Skip to main content

Advertisement

Log in

Advances in direct transesterification of microalgal biomass for biodiesel production

  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Microalgae biomass is becoming an interesting raw material to produce biodiesel, where several approaches in the transesterification process have been applied such as different catalysts, different acyl acceptors, incorporation of co-solvents and the different operational conditions. However there are some drawbacks that must be solved before any industrial application could be intended. The main problems are related with the high water content of the biomass (over 80 %) and the several process steps involved in biodiesel production such as: drying, cell disruption, oils extraction, transesterification and biodiesel refining. In comparison to other alternatives, the use of direct transesterification could be a suitable alternative since cell disruption, lipids extraction and transesterification are carried out in one step, with a direct reaction of oil-bearing biomass to biodiesel. This process could be applied even using biomass with high water content, and its efficiency could be improved by the incorporation of promising technologies such as microwave or ultrasonication that can enhance the mass transfer rate between immiscible phases, simultaneously diminishing the reaction time. However, it is still necessary to decrease the costs of these technologies so they can be suitable alternatives in future industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad A, Yasin N, Derek C, Lim J (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15(1):584–593

    Article  CAS  Google Scholar 

  • Al-Widyan M, Al-Shyoukh A (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85(3):253–256

    Article  CAS  Google Scholar 

  • Amaro H, Guedes A, Malcata X (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410

    Article  CAS  Google Scholar 

  • Andrade J, Pérez A, Sebastian P, Eapen D (2011) Retracted: a review of bio-diesel production processes. Biomass Bioenergy 35(3):1008–1020

    Article  CAS  Google Scholar 

  • Antolín G, Tinaut F, Briceño Y, Castaño V, Pérez C, Ramírez A (2002) Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol 83(2):111–114

    Article  Google Scholar 

  • Azcan N, Danisman A (2008) Microwave assisted transesterification of rapeseed oil. Fuel 87(10–11):1781–1788

    Article  CAS  Google Scholar 

  • Azócar L, Ciudad G, Heipieper HJ, Muñoz R, Navia R (2011) Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. J Biosci Bioeng 112(6):583–589

    Article  CAS  Google Scholar 

  • Balat M (2011) Potential alternatives to edible oils for biodiesel production: a review of current work. Energy Convers Manage 52(2):1479–1492

    Article  CAS  Google Scholar 

  • Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87(6):1815–1835

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a Renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279

    Article  CAS  Google Scholar 

  • Barnard T, Leadbeater N, Boucher M, Stencel L, Wilhite B (2007) Continuous-flow preparation of biodiesel using microwave heating. Energy Fuels 21(3):1777–1781

    Article  CAS  Google Scholar 

  • Barnwal B, Sharma M (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev 9(4):363–378

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98(1):183–190

    Article  CAS  Google Scholar 

  • Canakci M, Van Gerpen J (2003) A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans Am Soc Agric Eng 46(4):945–954

    CAS  Google Scholar 

  • Carrapiso A, García C (2000) Development in lipid analysis: some new extraction techniques and in situ transesterification. Lipids 35(11):1167–1177

    Article  CAS  Google Scholar 

  • CastorOil (2012) Preview of comprehensive castor oil report: a report on castor oil & castor oil derivatives. Accessed Jan 2012

  • Chakrabarti M, Ahmad R (2008) Transesterification studies on castor oil as a first step towards its use in bio diesel production. Pak J Bot 40(3):1153–1157

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Ciudad G, Reyes I, Azócar L, Briones R, Jorquera M, Wick LY, Navia R (2011) Innovative approaches for effective selection of lipase-producing microorganisms as whole cell catalysts for biodiesel production. New Biotechnol 28(4):375–381

    Article  CAS  Google Scholar 

  • Cooke B, Abrams C, Bertram B (2009) Purification of biodiesel with adsorbent materials. EP 1 670 882 B1

  • Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA (2005) Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem 40(9):3125–3131

    Article  CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304

    Article  CAS  Google Scholar 

  • Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35(9):4661–4670

    Article  Google Scholar 

  • Demirbas A (2009a) Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manage 50(4):923–927

    Article  CAS  Google Scholar 

  • Demirbas A (2009b) Production of biodiesel from Algae Oils. Energy Sourc Part A Recov Utiliz Environ Eff 31(2):163–168

    Article  CAS  Google Scholar 

  • Demirbas A, Demirbas F (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manage 52(1):163–170

    Article  Google Scholar 

  • Dismukes G, Carrieri D, Bennette N, Ananyev G, Posewitz M (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19(3):235–240

    Article  CAS  Google Scholar 

  • Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89(3):677–684

    Article  CAS  Google Scholar 

  • El-Naggar M, El-Aaser S (2004) Fatty acid composition and the growth substrate of free and immobilized cells of Flavobacterium chlorophenolica. Egypt J Aquat Res 30:207–215

    Google Scholar 

  • Felizardo P, Neiva Correia M, Raposo I, Mendes J, Berkemeier R, Bordado J (2006) Production of biodiesel from waste frying oils. Waste Manage (Oxford) 26(5):487–494

    Article  CAS  Google Scholar 

  • Francisco É, Neves D, Jacob-Lopes E, Franco T (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85(3):395–403

    Article  CAS  Google Scholar 

  • Freedman B, Pryde E, Mounts T (1984) Variables affecting the yields of fatty esters from transesterified vegetable oils. J Am Oil Chem Soc 61:638–1643

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    CAS  Google Scholar 

  • Ganesan D, Rajendran A, Thangavelu V (2009) An overview on the recent advances in the transesterification of vegetable oils for biodiesel production using chemical and biocatalysts. Rev Environ Sci Biotechnol 8(4):367–394

    Article  CAS  Google Scholar 

  • Georgogianni K, Kontominas M, Avlonitis D, Gergis V (2006) Transesterification of sunflower seed oil for the production of biodiesel: effect of catalyst concentration and ultrasonication. International conference on energy and environmental systems, pp 425–429

  • Georgogianni K, Kontominas M, Pomonis P, Avlonitis D, Gergis V (2008) Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process Technol 89(5):503–509

    Article  CAS  Google Scholar 

  • Geuens J, Kremsner J, Nebel B, Schober S, Dommisse R, Mittelbach M, Tavernier S, Kappe C, Maes B (2008) Microwave-assisted catalyst-free transesterification of triglycerides with 1-butanol under supercritical conditions. Energy Fuels 22(1):643–645

    Article  CAS  Google Scholar 

  • Ghadge S, Raheman H (2006) Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour Technol 97(3):379–384

    Article  CAS  Google Scholar 

  • Golueke C, Oswald W, Gotaas H (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    CAS  Google Scholar 

  • Granados M, Poves M, Alonso D, Mariscal R, Galisteo F, Moreno-Tost R, Santamaría J, Fierro J (2007) Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B 73(3–4):317–326

    CAS  Google Scholar 

  • Griffiths M, van Hille R, Harrison S (2010) Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids 45(11):1053–1060

    Article  CAS  Google Scholar 

  • Groom M, Gray E, Townsend P (2008) Biofuels and Biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22(3):602–609

    Article  Google Scholar 

  • Guan G, Kusakabe K, Yamasaki S (2009) Tri-potassium phosphate as a solid catalyst for biodiesel production from waste cooking oil. Fuel Process Technol 90(4):520–524

    Google Scholar 

  • Gui M, Lee K, Bhatia S (2008a) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653

    Article  CAS  Google Scholar 

  • Gui MM, Lee KT, Bhatia S (2008b) Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 33(11):1646–1653

    Article  CAS  Google Scholar 

  • Haagenson D, Brudvik R, Lin H, Wiesenborn D (2010) Implementing an in situ alkaline transesterification method for canola biodiesel quality screening. J Am Oil Chem Soc 87(11):1–8

    Google Scholar 

  • Haas M, Scott K (2007) Moisture removal substantially improves the efficiency of in situ biodiesel production from soybeans. J Am Oil Chem Soc 84(2):197–204

    Article  CAS  Google Scholar 

  • Haas M, Scott K, Marmer W, Foglia T (2004) In situ alkaline transesterification: an effective method for the production of fatty acid esters from vegetable oils. J Am Oil Chem Soc 81(1):83–89

    Article  CAS  Google Scholar 

  • Haas M, McAloon A, Yee W, Foglia T (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97(4):671–678

    Article  CAS  Google Scholar 

  • Halim R, Gladman B, Danquah M, Webley P (2011) Oil extraction from microalgae for biodiesel production. Bioresour Technol 102(1):178–185

    Article  CAS  Google Scholar 

  • Harrington K, D’Arcy-Evans C (1985a) A comparison of conventional and in situ methods of transesterification of seed oil from a series of sunflower cultivars. J Am Oil Chem Soc 62(6):1009–1013

    Article  CAS  Google Scholar 

  • Harrington K, D’Arcy-Evans C (1985b) Transesterification in situ of sunflower seed oil. Ind Eng Chem Prod Res Dev 24(2):314–318

    Article  CAS  Google Scholar 

  • Hattori H (1995) Heterogeneous basic catalysis. Chem Rev 95:537–550

    Article  CAS  Google Scholar 

  • Hernando J, Leton P, Matia M, Novella J, Alvarez-Builla J (2006) Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel 86(10–11):1641–1644

    Google Scholar 

  • Hossain S, Nasrulhaq A, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87(1):38–46

    Article  CAS  Google Scholar 

  • Jeennor S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2006) Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiol Lett 259(1):60–66

    Article  CAS  Google Scholar 

  • Ji J, Wang J, Li Y, Yu Y, Xu Z (2006) Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation. Ultrasonics 44(Supplement 1):e411–e414

    Article  Google Scholar 

  • Johnson M, Wen Z (2009) Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23(10):5179–5183

    Article  CAS  Google Scholar 

  • Kalacheva G, Zhila N, Volova T, Gladyshev M (2002) The Effect of temperature on the lipid composition of the green alga Botryococcus. Microbiology 71(3):286–293

    Article  CAS  Google Scholar 

  • Khan S, Rashmi MH, Prasad S, Banerjee U (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13(9):2361–2372

    Article  CAS  Google Scholar 

  • Kildiran G, Yücel S, Türkay S (1996) In-situ alcoholysis of soybean oil. J Am Oil Chem Soc 73(2):225–228

    Article  CAS  Google Scholar 

  • Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol 102(5):4265–4269

    Article  CAS  Google Scholar 

  • Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008a) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87(12):2798–2806

    Article  CAS  Google Scholar 

  • Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J (2008b) Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Appl Catal A 334(1–2):357–365

    CAS  Google Scholar 

  • Kouzu M, Yamanaka S-y, Hidaka J-s, Tsunomori M (2009) Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Appl Catal A 355(1–2):94–99

    CAS  Google Scholar 

  • Krohn B, McNeff C, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan process. Bioresour Technol 102(1):94–100

    Article  CAS  Google Scholar 

  • Kulkarni M, Dalai A (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45(9):2901–2913

    Article  CAS  Google Scholar 

  • Kusdiana D, Saka S (2004) Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour Technol 91(3):289–295

    Article  CAS  Google Scholar 

  • Lam M, Lee K, Mohamed A (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518

    Article  CAS  Google Scholar 

  • Lee J, Yoo C, Jun S, Ahn C, Oh H (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):575–577

    Google Scholar 

  • Levine R, Pinnarat T, Savage P (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24(9):5235–5243

    Google Scholar 

  • Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756

    Article  CAS  Google Scholar 

  • Liu X, He H, Wang Y, Zhu S (2007) Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal Commun 8(7):1107–1111

    Article  CAS  Google Scholar 

  • Liu Z, Wang G, Zhou B (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722

    Article  CAS  Google Scholar 

  • Liu G, Lin Q, Jin X, Wang X, Zhao Y (2010) Screening and fermentation optimization of microbial lipid-producing molds from forest soils. Af J Microbiol Res 4(14):1462–1468

    CAS  Google Scholar 

  • Loera-Quezada M, Olguín E (2010) Las microalgas oleaginosas como fuente de biodiesel: retos y oportunidades. Revista Latinoamericana de Biotecnología Ambiental y Algal 1(1):91–116

    Google Scholar 

  • Ma F, Hanna M (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  • Marra F, De Bonis MV, Ruocco G (2010) Combined microwaves and convection heating: a conjugate approach. J Food Eng 97(1):31–39

    Article  Google Scholar 

  • Martín C, Moure A, Martín G, Carrillo E, Domínguez H, Parajó JC (2010) Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenergy 34(4):533–538

    Article  CAS  Google Scholar 

  • Mata T, Martins A, Caetano N (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • McNeff C, McNeff L, Yan B, Nowlan D, Rasmussen M, Gyberg A, Krohn B, Fedie R, Hoye T (2008) A continuous catalytic system for biodiesel production. Appl Catal A 343(1–2):39–48

    CAS  Google Scholar 

  • Meher L, Vidya Sagar D, Naik S (2006) Technical aspects of biodiesel production by transesterification–a review. Renew Sustain Energy Rev 10(3):248–268

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen Production. Green Algae as a Source of Energy. Plant Physiol 127(3):740–748

    Article  CAS  Google Scholar 

  • Mendes-Pinto M, Raposo M, Bowen J, Young A, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13(1):19–24

    Article  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  • Mittelbach M (1996) Diesel fuel derived from vegetable oils, VI: specifications and quality control of biodiesel. Bioresour Technol 56(1):7–11

    Article  CAS  Google Scholar 

  • Moser B (2009) Biodiesel production, properties, and feedstocks. In Vitro Cell Dev Biol Plant 45(3):229–266

    Article  CAS  Google Scholar 

  • Moser BR, Vaughn SF (2010) Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour Technol 101(2):646–653

    Article  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  Google Scholar 

  • Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24–25(1):355–361

    Article  Google Scholar 

  • Ozgul-Yucel S, Turkay S (2002) Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. J Am Oil Chem Soc 79(6):611–614

    Article  CAS  Google Scholar 

  • Pan X, Niu G, Liu H (2002) Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochem Eng J 12(1):71–77

    Article  CAS  Google Scholar 

  • Patil P, Gude V, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng S (2011a) Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour Technol 102(2):1399–1405

    Article  CAS  Google Scholar 

  • Patil P, Gude V, Mannarswamy A, Deng S, Cooke P, Munson-McGee S, Rhodes I, Lammers P, Nirmalakhandan N (2011b) Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresour Technol 102(1):118–122

    Article  CAS  Google Scholar 

  • Patil P, Gude V, Pinappu S, Deng S (2011c) Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chem Eng J 168(3):1296–1300

    Article  CAS  Google Scholar 

  • Rathana Y, Roces S, Bacani F, Tan R, Kubouchi M, Yimsiri P (2010) Microwave-enhanced alkali catalyzed transesterification of kenaf seed oil. Int J Chem Reactor Eng 8:1–8

    Article  Google Scholar 

  • Refaat A (2010) Different techniques for the production of biodiesel from waste vegetable oil. Int J Environ Sci Technol 7(1):183–213

    CAS  Google Scholar 

  • Rodolfi L, Chini G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M (2009) Microalgae for Oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Sakthivel R, Elumalai S, Mohommad M (2011) Microalgae lipid research, past, present: a critical review for biodiesel production, in the future. J Exp Sci 2(10):29–49

    Google Scholar 

  • Sayadi M, Ghatnekar S, Kavian M (2011) Algae a promising alternative for biofuel. Proc Int Acad Ecol Environ Sci 1(2):112–124

    CAS  Google Scholar 

  • Schuchardt U, Sercheli R, Matheus R (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210

    CAS  Google Scholar 

  • Sharma K, Schuhmann H, Schenk P (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shaw M, Ingraham K (1965) Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature. J Bacteriol 90(1):141–146

    CAS  Google Scholar 

  • Siler-Marinkovic S, Tomasevic A (1998) Transesterification of sunflower oil in situ. Fuel 77(12):1389–1391

    Article  CAS  Google Scholar 

  • Sim S, An J, Kim B (2001) Two-phase extraction culture of Botryococcus braunii producing long-chain unsaturated hydrocarbons. Biotechnol Lett 23(3):201–205

    Article  CAS  Google Scholar 

  • Song E, Lim J, Lee H, Lee Y (2008) Transesterification of RBD palm oil using supercritical methanol. J Supercrit Fluids 44(3):356–363

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37(12):1271–1287

    Article  CAS  Google Scholar 

  • Sukhija PS, Palmquist DL (1988) Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem 36(6):1202–1206

    Article  CAS  Google Scholar 

  • Taher H, Al-Zuhair S, Al-Marzouqi A, Farid M (2010) A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Res 2011 (ID 468292):1–25

  • Thanh LT, Okitsu K, Boi LV, Maeda Y (2012) Catalytic technologies for biodiesel fuel production and utilization of glycerol: a review. Catalysts 2(1):191–222

    Article  CAS  Google Scholar 

  • Tomomatsu Y, Swallow B (2007) Jatropha curcas biodiesel production in Kenya: economics and potential value chain development for smallholder farmers. United Nations Avenue, Nairobi

    Book  Google Scholar 

  • Tramper J, Battershill C, Brandenburg W, Burgess G, Hill R, Luiten E, Müller W, Osinga R, Rorrer G, Tredici M, Uriz M, Wright P, Wijffels R (2003) What to do in marine biotechnology? Biomol Eng 20(4–6):467–471

    Article  CAS  Google Scholar 

  • Tran H, Hong S, Lee C (2009) Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB 572 and Synechocystis sp. PCC 6803. Biotechnol Bioprocess Eng 14(2):187–192

    Article  CAS  Google Scholar 

  • Tredici M, Margheri M, Zittelli G, Biagiolini S, Capolino E, Natali M (1992) Nitrogen and phosphorus reclamation from municipal wastewater through an artificial food-chain system. Bioresour Technol 42(3):247–253

    Article  CAS  Google Scholar 

  • Umdu E, Tuncer M, Seker E (2009) Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100(11):2828–2831

    Article  CAS  Google Scholar 

  • Van Gerpen J, Hammond E, Johnson L, Marley S, Yu L, Lee I, Monyem A (1996) Determining the influence of contaminants on biodiesel properties. Final report for the Iowa soybean promotion board. Iowa State University, Ames

  • Vera C, Busto M, Juan Yori J, Torres G, Manuale D, Canavese S, Sepúlveda J (2011) Biodiesel refining: a review. In: Montero MSaG (ed) Biodiesel—feedstocks and processing technologies

  • Vicente G, Martínez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92(3):297–305

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Hemanathan K (2009) Biodiesel production from freshwater algae. Energy Fuels 23(11):5448–5453

    Article  CAS  Google Scholar 

  • Wahlen B, Barney B, Seefeldt L (2008) Synthesis of biodiesel from mixed feedstocks and longer chain alcohols using an acid-catalyzed method. Energy Fuels 22(6):4223–4228

    Article  CAS  Google Scholar 

  • Wahlen B, Willis R, Seefeldt L (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102(3):2724–2730

    Article  CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  Google Scholar 

  • Widjaja A, Chien C–C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Zabeti M, Wan Daud W, Aroua M (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90(6):770–777

    Article  CAS  Google Scholar 

  • Zeng J, Wang X, Zhao B, Sun J, Wang Y (2009) Rapid in situ transesterification of sunflower oil. Ind Eng Chem Res 48(2):850–856

    Article  CAS  Google Scholar 

  • Zhang G, Hattori H, Tanabe K (1988) Aldol addition of acetone, catalyzed by solid base catalysts: magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum (III) oxide and zirconium oxide. Appl Catal 36:189–197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by CONICYT Project 79090009 and PIA Project DI10-7001 from University of La Frontera. This research was partially sponsored by Chilean FONDECYT Projects 3080021, 1120812 and 11110282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Navia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, P., Toro, C., Ciudad, G. et al. Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol 12, 179–199 (2013). https://doi.org/10.1007/s11157-013-9308-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9308-0

Keywords

Navigation