Skip to main content
Log in

Cellulases: Classification, Methods of Determination and Industrial Applications

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial cellulases have been receiving worldwide attention, as they have enormous potential to process the most abundant cellulosic biomass on this planet and transform it into sustainable biofuels and other value added products. The synergistic action of endoglucanases, exoglucanases, and β-glucosidases is required for the depolymerization of cellulose to fermentable sugars for transformation in to useful products using suitable microorganisms. The lack of a better understanding of the mechanisms of individual cellulases and their synergistic actions is the major hurdles yet to be overcome for large-scale commercial applications of cellulases. We have reviewed various microbial cellulases with a focus on their classification with mechanistic aspects of cellulase hydrolytic action, insights into novel approaches for determining cellulase activity, and potential industrial applications of cellulases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ioelovich, M. (2008). Cellulose as a nanostructured polymer: a short review. Bioresources, 3, 1403–1418.

    Google Scholar 

  2. Elba, P.S.B., & Maria, A.F. (2007). Bioethanol production via enzymatic hydrolysis of cellulosic biomass. In: The role of agricultural biotechnologies for production of bioenergy in developing countries an FAO seminar held in Rome. Available from http:// www.fao.org/biotech/seminaroct 2007.htm.

  3. Zhang, Y. H. P., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24, 452–481.

    Article  CAS  Google Scholar 

  4. Zenga, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85, 506–513.

    Article  CAS  Google Scholar 

  5. Mohite, B. V., Kamalja, K. K., & Patil, S. V. (2012). Statistical optimization of culture conditions for enhanced bacterial cellulose production by Gluconoacetobacter hansenii NCIM 2529. Cellulose, 19, 1655–1666.

    Article  CAS  Google Scholar 

  6. Zhang, Y. H., & Lynd, L. R. (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  7. Lenting, H. B. M., & Warmoeskerken, M. M. C. G. (2001). Mechanism of interaction between cellulase action and applied shear force, an hypothesis. Journal of Biotechnology, 89, 217–226.

    Article  CAS  Google Scholar 

  8. Sukumaran, R. K., Singhania, R. R., & Pandey, A. (2005). Microbial cellulases: production, applications and challenges. Journal of Scientific and Industrial Research, 64, 832–844.

    CAS  Google Scholar 

  9. Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35, 377–391.

    Article  CAS  Google Scholar 

  10. Sadhu, S., & Maiti, T. K. (2013). Cellulase production by bacteria: a review. British Microbiology Research Journal, 3, 235–258.

    Article  CAS  Google Scholar 

  11. Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203.

    Article  CAS  Google Scholar 

  12. Watanabe, H., & Tokuda, G. (2001). Animal cellulases. Cellular and Molecular Life Sciences, 58, 1167–1178.

    Article  CAS  Google Scholar 

  13. Carlile, M. J., & Watkinson, S. C. (1997). The fungi. New York: Academic.

    Google Scholar 

  14. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  15. Schwarz, W. H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, 56, 634–649.

    Article  CAS  Google Scholar 

  16. Svetlichnyi, V. A., Svetlichnaya, T. P., Chernykh, N. A., & Zavarzin, G. A. (1990). Anaerocellum thermophilum, gen. nov. sp. nov.: an extremely thermophilic cellulolytic eubacterium isolated from hot springs in the valley of geysers. Mikrobiologie, 59, 598–604.

    Google Scholar 

  17. Rainey, F. A., Donnison, A. M., Janssen, P. H., Saul, D., Rodrigo, A., Bergquist, P. L., Daniel, R. M., Stackebrandt, E., & Morgan, H. W. (1994). Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. FEMS Microbiology Letters, 120, 263–266.

    Article  CAS  Google Scholar 

  18. Rapp, P., & Beerman, A. (1991). In: Biosynthesis and Biodegradation of Cellulose: Bacterial cellulases. Haigler, C.H. & Weimer, P.J. eds, Marcel Dekker, Inc., New York, pp. 535–595.

  19. Saranraj, P., Stella, D., & Reetha, D. (2012). Microbial cellulases and its applictions: a review. International Journal of Biochemistry and Biotechnology, 1, 1–12.

    Google Scholar 

  20. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.

    Article  CAS  Google Scholar 

  21. Divne, C., Stahlberg, J., Teeri, T. T., & Jones, T. A. (1998). High-resolution crystal structures reveal how a cellulose chain is bound in the 50Å long tunnel of cellobiohydrolaseI from Trichoderma reesei. Journal of Molecular Biology, 275, 309–325.

    Article  CAS  Google Scholar 

  22. Din, N., Damude, H. G., Gilkes, N. R., Miller, R. C., Warren, R. A., & Kilburn, D. G. (1994). C1-Cx revisited: intramolecular synergism in a cellulase. Proceedings of the National Academy of Sciences, 91, 11383–11387.

    Article  CAS  Google Scholar 

  23. Teeri, T. T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 15, 160–167.

    Article  Google Scholar 

  24. Kongruang, S., Han, M. J., Breton, C. I. G., & Penner, M. H. (2004). Quantitative analysis of cellulose-reducing ends. Applied Biochemistry and Biotechnology, 113, 213–231.

    Article  Google Scholar 

  25. Zhang, Y. H. P., & Lynd, L. R. (2005). Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules, 6, 1510–1515.

    Article  CAS  Google Scholar 

  26. Dashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology, 30, 302–309.

    Article  CAS  Google Scholar 

  27. Shuangqi, T., Zhenyu, W., Ziluan, F., Lili, Z., & Jichang, W. (2011). Determination methods of cellulase activity. African Journal of Biotechnology, 10, 7122–7125.

    Google Scholar 

  28. Ozioko, P. C., Ikeyi, A. P., & Ugwu, O. P. C. (2013). Review article: cellulases, their substrates, activity and assay methods. The Experiment, 12, 778–785.

    Google Scholar 

  29. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and relative substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  30. Viles, F. J., & Silverman, L. (1949). Determination of starch and cellulose with anthrone. Analytical Chemistry, 21, 950–953.

    Article  CAS  Google Scholar 

  31. Roe, J. H. (1955). The determination of sugar in blood and spinal fluid with anthrone reagent. Journal of Biological Chemistry, 212, 335–343.

    CAS  Google Scholar 

  32. Lee, J. M., Heitmann, J. A., & Pawlak, J. J. (2006). Rheology of carboxymethyl cellulose solutions treated with cellulases. BioResources, 2, 20–33.

    Google Scholar 

  33. Mandels, M., Andreotti, R., & Roche, C. (1976). Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium, 6, 21–33.

    CAS  Google Scholar 

  34. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  35. Somogyi, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23.

    CAS  Google Scholar 

  36. Trinder, P. (1969). Determination of blood glucose using 4-amino phenazone as oxygen acceptor. Journal of Clinical Pathology, 22, 246.

    Article  CAS  Google Scholar 

  37. Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., & Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and Environmental Microbiology, 68, 5136–5141.

    Article  CAS  Google Scholar 

  38. Zverlov, V. V., Schantz, N., & Scwarz, W. H. (2005). A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1, 4-glucanase producing cellodextrose. FEMS Microbiology Letters, 249, 353–358.

    Article  CAS  Google Scholar 

  39. Soni, S. K., & Soni, R. (2010). Regulation of cellulase synthesis in Chaetomium erraticum. BioResources, 5, 81–98.

    CAS  Google Scholar 

  40. Bansal, N., Soni, R., Janveja, C., & Soni, S. K. (2012). Production of xylanase-cellulase complex by Bacillus subtilis NS7 for the biodegradation of agro-waste residues. Lignocellulose, 1, 196–209.

    Google Scholar 

  41. Janveja, C., Rana, S. S., & Soni, S. K. (2013). Kitchen waste residues as potential renewable biomass resources for the production of multiple fungal carbohydrases and second generation bioethanol. Journal of Technology Innovations in Renewable Energy, 2, 186–200.

    CAS  Google Scholar 

  42. Eveleigh, D. E., Mandels, M., Andreotti, R., & Roche, C. (2009). Measurement of saccharifying cellulase. Biotechnology for Biofuels, 2, 21.

    Article  CAS  Google Scholar 

  43. Guignard, R., & Pilet, P. E. (1976). Viscosimetric determination of cellulase activity: critical analyses. Plant & Cell Physiology, 17, 899–908.

    CAS  Google Scholar 

  44. Zhang, Y. H. P., Hong, J., & Ye, X. (2009). Cellulase assays. Methods in Molecular Biology, 581, 213–231.

    Article  CAS  Google Scholar 

  45. Zverlov, V. V., Velikodvorskaya, G. A., & Schwarz, W. H. (2002). A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology, 148, 247–255.

    Article  CAS  Google Scholar 

  46. Zverlov, V. V., Velifodvorskaya, G. A., & Schwarz, W. H. (2003). Two new cellulosome components encoded downstream of cell in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possible structural protein CseP. Microbiology, 149, 515–524.

    Article  CAS  Google Scholar 

  47. Ten, L. N., Im, W. T., Kim, M. K., Kang, M. S., & Lee, S. T. (2004). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. Journal of Microbiological Methods, 56, 375–382.

    Article  CAS  Google Scholar 

  48. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current Microbiology, 57, 503–507.

    Article  CAS  Google Scholar 

  49. Sharrock, K. R. (1988). Cellulase assay methods: a review. Journal of Biochemical and Biophysical Methods, 17, 81–105.

    Article  CAS  Google Scholar 

  50. Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160, 87–117.

    Article  CAS  Google Scholar 

  51. van Tilbeurgh, H., & Claeyssens, M. (1985). Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Letters, 187, 283–288.

    Article  Google Scholar 

  52. van Tilbeurgh, H., Claeyssens, M., & Bruyne, C. K. (1982). The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Letters, 149, 152–156.

    Article  Google Scholar 

  53. van Tilbeurgh, H., Pettersson, G., Bhikabhai, R., De Boeck, H., & Claeyssens, M. (1985). Studies of the cellulolytic system of Trichoderma reesei QM 9414. Reaction specificity and thermodynamics of interactions of small substrates and ligands with the 1, 4-beta-glucan cellobiohydrolases II. European Journal of Biochemistry, 148, 329–334.

    Article  Google Scholar 

  54. Deshpande, M. V., Eriksson, K. E., & Pettersson, L. G. (1984). An assay for selective determination of exo-1, 4,-beta-glucanases in a mixture of cellulolytic enzymes. Analytical Biochemistry, 138, 481–487.

    Article  CAS  Google Scholar 

  55. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnology and Bioengineering, 36, 275–287.

    Article  CAS  Google Scholar 

  56. Boschker, H. T. S., & Cappenberg, T. E. (1994). A sensitive method using 4-methylumbelliferyl-3-cellobiose as a substrate to measure (1, 4)-β-glucanase activity in sediments. Applied and Environmental Microbiology, 60, 3592–3596.

    CAS  Google Scholar 

  57. Courty, P. E., Pritsch, K., Schloter, M., Hartmann, A., & Garbaye, J. (2005). Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytologist, 167, 309–319.

    Article  CAS  Google Scholar 

  58. Coleman, D. J., Studler, M. J., & Naleway, J. J. (2007). A long-wavelength fluorescent substrate for continuous fluorometric determination of cellulase activity: Resorufin-β-D-cellobioside. Analytical Biochemistry, 371, 146–153.

    Article  CAS  Google Scholar 

  59. Goggin, K. D., Hammen, P. D., Kuntson, K. L., Lambert, J. F., Walinsky, S. W., & Watson, H. A. (2004). Commercial synthesis of a-D-cellobiosyl bromide heptaacetate. Journal of Chemical Technology and Biotechnology, 60, 253–256.

    Article  Google Scholar 

  60. Caspi, J., Irwin, D., Lamed, R., Li, Y., Fierobe, H. P., Wilson, D. B., & Bayer, E. A. (2008). Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. Journal of Biotechnology, 135, 351–357.

    Article  CAS  Google Scholar 

  61. Kubicek, C. P. (1982). Beta-glucosidase excretion by Trichoderma pseudokoningii: Correlations with cell wall bound beta-1, 3-glucanase activities. Archives of Microbiology, 132, 349–354.

    Article  CAS  Google Scholar 

  62. McCarthy, J. K., Uzelac, A., Davis, D. F., & Eveleigh, D. E. (2004). Improved catalytic efficiency and active site modification of 1,4-beta-D-glucan glucohydrolase A from Thermotoga neapolitana by directed evolution. The Journal of Biological Chemistry, 279, 11495–11502.

    Article  CAS  Google Scholar 

  63. Zhang, Y. H. P., & Lynd, L. R. (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Applied and Environmental Microbiology, 70, 1563–1569.

    Article  CAS  Google Scholar 

  64. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  65. Soni, R., Sandhu, D. K., & Soni, S. K. (1998). Catabolite repression of β-glucosidase and amylase production in Chaetomium erraticum. Indian Journal of Microbiology, 38, 95–99.

    Google Scholar 

  66. Soni, R., Sandhu, D. K., & Soni, S. K. (1999). Localization and optimization of cellulose production in Chaetomium erraticum. Journal of Biotechnology, 73, 43–51.

    Article  CAS  Google Scholar 

  67. Yoon, J. J., Kim, K. Y., & Cha, C. J. (2008). Purification and characterization of thermostable beta-glucosidase from the brown-rot basidiomycete Fomitopsis palustris grown on microcrystalline cellulose. Journal of Microbiology, 46, 51–55.

    Article  CAS  Google Scholar 

  68. Yang, S., Jiang, Z., Yan, Q., & Zhu, H. (2008). Characterization of a thermostable extracellular beta-glucosidase with activities of exoglucanase and transglycosylation from Paecilomyces thermophila. Journal of Agricultural and Food Chemistry, 56, 602–608.

    Article  CAS  Google Scholar 

  69. Korotkova, O. G., Semenova, M. V., Morozova, V. V., Zorov, I. N., Sokolova, L. M., Bubnova, T. M., Okunev, O. N., & Sinitsyn, A. P. (2009). Isolation and properties of fungal beta-glucosidases. Biochemistry, 74, 569–577.

    CAS  Google Scholar 

  70. Bansal, N., Tewari, R., Gupta, J. K., Soni, R., & Soni, S. K. (2011). A novel strain of Aspergillus niger producing a cocktail of hydrolytic depolymerising enzymes for the production of second generation biofuels. BioResources, 6, 552–569.

    CAS  Google Scholar 

  71. Janveja, C., Rana, S. S., & Soni, S. K. (2013). Environmentally acceptable management of kitchen waste residues by using them as substrates for the production of a cocktail of fungal carbohydrates. International Journal of Chemical and Environmental Systems, 4, 20–29.

    Google Scholar 

  72. Rana, S. S., Janveja, C., & Soni, S. K. (2013). Brewer’s spent grain as a valuable substrate for low cost production of fungal cellulases by statistical modeling in solid state fermentation and generation of cellulosic ethanol. International Journal of Food and Fermentation Technology, 3, 41–55.

    Article  Google Scholar 

  73. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  74. Coward-Kelly, G., Aiello-Mazzari, C., Kim, S., Granda, C., & Holtzapple, M. (2003). Suggested improvements to the standard filter paper assay used to measure cellulase activity. Biotechnology and Bioengineering, 82, 745–749.

    Article  CAS  Google Scholar 

  75. Nordmark, T. S., Bakalinsky, A., & Penner, M. H. (2007). Measuring cellulase activity: application of the filter paper assay to low-activity enzyme preparations. Applied Biochemistry and Biotechnology, 137–140, 131–139.

    Google Scholar 

  76. Camassola, M., & Dillon, A. J. P. (2012). Cellulase determination: modifications to make the filter paper assay easy, fast, practical and efficient. Open Access Scientific Reports, 1, 125.

    Google Scholar 

  77. Decker, S. R., Adney, W. S., Jennings, E., Vinzant, T. B., & Himmel, M. E. (2003). Automated filter paper assay for determination of cellulase activity. Applied Biochemistry and Biotechnology, 105–108, 689–703.

    Article  Google Scholar 

  78. Helbert, W., Chanzy, H., Husum, T. L., Schulein, M., & Ernst, S. (2003). Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity. Biomacromolecules, 4, 481–487.

    Article  CAS  Google Scholar 

  79. Xiao, Z., Storms, R., & Tsang, A. (2004). Microplate-based filter paper assay to measure total cellulase activity. Biotechnology and Bioengineering, 88, 832–837.

    Article  CAS  Google Scholar 

  80. Xiao, Z., Storms, R., & Tsang, A. (2005). Microplate-based carboxymethylcellulose assay for endoglucanase activity. Analytical Biochemistry, 342, 176–178.

    Article  CAS  Google Scholar 

  81. King, B. C., Donnelly, M. K., Bergstrom, G. C., Walker, L. P., & Gibson, D. M. (2009). An optimized microplate assay system for quantitative evaluation of plant cell. Biotechnology and Bioengineering, 102, 1033–1044.

    Article  CAS  Google Scholar 

  82. Navarro, D., Couturier, M., Silva, G. G. D., Berrin, J. G., Rouau, X., Asther, M., & Bignon, C. (2010). Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microbial Cell Factories, 9, 58.

    Article  CAS  Google Scholar 

  83. Jang, J. H., Lee, H. S., & Lyoo, W. S. (2007). Effect of UV irradiation on cellulase degradation of cellulose acetate containing TiO2. Fibers and Polymers, 8, 19–24.

    Article  CAS  Google Scholar 

  84. Toyama, H., Yano, M., Hotta, T., & Toyama, N. (2007). Filter paper degrading ability of a Trichoderma strain with multinucleate conidia. Applied Biochemistry and Biotechnology, 137–140, 155–160.

    Google Scholar 

  85. Wang, L., Wang, Y., & Ragauskas, A. J. (2010). A novel FRET approach for in situ investigation of cellulase–cellulose interaction. Analytical and Bioanalytical Chemistry, 398, 1257–1362.

    Article  CAS  Google Scholar 

  86. Rojas, O.J., Jeong, C., Turon, X., & Argyropoulos, D.S. (2006). Measurement of Cellulase Activity with Piezoelectric Resonators, Vol. 954. In: D.S., Argyropoulos (eds), Materials, Chemicals, and Energy from Forest Biomass (pp. 478–494). American Chemical Society.

  87. Hu, G., Heitmann, J. A., & Rojas, O. J. (2009). Quantification of cellulase activity using the quartz crystal microbalance technique. Analytical Chemistry, 81, 1872–1880.

    Article  CAS  Google Scholar 

  88. Kumagai, A., Lee, S. H., & Endo, T. (2013). Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Biomacromolecules, 14, 2420–2426.

    Article  CAS  Google Scholar 

  89. Karim, N., & Kidokoro, S. (2004). Precise and continuous observation of cellulase-catalyzed hydrolysis of cello-oligosaccharides using isothermal titration calorimetry. Thermochimica Acta, 412, 91–96.

    Article  CAS  Google Scholar 

  90. Karim, N., & Kidokoro, S. (2005). Precise evaluation of enzyme activity using isothermal titration calorimetry. Netsu Sokutei, 33, 27–35.

    Google Scholar 

  91. Murphy, L., Baumann, M. J., Borch, K., Sweeney, M., & Westh, P. (2010). An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases. Analytical Biochemistry, 404, 140–148.

    Article  CAS  Google Scholar 

  92. Murphy, L., Cruys-Bagger, N., Damgaard, H. D., Baumann, M. J., Olsen, S. N., Borch, K., Lassen, S. F., Sweeney, M., Tatsumi, H., & Westh, P. (2011). Origin of the initial burst in activity for T. reesei endoglucanases hydrolyzing insoluble cellulose. The Journal of Biological Chemistry, 287, 1252–1260.

    Article  CAS  Google Scholar 

  93. Linder, M., Szilvay, G. R., Nakari-Setala, T., Soderlund, H., & Penttila, M. (2002). Surface adhesion of fusion proteins containing the hydrophobins HFBI and HFBII from Trichoderma resei. Protein Science, 11, 2257–2266.

    Article  CAS  Google Scholar 

  94. Mitsumori, M., Xu, L. M., Kajikawa, H., & Kurihara, M. (2002). Properties of cellulose-binding modules in endoglucanase F from Fibrobacter succinogenes S85 by means of surface plasmon resonance. FEMS Microbiology Letters, 214, 277–281.

    Article  CAS  Google Scholar 

  95. Allen, S. G., Tanchak, O. M., Quirk, A., Raegen, A. N., Reiter, K., Whitney, R., Clarke, A. J., Lipkowski, J., & Dutcher, J. R. (2012). Surface plasmon resonance imaging of the enzymatic degradation of cellulose microfibrils. Analytical Methods, 4, 3238–3245.

    Article  CAS  Google Scholar 

  96. Jeon, S. D., Lee, J. E., Kim, S. J., Park, S. H., Choi, G. W., & Hana, S. O. (2013). Unique contribution of the cell wall-binding endoglucanase G to the cellulolytic complex in Clostridium cellulovorans. Applied and Environmental Microbiology, 79, 5942–5948.

    Article  CAS  Google Scholar 

  97. Shao, Y. Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. H. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22, 1027–1036.

    Article  CAS  Google Scholar 

  98. Cruys-Bagger, N., Ren, G., Tatsumi, H., Baumann, M. J., Spodsberg, N., Andersen, H. D., Gorton, L., Borch, K., & Westh, P. (2012). An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnology and Bioengineering, 109, 3199–3204.

    Article  CAS  Google Scholar 

  99. Cruys-Bagger, N., Badino, S. F., Tokin, R., Gontsarik, M., Fathalinejad, S., Jensen, K., Toscano, M. D., Sørensen, T. S., Borch, K., Tatsumi, H., Valjamae, P., & Westh, P. (2014). A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme and Microbial Technology, 58–59, 68–74.

    Article  CAS  Google Scholar 

  100. Cruys-Bagger, N., Tatsumi, H., Borch, K., & Westh, P. (2014). A graphene modified screen-printed carbon electrode for measurements of unoccupied active sites in a cellulase. Analytical Biochemistry, 447, 162–168.

    Article  CAS  Google Scholar 

  101. Wilson, C. A., & Wood, T. M. (1992). The anaerobic fungus Neocallimastix frontalis: Isolation & properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Applied Microbiology and Biotechnology, 37, 125–129.

    Article  CAS  Google Scholar 

  102. D’Costa, E. J., Higgins, I. J., & Turner, A. P. F. (1986). Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors, 2, 71–87.

    Article  Google Scholar 

  103. Tang, Z. P., Louie, R. F., Lee, J. H., Lee, D. M., Miller, E. E., & Kost, G. J. (2001). Oxygen effects on glucose meter measurements with glucose dehy-drogenase and oxidase-based test strips for point-of-care testing. Critical Care Medicine, 29, 1062–1070.

    Article  CAS  Google Scholar 

  104. Hilden, L., Eng, L., Johansson, G., Lindqvist, S. E., & Pettersson, G. (2001). An amperometric cellobiose dehydrogenase-based biosensor can be used for measurement of cellulase activity. Analytical Biochemistry, 290, 245–250.

    Article  CAS  Google Scholar 

  105. Tatsumi, H., Katano, H., & Ikeda, T. (2006). Kinetic analysis of enzymatic hydrolysis of crystalline cellulose by cellobiohydrolase using an amperometric bioreactor. Analytical Biochemistry, 357, 257–261.

    Article  CAS  Google Scholar 

  106. Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D., & Weitz, D. A. (2010). Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences, 107, 4004–4009.

    Article  CAS  Google Scholar 

  107. Prodanovic, R., Ostafe, R., Blanusa, M., & Schwaneberg, U. (2012). Vanadium bromoperoxidase-coupled fluorescent assay for flow cytometry sorting of glucose oxidase gene libraries in double emulsions. Analytical and Bioanalytical Chemistry, 404, 1439–1474.

    Article  CAS  Google Scholar 

  108. Ostafe, R., Prodanovic, R., Commandeur, U., & Fischer, R. (2013). Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Analytical Biochemistry, 435, 93–98.

    Article  CAS  Google Scholar 

  109. Lim, J., Vrignon, J., Gruner, P., Karamitros, C. S., Konrad, M., & Baret, J. C. (2013). Ultra-high throughput detection of single cell β-galactosidase activity in droplets using micro-optical lens array. Applied Physics Letters, 103, 203704–4.

    Article  CAS  Google Scholar 

  110. Ostafe, R., Prodanovic, R., Ung, W. L., Weitz, D. A., & Fischer, R. (2014). A high-throughput cellulase screening system based on droplet microfluidics. Biomicrofluidics, 8, 041102–041104.

    Article  CAS  Google Scholar 

  111. Ferrari, A. R., Gaber, Y., & Fraaije, M. W. (2014). A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnology for Biofuels, 7, 37.

    Article  Google Scholar 

  112. Johnsen, H. R., & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. International Journal of Molecular Sciences, 15, 830–838.

    Article  CAS  Google Scholar 

  113. Mewis, K., Taupp, M., & Hallam, S. J. (2011). A high throughput screen for biomining cellulase activity from metagenomic libraries. Journal of Visualized Experiments, 48, 1–4.

    Google Scholar 

  114. Nyyssonen, M., Tran, H. M., Karaoz, U., Weihe, C., Hadi, M. Z., Martiny, J. B. H., Adam, C., Martiny, A. C., & Brodie, E. L. (2013). Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries. Frontiers in Microbiology, 4, 1–14.

    Article  Google Scholar 

  115. Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18, 355–383.

    Article  CAS  Google Scholar 

  116. Araujo, R., Casal, M., & Cavaco-paulo, A. (2008). Application of enzymes for textile fibres processing. Biocatalysis and Biotransformation, 26, 332–349.

    Article  CAS  Google Scholar 

  117. Mojsov, K. (2011). Application of enzymes in the textile industry: A review. In: II International Congress Engineering, Ecology and Materials in the Processing Industry Jahorina.

  118. Shah, S. R. (2013). Chemistry and applications of cellulase in textile wet processing. Research Journal of Engineering Sciences, 2, 1–5.

    CAS  Google Scholar 

  119. Heikinheimo, L., Buchert, J., Miettinen-Oinonen, A., & Suominen, P. (2000). Treating denim fabrics with Trichoderma reesei cellulases. Textile Research Journal, 70, 969–973.

    Article  CAS  Google Scholar 

  120. Miettinen-Oinonen, A., & Suominen, P. (2002). Enhanced production of Trichoderma reesei endoglucanases and use of the new cellulase preparations in producing the stonewashed effect on denim fabric. Applied and Environmental Microbiology, 68, 3956–3964.

    Article  CAS  Google Scholar 

  121. Campos, R., Cavaco-Paulo, A., Andreaus, J., & Gubitz, G. (2000). Indigo cellulase interactions. Textile Research Journal, 70, 532–536.

    Article  CAS  Google Scholar 

  122. Pazarlioglu, N. K., Sariisik, M., & Telefoncu, A. (2005). Treating denim fabrics with immobilized commercial cellulases. Process Biochemistry, 40, 767–771.

    Article  CAS  Google Scholar 

  123. Montazer, M., & Maryan, A. S. (2010). Influences of different enzymatic treatment on denim garment. Applied Biochemistry and Biotechnology, 160, 2114–2128.

    Article  CAS  Google Scholar 

  124. Anish, R., Rahman, M. S., & Rao, M. A. (2007). Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnology and Bioengineering, 96, 48–56.

    Article  CAS  Google Scholar 

  125. Saravanan, D., Sreelakshmi, S. N., Raja, K. S., & Vasanthi, N. S. (2013). Biopolishing of cotton fabric with fungal cellulase and its effect on the morphology of cotton fibres. Indian Journal of Fibre & Textile Research, 38, 156–160.

    CAS  Google Scholar 

  126. Noreen, H., Zia, M. A., Ali, S., & Hussain, T. (2014). Optimization of bio-polishing of polyester/cotton blended fabrics with cellulases prepared from Aspergillus niger. Indian Journal of Biotechnology, 13, 108–113.

    CAS  Google Scholar 

  127. El-Sayed, H., El-Gabry, L., & Kantouch, F. (2010). Effect of bio-carbonisation of coarse wool on its dyeability. Indian Journal of Fibre & Textile Research, 35, 330–336.

    CAS  Google Scholar 

  128. Morgado, J., Cavaco-Paulo, A., & Rousselle, M. (2000). Enzymatic treatment of lyocell-Clarification of depilling mechanisms. Textile Research Journal, 70, 696–699.

    Article  CAS  Google Scholar 

  129. Mai, C., Kues, U., & Militz, H. (2004). Biotechnology in the wood industry. Applied Microbiology and Biotechnology, 63, 477–494.

    Article  CAS  Google Scholar 

  130. Efrati, Z., Talaeipour, M., Khakifirouz, A., & Bazyar, B. (2013). Impact of cellulase enzyme treatment on strength, morphology and crystallinity of deinked pulp. Cellulose Chemistry and Technology, 47, 547–551.

    CAS  Google Scholar 

  131. Kuhad, R. C., Mehta, G., Gupta, R., & Sharma, K. K. (2010). Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass & Bioenergy, 34, 1189–1194.

    Article  CAS  Google Scholar 

  132. Singh, A., & Sharma, R. (2013). Mycoremediation an eco-friendly approach for the degradation of cellulosic wastes from paper industry with the help of cellulases and hemicellulase activity to minimize the industrial pollution. International Journal of Environmental Engineering Management, 4, 199–206.

    Google Scholar 

  133. Pere, J., Puolakka, A., Nousiainen, P., & Buchert, J. (2001). Action of purified Trichoderma reesei cellulases on cotton fibers and yarn. Journal of Biotechnology, 89, 247–255.

    Article  CAS  Google Scholar 

  134. Karmakar, M., & Ray, R. R. (2011). Current trends in research and application of microbial cellulases. Research Journal of Microbiology, 6, 41–53.

    Article  CAS  Google Scholar 

  135. Liu, J., & Hu, H. (2012). Role of cellulose binding domains in the adsorption of cellulases onto fibres and its effect on the enzymatic beating of bleached kraft pulp. Bioresources, 7, 878–892.

    CAS  Google Scholar 

  136. Jeffries, T. W., Klungness, J. H., Sykes, M. S., & Rutledge-Cropsey, K. R. (1994). Comparison of enzyme-enhanced with conventional de-inking of xerographic and laser-printed paper. Tappi Journal, 77, 173–179.

    CAS  Google Scholar 

  137. Pleach, M. A., Pastor, F. G., Puig, J., Vilaseca, F., & Mutje, P. (2003). Enzymatic deinking of old newspaper with cellulase. Process Biochemistry, 38, 1063–1067.

    Article  CAS  Google Scholar 

  138. Lee, C. K., Darah, I., & Ibrahim, C. O. (2007). Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency. Bioresource Technology, 98, 1684–1689.

    Article  CAS  Google Scholar 

  139. Zhang, Z. J., Chen, Y. Z., Hu, H. R., & Sang, Y. Z. (2013). The beatability–aiding effect of Aspergillus niger crude cellulase on bleached simao pine kraft pulp and its mechanism of action. BioResources, 8, 5861–5870.

    Google Scholar 

  140. Garcia-Ubasart, J., Torres, A. L., Vila, C., Pastor, F. I. J., & Vidal, T. (2013). Biomodification of cellulose flax fibers by a new cellulase. Industrial Crops and Products, 44, 71–76.

    Article  CAS  Google Scholar 

  141. Bjork, N., Clarkson, K.A., Lad, P.J., & Weiss, G.L. (1997). Degradation resistant detergent compositions based on cellulase enzymes. US Patent. 5688290.

  142. Uhlig, H. (1998). Industrial Enzymes and their Applications (p. 435). New York: John Wiley & Sons, Inc.

    Google Scholar 

  143. Mitchinson, C., & Wendt, D.J. (2001). Variant EGIII-like cellulase compositions. US Patent 6268328.

  144. Bettiol, J.P., & Thoen, C.A.J.K. (2001). Alkaline detergent compositions comprising a specific cellulase. US Patent. 6187740.

  145. Lenting, H.B.M., & Pijnacker, V.T. (2004). Detergents comprising cellulases. US Patent. 2004/0097393 A9.

  146. Kottwitz, B., & Schambil, F. (2005). Cellulase and cellulose containing detergent. US Patent. 20050020472.

  147. Singh, A., Kuhad, R.C., & Ward, O.P. (2007). Industrial application of microbial cellulases. Lignocellulose Biotechnology: Future Prospects. In: Kuhad, R.C. & Singh, A., (eds). I.K.International Publishing House, New Delhi, India, pp. 345–358.

  148. Bedford, M.R., Morgan, A.J., Fowler, T., Clarkson, K.A., Ward, M.A., Collier, K.D., & Larenas, E.A. (2003). Enzyme feed additive and animal feed including it. US Patent. 6562340.

  149. El-Adawy, M. M., Salem, A. Z. M., Borhami, B. E., Gado, H. M., Khalil, M. S., & Abo-Zeid, A. (2008). In vitro cecal gas production and dry matter degradability of some browse leaves in presence of enzymes from anaerobic bacterium in NZW rabbit. In Proceedings of the 9th WRSA World Rabbit Congress (pp. 643–647). Italy: Verona.

    Google Scholar 

  150. Gado, H. M., & Salem, A. Z. M. (2008). Influence of exogenous enzymes from anaerobic source on growth performance, digestibility, ruminal fermentation and blood metabolites in lambs fed of orange pulp silage in total mixed ration. In Proceedings of the 59th Annual Meeting of the European Association for Animal Production (pp. 228–230). Lithuania: Vilnius.

    Google Scholar 

  151. Rodrigues, M. A. M., Pinto, P., Bezerra, R. M. F., Dias, A. A., & Guedes, C. V. M. (2008). Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Animal Feed Science and Technology, 141, 326–338.

    Article  CAS  Google Scholar 

  152. Murad, H. H., Hanfy, M. A., Kholif, A. M., Gawad, M. H. A., & Murad, H. A. (2009). Effect of cellulases supplementation to some low quality roughages on digestion and milk production by lactating goats. Journal of Biological Chemistry and Environmental Sciences, 4, 791–809.

    Google Scholar 

  153. Abdel-Gawad, M. H., Gad, S. M., El-Sabaawy, E. H., Ali, H. M., & El-Bedawy, T. M. (2007). In vitro and in vivo digestability of some low quality roughages supplemented with fibrolytic enzyme for sheep. Egyptian Journal of Nutrition and Feeds, 10, 663–677.

    Google Scholar 

  154. Colombatto, D., Mould, F. L., Bhat, M. K., & Owen, E. (2007). Influence of exogenous fibrolytic enzyme level and incubation pH on the in vitro ruminal fermentation of alfalfa stems. Animal Feed Science and Technology, 137, 150–162.

    Article  CAS  Google Scholar 

  155. Giraldo, L. A., Tejido, M. L., Ranilla, M. J., & Carro, M. D. (2008). Effects of exogenous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage: concentrate ratios. Animal Feed Science and Technology, 141, 306–325.

    Article  CAS  Google Scholar 

  156. Krueger, N. A., & Adesogan, A. T. (2008). Effect of different mixtures of fibrolytic enzymes on the digestion and fermentation of bahiagrass hay. Animal Feed Science and Technology, 145, 84–94.

    Article  CAS  Google Scholar 

  157. Murad, H. A., & Azzaz, H. H. (2010). Cellulase and dairy animal feeding. Biotechnology, 9, 238–256.

    Article  CAS  Google Scholar 

  158. Cowan, W.D. (1996). Animal feed.Industrial Enzymology, 2nd edn. In: Godfrey, T. and West, S. (eds). Macmillan Press, UK, pp. 360–371.

  159. Dhiman, T. R., Zaman, M. S., Gimenez, R. R., Walters, J. L., & Treacher, R. (2002). Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Animal Feed Science and Technology, 101, 115–125.

    Article  CAS  Google Scholar 

  160. Shrivastava, B., Thakur, S., Khasa, Y. P., Gupte, A., Puniya, A. K., & Kuhad, R. C. (2011). White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation, 22, 823–831.

    Article  CAS  Google Scholar 

  161. Tricarico, J. M., Johnston, J. D., Dawson, K. A., Hanson, K. C., McLeod, K. R., & Harmon, D. L. (2005). The effects of an Aspergillus oryzae extract containing alpha-amylase activity on ruminal fermentation and milk production in lactating Holstein cows. Animal Science, 81, 365–374.

    Article  CAS  Google Scholar 

  162. Stella, A. V., Paratte, R., Valnegri, L., Cigalino, G., & Soncini, G. (2007). Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites and faecal flora in early lactating dairy goats. Small Ruminant Research, 67, 7–13.

    Article  Google Scholar 

  163. Zheng, W., Schingoethe, D. J., Stegeman, G. A., Hippen, A. R., & Treacher, R. J. (2000). Determination of when during the lactation cycle to start feeding a cellulase and xylanase enzyme mixture to dairy cows. Journal of Dairy Science, 83, 2319–2325.

    Article  CAS  Google Scholar 

  164. Beauchemin, K. A., Jones, S. D. M., Rode, L. M., & Sewalt, V. J. H. (1997). Effects of fibrolytic enzymes in corn or barley diets on performance and carcass characteristics of feedlot cattle. Canadian Journal of Animal Science, 77, 645–653.

    Article  Google Scholar 

  165. Knowlton, K. F., McKinney, J. M., & Cobb, C. (2002). Effect of a direct-fed fibrolytic enzyme formulation on nutrient intake, partitioning and excretion in early and late lactation Holstein cows. Journal of Dairy Science, 85, 3328–3335.

    Article  CAS  Google Scholar 

  166. Sharma, H. P., Patel, H., & Sharma, S. (2014). Enzymatic extraction and clarification of juice from various fruits. Trends in Post Harvest Technology, 2, 1–14.

    Google Scholar 

  167. Vaillant, F., Millan, A., Dornier, M., Decloux, M., & Reynes, M. (2001). Strategy for economical optimisation of the clarification of pulpy fruit juices using cross flow microfiltration. Journal of Food Engineering, 48, 83–90.

    Article  Google Scholar 

  168. Grassin, C. & Fauquembergue, P. (1996). Fruit juices. Industrial enzymology, 2nd edn. In: Godfrey, T. & West, S. (eds). Macmillan, UK, pp. 226–4.

  169. Haarasilta, S., Pullinen, T., Tammersalo-Karsten, I., Vaisanen, S. & Franti, H. (1993). Method of improving the production process of dry cereal products by enzyme addition. US Patent. 5176927.

  170. Galante, Y. M., Conti, A. D., & Monteverdi, R. (1998). Application of Trichoderma enzymes in food and feed industries. In G. F. Harman & C. P. Kubicek (Eds.), Vol 2: Trichoderma &Gliocladium—Enzymes, biological control and commercial applications (pp. 327–342). London: Taylor & Francis.

    Google Scholar 

  171. Gailing, M. F., Guibert, A., & Combes, D. (2000). Fractional factorial designs applied to enzymatic sugar beet pulps pressing improvement. Bioprocess Engineering, 22, 69–74.

    Article  CAS  Google Scholar 

  172. Broeck, H.C.V.D., Graaff, L.H.D., Visser, J. & Vanooijen, A.J.J. (2001). Fungal cellulases. US Patent. 6190890.

  173. Vieira, F. G. K., Borges, G. D. S. C., Copetti, C., Amboni, R. D., De, M. C., Denardi, F., & Fett, R. (2009). Physico-chemical and antioxidant properties of six apple cultivars (Malus domestica Borkh) grown in southern Brazil. Scientia Horticulturae -Amsterdam., 122, 421–425.

    Article  CAS  Google Scholar 

  174. Rui, C. C. D., Junior, B. F., Silva, R. B., Cardoso, V. L., & Reis, M. H. M. (2012). Clarification of passion fruit juice with chitosan: effects of coagulation process variables and comparison with centrifugation and enzymatic treatments. Process Biochemistry, 47, 467–471.

    Article  CAS  Google Scholar 

  175. Sandri, I. G., Fontana, R. C., Barfknecht, D. M., & Silveira, M. M. (2011). Clarification of fruit juices by fungal pectinases. LWT--Food Science and Technology, 44, 2217–2222.

    Article  CAS  Google Scholar 

  176. El-Sharnouby, G. A., Al-Eid, M. S., & Al-Otaibi, M. M. (2009). Utilization of enzymes in the production of liquid sugar from dates. African Journal of Biochemistry Research, 3, 41–47.

    CAS  Google Scholar 

  177. Pal, A., & Khanum, F. (2011). Efficacy of xylanase purified from Aspergillus niger DFR-5 alone and in combination with pectinase and cellulose to improve yield and clarity of pineapple juice. Journal of Food Science and Technology, 48, 560–568.

    Article  CAS  Google Scholar 

  178. Nadeem, M. T., Butt, M. S., Anjum, F. M., & Asgher, M. (2009). Improving bread quality by carboxymethyl cellulase application. International Journal of Agriculture and Biology, 11, 727–730.

    CAS  Google Scholar 

  179. Kaur, M., & Sharma, H. K. (2013). Effect of enzymatic treatment on carrot cell wall for increased juice yield and effect on physicochemical parameters. African Journal of Plant Science, 7, 234–243.

    Article  CAS  Google Scholar 

  180. Khandare, V., Walia, S., Singh, M., & Kaur, C. (2011). Black carrot (Daucus carota ssp. Sativus) juice: processing effects on antioxidant composition and color. Food and Bioproducts Processing, 89, 482–486.

    Article  CAS  Google Scholar 

  181. Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: a review. Bioresource Technology, 77, 215–227.

    Article  CAS  Google Scholar 

  182. Brito, B., & Vaillant, F. (2012). Enzymatic liquefaction of cell-walls from kent and tommy atkins mango fruits. International Journal of Food Science and Nutrition Engineering, 2, 76–84.

    Article  Google Scholar 

  183. Baker, R. A., & Wicker, L. (1996). Current and potential applications of enzyme infusion in the food industry. Trends in Food Science and Technology, 7, 279–284.

    Article  CAS  Google Scholar 

  184. Shoseyov, O., & Bravdo, B. (2001). Enhancement of aroma in grapes and wines: Biotechnolodical approaches. Molecular Biology & Biotechnology of the Grapevine. 225–240.

  185. Su, E., Xia, T., Gao, L., Dai, Q., & Zhang, Z. (2010). Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing, 88, 83–89.

    Article  CAS  Google Scholar 

  186. Contesini, F. J., Figueira, J. A., Kawaguti, H. Y., Fernandes, P. C. B., Carvalho, P. O., Nascimento, M. G., & Sato, H. H. (2013). Potential applications of carbohydrases immobilization in the food industry. International Journal of Molecular Sciences, 14, 1335–1369.

    Article  CAS  Google Scholar 

  187. Fantozzi, P., Petruccioli, G., & Montedoro, G. (1977). Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: Influenze delle cultivars, dell’epoca di raccolta e della conservazione. Grasse, 54, 381–388.

    CAS  Google Scholar 

  188. Garcia, A., Brenes, M., Moyano, M. J., Alba, J., Garcia, P., & Garrido, A. (2001). Improvement of phenolic compound content in virgin olive oils by using enzymes during malaxation. Journal of Food Engineering, 48, 189–194.

    Article  Google Scholar 

  189. Vierhuis, E., Servili, M., Baldioli, M., Schols, H. A., Voragen, A. G. J., & Montedoro, G. F. (2001). Effect of enzyme treatment during mechanical extraction of olive oil on phenolic compounds and polysaccharides. Journal of Agricultural and Food Chemistry, 49, 1218–1223.

    Article  CAS  Google Scholar 

  190. Najafian, L., Ghodsvali, A., Khodaparast, M. H. H., & Diosady, L. L. (2009). Aqueous extraction of virgin olive oil using industrial enzymes. Food Research International, 42, 171–175.

    Article  CAS  Google Scholar 

  191. Sharma, R., Sharma, P.C., Rana, J.C. & Joshi, V.K. (2013). Improving the olive oil yield and quality through enzyme-assisted mechanical extraction, antioxidants and packaging. Journal of Food Processing and Preservation. ISSN 1745–4549.

  192. Ranalli, A., Pollastri, L., Contento, S., Lucera, L., & Del re, P. (2003). Enhancing the quality of virgin olive oil by use of a new vegetable enzyme extract during processing. European Food Research and Technology, 216, 109–115.

    CAS  Google Scholar 

  193. Sharma, R., & Sharma, P. C. (2007). Optimization of enzymatic pretreatments for maximizing olive oil recovery. Journal of Scientific and Industrial Research, 66, 52–55.

    CAS  Google Scholar 

  194. Sharma, R., Kaushal, B. B., & Sharma, P. C. (2007). Development of cost effective commercial method for enhancing yield and quality of olive oil. Journal of Food Science and Technology, 44, 133–137.

    CAS  Google Scholar 

  195. Ranalli, A., Malfatti, A., Lucera, L., Contento, S., & Sotiriou, E. (2005). Effects of processing techniques on the natural colourings and the other functional constituents in virgin olive oil. Food Research International, 38, 873–878.

    Article  CAS  Google Scholar 

  196. De Faveri, D., Torre, P., Aliakbarian, B., Perego, P., Dominguez, J.M., & Torres, B.R. (2008). Effect of different enzyme formulations on the improvement of phenolic compound content in olive oil. In: Proceedings of the IUFoST 13th World Congress of Food Science & Technology, Nantes, France, pp. 927–928.

  197. Mortabit, D., Zyani, M., & Koraichi, S. I. (2014). Improvement of olive oil quality of moroccan picholine by Bacillus licheniformis enzyme’s preparation. International Journal of Pure and Applied Sciences and Technology, 20, 44–52.

    Google Scholar 

  198. De Faveri, D., Aliakbarian, B., Avogadro, M., Perego, P., & Converti, A. (2008). Improvement of olive oil phenolics content by means of enzyme formulations: Effect of different enzyme activities and levels. Biochemical Engineering Journal, 41, 149–156.

    Article  CAS  Google Scholar 

  199. Harada, E., Lysenko, D., & Preston, K. R. (2000). Effects of commercial hydrolytic enzyme additives on Canadian short process bread properties and processing characteristics. Cereal Chemistry, 77, 70–76.

    Article  CAS  Google Scholar 

  200. Pilar, M.R., & Rafael, S.N.D. (2004). Enzymatic composition for improving the quality of bread and pastry doughs. WO 2004084638 A1.

  201. Boutte, T.T., Sargent, K.L., & Feng, G. (2009). Enzymatic dough conditioner and flavor improver for bakery products. US Patent. 20090297659.

  202. Yurdugul, S., Pancevska, N. A., Yildiz, G. G., & Bozoglu, F. (2012). The influence of a cellulase bearing enzyme complex from anaerobic fungi on bread staling. Romanian Agricultural Research, 29, 271–279.

    Google Scholar 

  203. Oliveira, D. S., Telis-Romero, J., Da-Silva, R., & Franco, C. M. L. (2014). Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread quality. Food Chemistry, 143, 139–146.

    Article  CAS  Google Scholar 

  204. Bunea, A., Lujerdean, A., Pintea, A., Andrei, S., & Socaciu, C. (2009). Using cellulases and hemicellulases to improve better extraction of carotenoids from the sepals of Physalis Alkekengi L. Bulletin U.A.S.V.M. Journal of Animal Science and Biotechnologies, 66, 1–2.

    Google Scholar 

  205. Lavecchia, R., & Zuorro, A. (2010). Enhanced lycopene recovery from tomato processing waste by enzymatic degradation of plant tissue components. International Review of Biophysical Chemistry, 1, 63–69.

    Google Scholar 

  206. Ranveer, C. R., Patil, S. N., & Akshya, K. (2013). Sahoo effect of different parameters on enzyme-assisted extraction of lycopene from tomato processing waste. Food and Bioproducts Processing, 91, 370–375.

    Article  CAS  Google Scholar 

  207. Choudhari, S. M., & Ananthanarayan, L. (2007). Enzyme aided extraction of lycopene from tomato tissues. Food Chemistry, 102, 77–81.

    Article  CAS  Google Scholar 

  208. Zuorroa, A., Fidaleob, M., & Lavecchiaa, R. (2011). Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme and Microbial Technology, 49, 567–573.

    Article  CAS  Google Scholar 

  209. Puri, M., Sharma, D., & Barrow, C. J. (2011). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30, 37–44.

    Article  CAS  Google Scholar 

  210. Chari, K. L. N., Manasa, D., Srinivas, P., & Sowbhagya, H. B. (2013). Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chemistry, 139, 509–514.

    Article  CAS  Google Scholar 

  211. Miron, T. L., Herrero, M., & Ibanez, E. (2013). Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. Journal of Chromatography A, 1288, 1–9.

    Article  CAS  Google Scholar 

  212. Chen, S., Xing, X. H., Huang, J. J., & Xu, M. S. (2010). Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme and Microbial Technology, 48, 100–105.

    Article  CAS  Google Scholar 

  213. Gil-Chavez, G. J., Villa, J. A., Ayala-Zavala, J. F., Heredia, J. B., Sepulveda, D., Yahia, E. M., & Gonzalez-Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Comprehensive Reviews in Food Science and Food Safety, 12, 5–23.

    Article  CAS  Google Scholar 

  214. Fu, Y. J., Liu, W., Zu, Y. G., Tong, M. H., Li, S. M., Yan, M. M., Efferth, T., & Luo, H. (2008). Enzyme-assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Mill sp.] leaves. Food Chemistry, 111, 508–512.

    Article  CAS  Google Scholar 

  215. Wiatr, C.L. (1990). Application of cellulase to control industrial slime. US Patent. 4936994.

  216. Hernandez-Mena, R., & Friend, P.L. (1993). Enzyme treatment for industrial slime control. US Patent. 5238572.

  217. Orgaz, B., Kives, J., Pedregosa, A. M., Monistrol, I. F., Laborda, F., & Jose, C. S. (2006). Bacterial biofilm removal using fungal enzymes. Enzyme and Microbial Technology, 40, 51–56.

    Article  CAS  Google Scholar 

  218. Kumar, M. (2008). Bioconversion of lignocellulosic biomass: Biochemical and molecular perspectives. US Patent. 20080019956.

  219. Barnett, C.C., Manoj, K., & Whited, G.M. (2011). Enzymatic prevention and control of biofilm. US Patent. 20110195059.

  220. Wilkins, M. R., Widmer, W. W., Grohmann, K., & Cameron, R. G. (2007). Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology, 98, 1596–1601.

    Article  CAS  Google Scholar 

  221. Milala, M. A., Shehu, B. B., Zanna, H., & Omosioda, V. O. (2009). Degradation of agro-waste by cellulase from Aspergillus candidus. Asian Journal of Biotechnology, 1, 51–56.

    Article  CAS  Google Scholar 

  222. Soni, S.K., Bansal, N., Kaur, H., & Soni, R. (2009). in Process development for the bioconversion of citrus fruit waste into second generation alcohol: New Frontiers in Biofuels (eds Sharma, P.B. & Kumar, N. eds.), Scietech Publishers Pvt Ltd., Chennai, India, pp. 499–507.

  223. Li, B. Z., Balan, V., Yuan, Y. J., & Dale, B. E. (2010). Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresource Technology, 101, 1285–1292.

    Article  CAS  Google Scholar 

  224. Geddes, C. C., Mullinnix, M. T., Nieves, I. U., Peterson, J. J., Hoffman, R. W., York, S. W., Yomano, L. P., Miller, E. N., Shanmugam, K. T., & Ingram, L. O. (2011). Simplified process for ethanol production from sugarcane bagasse using hydrolysate resistant Escherichia coli strain MM 160. Bioresource Technology, 102, 2702–2711.

    Article  CAS  Google Scholar 

  225. Nakashima, K., Yamaguchi, K., Taniguchi, N., Arai, S., Yamada, R., Katahira, S., Ishida, N., Ogino, C., & Kondo, A. (2011). Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chemistry, 13, 2948–2953.

    Article  CAS  Google Scholar 

  226. Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management, 32, 1341–1346.

    Article  CAS  Google Scholar 

  227. Bansal, N., Janveja, C., Tewari, R., Soni, R., & Soni, S. K. (2014). Highly thermostable and pH-stable cellulases from Aspergillus niger NS-2: Properties and application for cellulose hydrolysis. Applied Biochemistry and Biotechnology, 172, 141–156.

    Article  CAS  Google Scholar 

  228. Soni, S. K., Batra, N., Bansal, N., & Soni, R. (2010). Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus species S4B2F. BioResources, 5, 741–757.

    CAS  Google Scholar 

  229. Celiktas, M. S., Kirsch, C., & Smirnova, I. (2014). Cascade processing of wheat bran through a biorefinery approach. Energy Conversion and Management, 84, 633–639.

    Article  CAS  Google Scholar 

  230. Mazzoli, R., Bosco, F., Mizrahi, I., Bayer, E. A., & Pessione, E. (2014). Towards lactic acid bacteria-based biorefineries. Biotechnology Advances, 32, 1216–1236.

    Article  CAS  Google Scholar 

  231. Hughes, S. R., López-Núñez, J. C., Jones, M. A., Moser, B. R., Cox, E. J., Lindquist, M., Galindo-Leva, L. A., Riaño-Herrera, N. M., Rodriguez-Valencia, N., Gast, F., Cedeño, D. L., Tasaki, K., Brown, R. C., Darzins, A., & Brunner, L. (2014). Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Applied Microbiology and Biotechnology, 98, 8413–8431.

    Article  CAS  Google Scholar 

  232. Kıran, E. U., Trzcinskia, A. P., & Liu, Y. (2015). Platform chemical production from food wastes using a biorefinery concept. Journal of Chemical Technology and Biotechnology, 90, 1364–1379.

    Article  CAS  Google Scholar 

  233. Elliston, A., Samuel, R. A. C., Faulds, C. B., Roberts, I. N., & Waldron, K. W. (2014). Biorefining of waste paper biomass: Increasing the concentration of glucose by optimising enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 172, 3621–3634.

    Article  CAS  Google Scholar 

  234. Meleiro, L. P., Zimbardi, A. L. R. L., Souza, F. H. M., Masui, D. C., Silva, T. M., Jorge, J. A., & Furriel, R. P. M. (2014). A novel β-glucosidase from Humicola insolens with high potential for untreated waste paper conversion to sugars. Applied Biochemistry and Biotechnology, 173, 391–408.

    Article  CAS  Google Scholar 

  235. Elliston, A., Collins, S. R. A., Wilson, D. R., Roberts, I. N., & Waldron, K. W. (2013). High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper. Bioresource Technology, 134, 117–126.

    Article  CAS  Google Scholar 

  236. Peng, L. C., & Chen, Y. C. (2011). Conversion of paper sludge to ethanol by separate hydrolysis and fermentation (SHF) using Saccharomyces cerevisiae. Biomass and Bioenergy, 35, 1600–1606.

    Article  CAS  Google Scholar 

  237. Prasetyo, J., Naruse, K., Kato, T., Boonchird, C., Harashima, S., & Park, E. Y. (2011). Bioconversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14. Biotechnology for Biofuels, 4, 35.

    Article  CAS  Google Scholar 

  238. Zhang, J. Y., & Lynd, L. R. (2010). Ethanol production from paper sludge by simultaneous saccharification and co-fermentation using recombinant xylose-fermenting microorganisms. Biotechnology and Bioengineering, 107, 235–244.

    Article  CAS  Google Scholar 

  239. Shen, J. C., & Agblevor, F. A. (2011). Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge. Bioprocess and Biosystems Engineering, 34, 33–43.

    Article  CAS  Google Scholar 

  240. Kang, L., Wang, W., & Lee, Y. Y. (2010). Bioconversion of Kraft paper mill sludges to ethanol by SSF and SSCF. Applied Biochemistry and Biotechnology, 161, 53–66.

    Article  CAS  Google Scholar 

  241. Kang, L., Wang, W., Pallapolu, V. R., & Lee, Y. Y. (2011). Enhanced ethanol production from de-ashed paper sludge by simultaneous saccharification and fermentation and simultaneous saccharification and co-fermentation. Bioresources, 6, 3791–3808.

    Google Scholar 

  242. Prasetyo, J., Kato, T., & Park, E. Y. (2010). Efficient cellulase-catalyzed saccharification of untreated paper sludge targeting for biorefinery. Biomass and Bioenergy, 34, 1906–1913.

    Article  CAS  Google Scholar 

  243. Zhong, Y., Ruan, Z., Zhong, Y., Archer, S., Liu, Y., & Liao, W. (2015). A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation. Bioresource Technology, 179, 173–179.

    Article  CAS  Google Scholar 

  244. Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. C., & Balan, V. (2015). Microbial lipid-based lignoceullulosic biorefinery: feasibility and challenges. Trends in Biotechnology, 33, 43–54.

    Article  CAS  Google Scholar 

  245. Huang, W., Niu, H., Li, Z., He, Y., Gong, W., & Gong, G. (2008). Optimization of ellagic acid production from ellagitannins by co-culture and correlation between its yield and activities of relevant enzymes. Bioresource Technology, 99, 769–775.

    Article  CAS  Google Scholar 

  246. Bhanja, T., Kumari, A., & Banerjee, R. (2009). Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresource Technology, 100, 2861–2866.

    Article  CAS  Google Scholar 

  247. Do, Y. K., Kim, J. M., Chang, S. M., Hwang, J. H., & Kim, W. S. (2009). Enhancement of polyphenol bio-activities by enzyme reaction. Journal of Molecular Catalysis B: Enzymatic, 56, 173–178.

    Article  CAS  Google Scholar 

  248. Chen, H. L., Fan, Y. H., Chen, M. E., & Chan, Y. (2005). Unhydrolysed and hydrolysed konjac glucomannans modulated cecal and fecal microflora in Balb/c mice. Nutrition, 21, 1059–1064.

    Article  CAS  Google Scholar 

  249. Al-Ghazzewi, F. H., Khanna, S., Tester, R. F., & Piggott, J. (2007). The potential use of hydrolysed konjac glucomannan as a prebiotic. Journal of the Science of Food and Agriculture, 87, 1758–1766.

    Article  CAS  Google Scholar 

  250. Huang, D., Liu, Q., Yang, F. & Huang, F. (2007). The health-promoting function and the application of konjac mannooligosaccharides (KMOS). Food Science and Technology. 159–161.

  251. Albrecht, S., Muiswinkel, G. C. J. V., Schols, H. A., Voragen, A. G. J., & Gruppen, H. (2009). Introducing capillary electrophoresis with laserinduced fluorescence detection (CE-LIF) for the characterization of konjac glucomannan oligosaccharides and their in vitro fermentation behaviour. Journal of Agricultural and Food Chemistry, 57, 3867–3876.

    Article  CAS  Google Scholar 

  252. Connolly, M. L., Lovegrove, J., & Touhy, K. M. (2010). Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. Journal of Functional Foods, 2, 219–224.

    Article  CAS  Google Scholar 

  253. Alvaro, A., Sola, R., Rosales, R., Ribalta, J., Anguera, A., Masana, L., & Vallve, J. C. (2008). Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life, 60, 757–764.

    Article  CAS  Google Scholar 

  254. Al-Ghazzewi, F. H., & Tester, R. F. (2012). Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. Journal of the Science of Food and Agriculture, 92, 2394–2396.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Soni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Tewari, R., Rana, S.S. et al. Cellulases: Classification, Methods of Determination and Industrial Applications. Appl Biochem Biotechnol 179, 1346–1380 (2016). https://doi.org/10.1007/s12010-016-2070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2070-3

Keywords

Navigation