

    Article  CAS  Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Belarbi EH, Molina E, Chisti Y (2000) RETRACTED: a process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 35(9):951–969

    CAS  Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations–response surface methodology analysis. Energy Convers Manag 50(2):262–267

    Article  CAS  Google Scholar 

  • Bohutskyi P, Kula T, Kessler BA, Hong Y, Bouwer EJ, Betenbaugh MJ, Allnutt FT (2014) Mixed trophic state production process for microalgal biomass with high lipid content for generating biodiesel and biogas. Bioenergy Res 7(4):1174–1185

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) Species and strain selection. In: Algae for biofuels and energy. Springer, Dordrecht, pp 77–89

    Chapter  Google Scholar 

  • Borowitzka MA, Moheimani NR (eds) (2013) Algae for biofuels and energy, vol 5. Springer, Dordrecht, pp 133–152

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brindhadevi K, Mathimani T, Rene ER, Shanmugam S, Chi NTL, Pugazhendhi A (2021) Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel 284:119058

    Article  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Çelekli A, Yavuzatmaca M, Bozkurt H (2009) Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresour Technol 100(14):3625–3629

    Article  PubMed  Google Scholar 

  • Chelf P, Brown LM, Wyman CE (1993) Aquatic biomass resources and carbon dioxide trapping. Biomass Bioenergy 4(3):175–183

    Article  CAS  Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14(11):421–426

    Article  CAS  Google Scholar 

  • Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28(9):607–616

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100(2):833–838

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, De Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  CAS  PubMed  Google Scholar 

  • Coward T, Lee JG, Caldwell GS (2013) Development of a foam flotation system for harvesting microalgae biomass. Algal Res 2(2):135–144

    Article  Google Scholar 

  • Craig J, Gerali F, MacAulay F, Sorkhabi R (2018) The history of the European oil and gas industry (1600s–2000s). Geol Soc Lond, Spec Publ 465(1):1–24

    Article  Google Scholar 

  • Culaba AB, Ubando AT, Ching PML, Chen WH, Chang JS (2020) Biofuel from microalgae: sustainable pathways. Sustainability 12(19):8009

    Article  Google Scholar 

  • de Jesus SS, Maciel Filho R (2017) Potential of algal biofuel production in a hybrid photobioreactor. Chem Eng Sci 171:282–292

    Article  Google Scholar 

  • de Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129(3):439–445

    Article  PubMed  Google Scholar 

  • de Morais MG, Costa JAV (2007b) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manag 48(7):2169–2173

    Article  Google Scholar 

  • Eckey EW (1956) Esterification and interesterification. J Am Oil Chem Soc 33(11):575–579

    Article  Google Scholar 

  • Eriksen NT (2008a) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Eriksen NT (2008b) The technology of microalgal culturing. Biotechnol Lett 30(9):1525–1536

    Article  CAS  PubMed  Google Scholar 

  • Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T (2020) Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front Plant Sci 11:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman BEHP, Pryde EH, Mounts TL (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61(10):1638–1643

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515

    Article  Google Scholar 

  • Günerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33(2):243–260

    Article  PubMed  Google Scholar 

  • Hariram V, John JG, Seralathan S (2019) Spectrometric analysis of algal biodiesel as a fuel derived through base-catalysed transesterification. Int J Ambient Energy 40(2):195–202

    Article  CAS  Google Scholar 

  • He Y, Wu T, Wang X, Chen B, Chen F (2018) Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. Bioresour Technol 268:583–591

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo P, Toro C, Navia R (2013) Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol 12(2):179–199

    Article  CAS  Google Scholar 

  • Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49(6):655–662

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Chang 12(4):573–608

    Article  Google Scholar 

  • Itoiz ES, Fuentes-Grünewald C, Gasol CM, Garcés E, Alacid E, Rossi S, Rieradevall J (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335

    Article  Google Scholar 

  • Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44:e411–e414

    Article  PubMed  Google Scholar 

  • Jiménez C, Cossı́o BR, Labella D, Niell FX (2003) The feasibility of industrial production of spirulina (Arthrospira) in southern Spain. Aquaculture 217(1–4):179–190

    Article  Google Scholar 

  • Kiran B, Pathak K, Kumar R, Deshmukh D (2016) Statistical optimization using central composite design for biomass and lipid productivity of microalga: a step towards enhanced biodiesel production. Ecol Eng 92:73–81

    Article  Google Scholar 

  • Kumar K, Mishra SK, Shrivastav A, Park MS, Yang JW (2015) Recent trends in the mass cultivation of algae in raceway ponds. Renew Sust Energ Rev 51:875–885

    Article  CAS  Google Scholar 

  • Kunjapur AM, Eldridge RB (2010) Photobioreactor design for commercial biofuel production from microalgae. Ind Eng Chem Res 49(8):3516–3526.9

    Article  CAS  Google Scholar 

  • Laws EA, Taguchi S, Hirata J, Pang L (1986) High algal production rates achieved in a shallow outdoor flume. Biotechnol Bioeng 28(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52

    Article  PubMed  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102(1):106–110

    Article  CAS  PubMed  Google Scholar 

  • Lohman EJ, Gardner RD, Pedersen T, Peyton BM, Cooksey KE, Gerlach R (2015) Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris. Biotechnol Biofuels 8(1):1–13

    Article  CAS  Google Scholar 

  • Lundquist TJ (2008) Production of algae in conjunction with wastewater treatment. In: NREL—AFOSR workshop on algal oil for jet fuel production

    Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Macías-Sánchez MD, Robles-Medina A, Hita-Peña E, Jiménez-Callejón MJ, Estéban-Cerdán L, González-Moreno PA, Molina-Grima E (2015) Biodiesel production from wet microalgal biomass by direct transesterification. Fuel 150:14–20

    Article  Google Scholar 

  • Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36(5):821–840

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  PubMed  Google Scholar 

  • Mirón AS, Gomez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In: Progress in industrial microbiology, vol 35. Elsevier, pp 249–270

    Google Scholar 

  • Mirón AS, Garcıa MCC, Camacho FG, Grima EM, Chisti Y (2002) Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture. Enzym Microb Technol 31(7):1015–1023

    Article  Google Scholar 

  • Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131

    Article  CAS  PubMed  Google Scholar 

  • Muller-Feuga A, Le Guédes R, Hervé A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum. J Appl Phycol 10(1):83–90

    Article  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Article  CAS  PubMed  Google Scholar 

  • Naira VR, Das D, Maiti SK (2020) A novel bubble-driven internal mixer for improving productivities of algal biomass and biodiesel in a bubble-column photobioreactor under natural sunlight. Renew Energy 157:605–615

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12(3):499–506

    Article  CAS  Google Scholar 

  • Pandey A, Srivastava S, Kumar S (2020) Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. Environ Sci Pollut Res 27(19):23963–23980

    Article  CAS  Google Scholar 

  • Pandit PR, Fulekar MH (2019) Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renew Energy 136:837–845

    Article  CAS  Google Scholar 

  • Pruvost J, Cornet JF, Goetz V, Legrand J (2011) Modeling dynamic functioning of rectangular photobioreactors in solar conditions. AIChE J 57(7):1947–1960

    Article  CAS  Google Scholar 

  • Pugazhendhi A, Nagappan S, Bhosale R, Tsai PC, Natarajan S, Devendran S, Al Haj L, Ponnusamy VK, Kumar G (2020) Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel—a review. Sci Total Environ 749:142218

    Article  CAS  PubMed  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. In: Bioprocess and algae reactor technology, apoptosis, pp 123–152

    Chapter  Google Scholar 

  • Qin J (2005) Bio-hydrocarbons from algae: impacts of temperature, light and salinity on algae growth: a report for the rural industries research and development corporation. Rural Industries Research and Development Corporation

    Google Scholar 

  • Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of micro and macro algae for biofuel production: a brief review. Bioresources 9(1):1606–1633

    Google Scholar 

  • Razeghifard R (2013) Algal biofuels. Photosynth Res 117(1):207–219

    Article  CAS  PubMed  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12(3):441–451

    Article  Google Scholar 

  • Richmond A, Cheng-Wu Z, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20(4–6):229–236

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, ChiniZittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88

    Article  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenergy 35(9):3865–3876

    Article  CAS  Google Scholar 

  • Salama ES, Kurade MB, Abou-Shanab RA, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211

    Article  CAS  Google Scholar 

  • Samson R, Leduy A (1985) Multistage continuous cultivation of blue-green alga spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 63(1):105–112

    Article  CAS  Google Scholar 

  • Sforza E, Enzo M, Bertucco A (2014) Design of microalgal biomass production in a continuous photobioreactor: an integrated experimental and modeling approach. Chem Eng Res Des 92(6):1153–1162

    Article  CAS  Google Scholar 

  • Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4(4):397–407

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Natl Renew Energy Lab 328:1–294

    Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sust Energ Rev 16(4):2347–2353

    Article  CAS  Google Scholar 

  • Sridharan R, Mathai IM (1974) Transesterification reactions. J Sci Ind Res 33:178–187

    CAS  Google Scholar 

  • Stepan DJ, Shockey RE, Moe TA, Dorn R (2002) Carbon dioxide sequestering using microalgal systems. Univ. of North Dakota, Grand Forks, ND

    Book  Google Scholar 

  • Suh IS, Lee CG (2003a) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8(6):313

    Article  CAS  Google Scholar 

  • Suh IS, Lee SB (2003b) A light distribution model for an internally radiating photobioreactor. Biotechnol Bioeng 82(2):180–189

    Article  CAS  PubMed  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99(10):4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan PT, Briggs M (2008) Biodiesel production—current state of the art and challenges. J Ind Microbiol Biotechnol 35(5):421

    Article  CAS  PubMed  Google Scholar 

  • Wahidin S, Idris A, Yusof NM, Kamis NHH, Shaleh SRM (2018) Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manag 171:1397–1404

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yang H, Wang F (2014) Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotechnol 172(7):3307–3329

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Saiki H (1997) Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Convers Manag 38:S499–S503

    Article  CAS  Google Scholar 

  • Weissman JC, Tillett DT (1992) Design and operation of an outdoor microalgae test facility: Large-scale system results. Aquatic Species Project Report, vol 32. National Renewable Energy Laboratory, Golden, p 56

    Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31(4):336–344

    Article  CAS  PubMed  Google Scholar 

  • Weldy CS, Huesemann M (2007) Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. J Undergrad Res 7

    Google Scholar 

  • White RL, Ryan RA (2015) Long-term cultivation of algae in open-raceway ponds: lessons from the field. Ind Biotechnol 11(4):213–220

    Article  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20

    Article  CAS  Google Scholar 

  • Zhang XW, Zhang YM, Chen F (1999) Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34(5):477–481

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Zhang X, Tan T (2015) Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresour Technol 196:712–715

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresour Technol 174:53–59

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravikant R. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jana, S., Gupta, R.R. (2023). Biodiesel Production from Algal Biomass. In: Pal, D.B. (eds) Recent Technologies for Waste to Clean Energy and its Utilization. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-3784-2_9

Download citation

Publish with us

Policies and ethics