Skip to main content
Log in

Mixotrophic Cultivation of Microalgae for Biodiesel Production: Status and Prospects

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54, 621–639.

    CAS  Google Scholar 

  2. Li, X. F., Xu, H., & Wu, Q. Y. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98, 764–771.

    CAS  Google Scholar 

  3. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable & Sustainable Energy Reviews, 14, 217–232.

    CAS  Google Scholar 

  4. Huang, G. H., Chen, F., Wei, D., Zhang, X. W., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87, 38–46.

    CAS  Google Scholar 

  5. Johnson, M. B., & Wen, Z. Y. (2010). Development of an attached microalgal growth system for biofuel production. Applied Microbiology and Biotechnology, 85, 525–534.

    CAS  Google Scholar 

  6. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Research, 1, 20–43.

    Google Scholar 

  7. Bougaran, G., Rouxel, C., Dubois, N., Kaas, R., Grouas, S., Lukomska, E., Le Coz, J. R., & Cadoret, J. P. (2012). Enhancement of neutral lipid productivity in the microalga Isochrysis affinis Galbana (T-Iso) by a mutation-selection procedure. Biotechnology and Bioengineering, 109, 2737–2745.

    CAS  Google Scholar 

  8. Hemaiswarya, S., Raja, R., Carvalho, I. S., Ravikumar, R., Zambare, V., & Barh, D. (2012). An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Applied Microbiology and Biotechnology, 96, 1125–1135.

    CAS  Google Scholar 

  9. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    CAS  Google Scholar 

  10. Gordon, J. M., & Polle, J. E. W. (2007). Ultrahigh bioproductivity from algae. Applied Microbiology and Biotechnology, 76, 969–975.

    CAS  Google Scholar 

  11. Bruno, L., Pippo, F. D., Antonaroli, S., Gismondi, A., Valentini, C., & Albertano, P. (2012). Characterization of biofilm-forming cyanobacteria for biomass and lipid production. Journal of Applied Microbiology, 113, 1052–1064.

    CAS  Google Scholar 

  12. Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28, 64–70.

    Google Scholar 

  13. Martínez, M. E., Sánchez, S., Jiménez, J. M., Yousfi, E. L., & Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73, 263–272.

    Google Scholar 

  14. Schumacher, G., & Sekoulov, I. (2002). Polishing of secondary effluent by an algal biofilm process. Water Science and Technology, 46, 83–90.

    CAS  Google Scholar 

  15. Shi, J., Podola, B., & Melkonian, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal of Applied Phycology, 19, 417–423.

    CAS  Google Scholar 

  16. Voltolina, D., Gómez-Villa, H., & Correa, G. (2005). Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresource Technology, 96, 359–362.

    CAS  Google Scholar 

  17. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389–3396.

    CAS  Google Scholar 

  18. Gordillo, F. J. L., Goutx, M., Figueroa, F. L., & Niell, F. X. (1998). Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. Journal of Applied Phycology, 10, 135–144.

    CAS  Google Scholar 

  19. Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88, 3389–3401.

    CAS  Google Scholar 

  20. Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51, 2738–2749.

    CAS  Google Scholar 

  21. Demirbas, A., & Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52, 163–170.

    Google Scholar 

  22. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102, 71–81.

    CAS  Google Scholar 

  23. Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81, 629–636.

    CAS  Google Scholar 

  24. Liang, Y. N., Sarkany, N., & Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters, 31, 1043–1049.

    CAS  Google Scholar 

  25. Chisti, Y. (2013). Raceways-based production of algal crude oil. Green, 3, 195–216.

    CAS  Google Scholar 

  26. Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the US Department of Energy’s Aquatic Species Program—biodiesel from algae. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  27. Wongluang, P., Chisti, Y., & Srinophakun, T. (2013). Optimal hydrodynamic design of tubular photobioreactors. Journal of Chemical Technology and Biotechnology, 88, 55–61.

    CAS  Google Scholar 

  28. Zemke, P. E., Sommerfeld, M. R., & Hu, Q. (2013). Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Applied Microbiology and Biotechnology, 97, 5645–5655.

    CAS  Google Scholar 

  29. Acién Fernández, F. G., Fernández Sevilla, J. M., & Molina Grima, E. (2013). Photobioreactors for the production of microalgae. Reviews in Environmental Science and Bio-technology, 12, 131–151.

    Google Scholar 

  30. Pulz, O., Gerbsch, N., & Buchholz, R. (1995). Light energy supply in plate-type and light diffusing optical fiber bioreactors. Journal of Applied Phycology, 7, 145–149.

    Google Scholar 

  31. Merchuk, J. C., Garcia-Camacho, F., & Molina-Grima, E. (2007). Photobioreactor design and fluid dynamics. Chemical and Biochemical Engineering Quarterly, 21, 345–355.

    CAS  Google Scholar 

  32. Chojnacka, K., & Noworyta, A. (2004). Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 34, 461–465.

    CAS  Google Scholar 

  33. Liu, J., Huang, J. C., Sun, Z., Zhong, Y. J., Jiang, Y., & Chen, F. (2011). Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresource Technology, 102, 106–110.

    CAS  Google Scholar 

  34. Miao, X. L., & Wu, Q. Y. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85–93.

    CAS  Google Scholar 

  35. Ogbonna, J. C., & Tanaka, H. (1998). Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: a method of achieving continuous cell growth under light/dark cycles. Bioresource Technology, 65, 62–72.

    Google Scholar 

  36. Yu, H. F., Jia, S. R., & Dai, Y. J. (2009). Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. Journal of Applied Phycology, 21, 127–133.

    CAS  Google Scholar 

  37. Xu, H., Miao, X. L., & Wu, Q. Y. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507.

    CAS  Google Scholar 

  38. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 14, 557–577.

    CAS  Google Scholar 

  39. Cerón-García, M. C., Macías-Sánchez, M. D., Sánchez-Mirón, A., García-Camacho, F., & Molina-Grima, E. (2013). A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Applied Energy, 103, 341–349.

    Google Scholar 

  40. Zhang, X. L., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2013). Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge. Renewable Energy, 55, 392–403.

    CAS  Google Scholar 

  41. Tabernero, A., Martín del Valle, E. M., & Galán, M. A. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: scale-up and economics. Biochemical Engineering Journal, 63, 104–115.

    CAS  Google Scholar 

  42. Kang, R. J., Wang, J., Shi, D. J., Cong, W., Cai, Z. L., & Ouyang, F. (2004). Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnology Letters, 26, 1429–1432.

    CAS  Google Scholar 

  43. Martínez, M. E., Camacho, F., Jiménez, J. M., & Espínola, J. B. (1997). Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochemistry, 32, 93–98.

    Google Scholar 

  44. Hu, B., Min, M., Zhou, W. G., Li, Y. C., Mohr, M., Cheng, Y. L., Lei, H. W., Liu, Y. H., Lin, X. Y., Chen, P., & Ruan, R. (2012). Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Applied Biochemistry and Biotechnology, 166, 1661–1673.

    CAS  Google Scholar 

  45. Marquez, F. J., Sasaki, K., Kakizono, T., Nishio, N., & Nagai, S. (1993). Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. Journal of Fermentation and Bioengineering, 76, 408–410.

    CAS  Google Scholar 

  46. Vonshak, A., Cheung, S. M., & Chen, F. (2000). Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (Cyanobacteria) cells to light. Journal of Phycology, 36, 675–679.

    CAS  Google Scholar 

  47. Wang, Y. H., Li, Y. G., Shi, D. J., Shen, G. M., Ru, B. G., & Zhang, S. L. (2002). Characteristics of mixotrophic growth of Synechocystis sp. in an enclosed photobioreactor. Biotechnology Letters, 24, 1593–1598.

    CAS  Google Scholar 

  48. Andrate, M. R., & Costa, J. A. V. (2007). Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264, 130–134.

    Google Scholar 

  49. Park, K. C., Whitney, C., McNichol, J. C., Dickinson, K. E., MacQuarrie, S., Skrupski, B. P., Zou, J. T., Wilson, K. E., O’Leary, S. J. B., & McGinn, P. J. (2012). Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. Journal of Applied Phycology, 24, 339–348.

    CAS  Google Scholar 

  50. Wan, M. X., Liu, P., Xia, J. L., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., Nie, Z. Y., & Qiu, G. Z. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91, 835–844.

    CAS  Google Scholar 

  51. Ogbonna, J. C., & Tanaka, H. (2000). Light requirement and photosynthetic cell cultivation—development of processes for efficient light utilization in photobioreactors. Journal of Applied Phycology, 12, 207–218.

    Google Scholar 

  52. Li, Y. C., Zhou, W. G., Hu, B., Min, M., Chen, P., & Ruan, R. R. (2012). Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering, 109, 2222–2229.

    CAS  Google Scholar 

  53. Xiong, W., Gao, C. F., Yan, D., Wu, C., & Wu, Q. Y. (2010). Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technology, 101, 2287–2293.

    CAS  Google Scholar 

  54. Chen, F., & Zhang, Y. M. (1997). High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 20, 221–224.

    CAS  Google Scholar 

  55. Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84, 281–291.

    CAS  Google Scholar 

  56. Liu, X. J., Duan, S. S., Li, A. F., Xu, N., Cai, Z. P., & Hu, Z. X. (2009). Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. Journal of Applied Phycology, 21, 239–246.

    Google Scholar 

  57. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88, 3425–3431.

    CAS  Google Scholar 

  58. Probir, D., Wang, L., Siti, S. A., & Jeffrey, P. O. (2011). Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883–3887.

    Google Scholar 

  59. Ríos, S. D., Torres, C. M., Torras, C., Salvadó, J., Mateo-Sanz, J. M., & Jiménez, L. (2013). Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. Bioresource Technology, 136, 617–625.

    Google Scholar 

  60. Vicente, G., Bautista, L. F., Rodríguez, R., Gutiérrez, F. J., Sádaba, I., Ruiz-Vázquez, R. M., Torres-Martínez, S., & Garre, V. (2009). Biodiesel production from biomass of an oleaginous fungus. Biochemical Engineering Journal, 48, 22–27.

    CAS  Google Scholar 

  61. Knothe, G. (2009). Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2, 759–766.

    CAS  Google Scholar 

  62. Aguirre, A. M., Bassi, A., & Saxena, P. (2013). Engineering challenges in biodiesel production from microalgae. Critical Reviews in Biotechnology, 33, 293–308.

    CAS  Google Scholar 

  63. Kamjunke, N. (2010). Temperature affects the response of heterotrophic bacteria and mixotrophic algae to enhanced concentrations of soil extract. Hydrobiologia, 649, 379–383.

    Google Scholar 

  64. Kamjunke, N., & Tittel, J. (2009). Mixotrophic algae constrain the loss of organic carbon by exudation. Journal of Phycology, 45, 807–811.

    CAS  Google Scholar 

  65. Zendejas, F. J., Benke, P. I., Lane, P. D., Simmons, B. A., & Lane, T. W. (2012). Characterization of the acylglycerols and resulting biodiesel derived from vegetable oil and microalgae (Thalassiosira pseudonana and Phaeodactylum tricornutum). Biotechnology and Bioengineering, 109, 1146–1154.

    CAS  Google Scholar 

  66. Griffiths, M. J., & Harrison, S. T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507.

    CAS  Google Scholar 

  67. Chinnasamy, S., Bhatnagar, A., Hunt, R. W., & Das, K. C. (2010). Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology, 101, 3097–3105.

    CAS  Google Scholar 

  68. Valenzuela, J., Carlson, R. P., Gerlach, R., Cooksey, K., Peyton, B. M., Bothner, B., & Fields, M. W. (2013). Nutrient resupplementation arrests bio-oil accumulation in Phaeodactylum tricornutum. Applied Microbiology and Biotechnology, 97, 7049–7059.

    CAS  Google Scholar 

  69. Momocha, N., Sachitra, K. R., Radha, P., Anil, K. S., Dolly, W. D., Chandragiri, S., & Rachapudi, B. N. P. (2012). Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. SpringerPlus, 1, 1–13.

    Google Scholar 

  70. Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    CAS  Google Scholar 

  71. Carvalho, A. P., Silva, S. O., Baptista, J. M., & Malcata, F. X. (2011). Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology and Biotechnology, 89, 1275–1288.

    CAS  Google Scholar 

  72. Chen, F., Zhang, Y. M., & Guo, S. Y. (1996). Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnology Letters, 18, 603–608.

    CAS  Google Scholar 

  73. Pleissner, D., & Eriksen, N. T. (2012). Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnology and Bioengineering, 109, 2005–2016.

    CAS  Google Scholar 

  74. Xu, J. Y., Du, W., Zhao, X. B., Zhang, G. L., & Liu, D. H. (2013). Microbial oil production from various carbon sources and its use for biodiesel preparation. Biofuels Bioproducts & Biorefining-Biofpr, 7, 65–77.

    CAS  Google Scholar 

  75. De-Bashan, L. E., Hernandez, J. P., Morey, T., & Bashan, Y. (2004). Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research, 38, 466–474.

    CAS  Google Scholar 

  76. Mulbry, W. K. S., Pizarro, C., & Kebede-Westhead, E. (2008). Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology, 99, 8137–8142.

    CAS  Google Scholar 

  77. Pizarro, C., Mulbry, W., Blersch, D., & Kangas, P. (2006). An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecological Engineering, 26, 321–327.

    Google Scholar 

  78. Yang, C. F., Ding, Z. Y., & Zhang, K. C. (2008). Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World Journal of Microbiology & Biotechnology, 24, 2919–2925.

    CAS  Google Scholar 

  79. Mulbry, W. W., & Wilkie, A. C. (2001). Growth of benthic freshwater algae on dairy manures. Journal of Applied Phycology, 13, 301–306.

    Google Scholar 

  80. Li, Y. C., Zou, W. G., Hu, B., Min, M., Chen, P., & Ruan, R. R. (2011). Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresource Technology, 102, 10861–10867.

    CAS  Google Scholar 

  81. Wang, B., Li, Y. Q., Wu, N., & Lan, C. Q. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    CAS  Google Scholar 

  82. Gardner, R. D., Lohman, E., Gerlach, R., Cooksey, K. E., & Peyton, B. M. (2013). Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 110, 87–96.

    CAS  Google Scholar 

  83. Chu, W. L., Phang, S. M., & Goh, S. H. (1996). Environmental effects on growth and biochemical composition of Nitzschia inconspicua Grunow. Journal of Applied Phycology, 8, 389–396.

    CAS  Google Scholar 

  84. Hu, H. H., & Gao, K. S. (2003). Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnology Letters, 25, 421–425.

    CAS  Google Scholar 

  85. Bilanovic, D., Andargatchew, A., Kroeger, T., & Shelef, G. (2009). Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations—response surface methodology analysis. Energy Conversion and Management, 50, 262–267.

    CAS  Google Scholar 

  86. Hsueh, H. T., Chu, H., & Yu, S. T. (2007). A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66, 878–886.

    CAS  Google Scholar 

  87. Huo, S. H., Dong, R. J., Wang, Z. M., Pang, C. L., Yuan, Z. H., Zhu, S. N., & Chen, L. (2011). Available resources for algal biofuel development in China. Energies, 4, 1321–1335.

    Google Scholar 

  88. Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100, 833–838.

    CAS  Google Scholar 

  89. Huertas, I. E., Colman, B., Espie, G. S., & Lubian, L. M. (2000). Active transport of CO2 by three species of marine microalgae. Journal of Phycology, 36, 314–320.

    Google Scholar 

  90. Wang, C. Y., Fu, C. C., & Liu, Y. C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37, 21–25.

    Google Scholar 

  91. Yan, C., Luo, X. Z., & Zheng, Z. (2013). Performance of purifying anaerobic fermentation slurry using microalgae in response to various LED light wavelengths and intensities. Journal of Chemical Technology and Biotechnology, 88, 1622–1630.

    CAS  Google Scholar 

  92. Wang, L., Li, Y. G., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.

    CAS  Google Scholar 

  93. Muñoz, R., & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Research, 40, 2799–2815.

    Google Scholar 

  94. Oncel, S. S., Imamoglu, E., Gunerken, E., & Sukan, F. V. (2011). Comparison of different cultivation modes and light intensities using mono-cultures and co-cultures of Haematococcus pluvialis and Chlorella zofingiensis. Journal of Chemical Technology and Biotechnology, 86, 414–420.

    CAS  Google Scholar 

  95. Vejrazka, C., Janssen, M., Benvenuti, G., Streefland, M., & Wijffels, R. H. (2013). Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Applied Microbiology and Biotechnology, 97, 1523–1532.

    CAS  Google Scholar 

  96. Fuentes-Grünewald, C., Garcés, E., Alacid, E., Sampedro, N., Rossi, S., & Camp, J. (2012). Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. Journal of Industrial Microbiology & Biotechnology, 39, 207–216.

    Google Scholar 

  97. Wang, B., & Lan, C. Q. (2011). Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresource Technology, 102, 5639–5644.

    CAS  Google Scholar 

  98. Kim, M. K., Park, J. W., Park, C. S., Kim, S. J., Jeune, K. H., Chang, M. U., & Acreman, J. (2007). Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresource Technology, 98, 2220–2228.

    CAS  Google Scholar 

  99. Gouveia, L., Marques, A. E., da Silva, T. L., & Reis, A. (2009). Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology & Biotechnology, 36, 821–826.

    CAS  Google Scholar 

  100. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100–112.

    CAS  Google Scholar 

  101. Wu, X. D., Ruan, R., Du, Z. Y., & Liu, Y. H. (2012). Current status and prospects of biodiesel production from microalgae. Energies, 5, 2667–2682.

    CAS  Google Scholar 

  102. Yun, Y. S., Lee, S. B., Park, J. M., Lee, C. I., & Yang, J. W. (1997). Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology, 69, 451–455.

    CAS  Google Scholar 

  103. Wang, L., Li, Y. C., Chen, P., Min, M., Chen, Y. F., Zhu, J., & Ruan, R. R. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology, 101, 2623–2628.

    CAS  Google Scholar 

  104. Lu, S. H., Wang, J. X., Niu, Y. H., Yang, J., Zhou, J., & Yuan, Y. J. (2012). Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnology and Bioengineering, 109, 1651–1662.

    CAS  Google Scholar 

  105. Bamgboye, A. I., & Hansen, A. C. (2008). Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. International Agrophysics, 22, 21–29.

    CAS  Google Scholar 

  106. Mattos, E. R., Singh, M., Cabrera, M. L., & Das, K. C. (2012). Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO2 concentrations. Applied Biochemistry and Biotechnology, 168, 519–530.

    CAS  Google Scholar 

  107. Reinehr, C. O., & Costa, J. A. V. (2006). Repeated batch cultivation of the microalga Spirulina platensis. World Journal of Microbiology & Biotechnology, 22, 937–943.

    CAS  Google Scholar 

  108. Tang, H. Y., Chen, M., Simon Ng, K. Y., & Salley, S. O. (2012). Continuous microalgae cultivation in a photobioreactor. Biotechnology and Bioengineering, 109, 2468–2474.

    CAS  Google Scholar 

  109. Lee, Y. K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9, 403–411.

    Google Scholar 

  110. Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293.

    CAS  Google Scholar 

  111. Terry, K. L., & Raymond, L. P. (1985). System design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7, 474–487.

    Google Scholar 

  112. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    CAS  Google Scholar 

  113. Béchet, Q., Muñoz, R., Shilton, A., & Guieysse, B. (2013). Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input. Biotechnology and Bioengineering, 110, 118–126.

    Google Scholar 

  114. Doucha, J., Straka, F., & Lívanský, K. (2005). Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology, 17, 403–412.

    Google Scholar 

  115. Olivieri, G., Salatino, P., & Marzocchella, A. (2013). Advances in photobioreactors for intensive microalgal productions: configurations, operation strategies and applications. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.4218.

    Google Scholar 

  116. Ozkan, A., Kinney, K., Katz, L., & Berberoglu, H. (2012). Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresource Technology, 114, 542–548.

    CAS  Google Scholar 

  117. Zhou, Y., Schideman, L., Yu, G., & Zhang, Y. H. (2013). A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy & Environmental Science, 6, 3765–3779.

    CAS  Google Scholar 

  118. Klein-Marcuschamer, D., Turner, C., Allen, M., Gray, P., Dietzgen, R. G., Gresshoff, P. M., Hankamer, B., Heimann, K., Scott, P. T., Stephens, E., Speight, R., & Nielsen, L. K. (2013). Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane. Biofuels Bioproducts & Biorefining-Biofpr, 7, 416–428.

    CAS  Google Scholar 

  119. Zhou, W. G., Min, M., Li, Y. C., Hu, B., Ma, X. C., Cheng, Y. L., Liu, Y. H., Chen, P., & Ruan, R. (2012). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110, 448–455.

    CAS  Google Scholar 

  120. De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101, 1611–1627.

    CAS  Google Scholar 

  121. Kong, Q. X., Li, L., Martinez, B., Chen, P., & Ruan, R. (2010). Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology, 160, 9–18.

    CAS  Google Scholar 

  122. Hu, B., Zhou, W. G., Min, M., Du, Z. Y., Chen, P., Ma, X. C., Liu, Y. H., Lei, H. W., Shi, J., & Ruan, R. (2013). Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Applied Energy, 107, 255–263.

    CAS  Google Scholar 

  123. Craggs, R. J., Heubeck, S., Lundquist, T. J., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63, 660–665.

    CAS  Google Scholar 

  124. Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2013). Wastewater treatment to enhance the economic viability of microalgae culture. Environmental Science and Pollution Research, 20, 5096–5105.

    CAS  Google Scholar 

  125. Li, Y. C., Chen, Y. F., Chen, P., Min, M., Zhou, W. G., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102, 5138–5144.

    CAS  Google Scholar 

  126. Karya, N. G. A. I., van der Steen, N. P., & Lens, P. N. L. (2013). Photo-oxygenation to support nitrification in an algal-bacterial consortium treating artificial wastewater. Bioresource Technology, 134, 244–250.

    CAS  Google Scholar 

  127. Pinzi, S., Leiva, D., López-García, I., Redel-Macías, M. D., & Dorado, M. P. (2013). Latest trends in feedstocks for biodiesel production. Biofuels Bioproducts & Biorefining-Biofpr. doi:10.1002/bbb.1435.

    Google Scholar 

  128. Oswald, W. J., Gotaas, H. B., Golueke, C. G., Kellen, W. R., Gloyna, E. F., & Hermann, E. R. (1957). Algae in waste treatment. Sewage and Industrial Wastes, 29, 437–457.

    Google Scholar 

  129. Wang, L., Min, M., Li, Y. C., Chen, P., Chen, Y. F., Liu, Y. H., Wang, Y. K., & Ruan, R. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162, 1174–1186.

    CAS  Google Scholar 

  130. Chiu, Y. W., & Wu, M. (2013). Considering water availability and wastewater resources in the development of algal bio-oil. Biofuels Bioproducts & Biorefining-Biofpr, 7, 406–415.

    CAS  Google Scholar 

  131. Acién Fernández, F. G., González-López, C. V., Fernández Sevilla, J. M., & Molina Grima, E. (2012). Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Applied Microbiology and Biotechnology, 96, 577–586.

    Google Scholar 

  132. Yan, J. F., Cheng, R. B., Lin, X. Z., You, S., Li, K., Rong, H., & Ma, Y. (2013). Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Applied Microbiology and Biotechnology, 97, 1933–1939.

    CAS  Google Scholar 

  133. Kang, C. D., An, J. Y., Park, T. H., & Sim, S. J. (2006). Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal, 31, 234–238.

    CAS  Google Scholar 

  134. Solovchenko, A., & Khozin-Goldberg, I. (2013). High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnology Letters, 35, 1745–1752.

    CAS  Google Scholar 

  135. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021–4028.

    CAS  Google Scholar 

  136. Shen, Y., Yuan, W., Pei, Z., & Mao, E. (2008). Culture of microalga Botryococcus in livestock wastewater. Transactions of the ASABE, 51, 1395–1400.

    Google Scholar 

  137. Wang, Z., Ma, X. C., Zhou, W. G., Min, M., Cheng, Y. L., Chen, P., Shi, J., Wang, Q., Liu, Y. H., & Ruan, R. (2013). Oil crop biomass residue-based media for enhanced algal lipid production. Applied Biochemistry and Biotechnology, 171, 689–703.

    CAS  Google Scholar 

  138. Liu, J. Q., Liu, Y. H., Ruan, R. S., Liu, Q., Zhang, J. S., Peng, H., & Wu, X. D. (2011). Cultivating Chlorella vulgaris as biodiesel feedstock by municipal wastewater. Chinese Journal of Bioprocess Engineering, 9, 10–14.

    CAS  Google Scholar 

  139. He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181.

    CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from Chinese National Key Technology R&D Program during the Eleventh Five-Year Plan Period (2009BAC57B01) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yang, H. & Wang, F. Mixotrophic Cultivation of Microalgae for Biodiesel Production: Status and Prospects. Appl Biochem Biotechnol 172, 3307–3329 (2014). https://doi.org/10.1007/s12010-014-0729-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0729-1

Keywords

Navigation