Skip to main content

In Vitro Approaches for Mass Propagation of Stevia rebaudiana

  • Chapter
  • First Online:
Biotechnology of Anti-diabetic Medicinal Plants

Abstract

Stevia rebaudiana (Bertoni), commonly known as a natural sweetener plant or sweet herb grabs the economic and scientific interests owing to its sweetness and therapeutic properties present in its leaves mainly due to the presence of steviol glycosides (SGs), with stevioside being the most abundant, followed by rebaudioside. Stevioside, the most abundant active component, is greatly preferred by diabetic patients since it is a non-calorie sweetener and is approved by the Food and Drug Administration as a dietary supplement. This shows the benefits of stevia over other artificial sweeteners as an ingredient for the food business, subsequently, making stevia an increasingly appropriate substitute for saccharine in various drinks, beverages, and bakery products. Stevia also offers therapeutic benefits having anti-hyperglycemic, anti-hypertensive, and immunomodulatory effects. These beneficial effects largely focused on the importance of stevia. Sexually developed plants were not efficient because of low fertility and reduced viability. However, quality planting material can be produced through biotechnological approaches like micropropagation. To date, a great deal of studies has been completed on the tissue culture intervened approaches for the mass propagation of stevia. In this chapter, the above-mentioned approaches and their significance are emphasized for the large-scale production of identical plant materials and for the improvement of important calorie-free SGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham J, Thomas TD (2016) Recent advances in Asteraceae tissue culture. In: Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 161–195

    Chapter  Google Scholar 

  • Aggarwal D, Reddy MS, Kumar A (2016) Biotechnological approaches for the improvement of eucalyptus. In: Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 219–244

    Chapter  Google Scholar 

  • Ahmad U, Ahmad RS (2018) Antidiabetic property of aqueous extract of Stevia rebaudiana Bertoni leaves in Streptozotocin-induced diabetes in albino rats. BMC Complement Altern Med 18:179

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed MB, Salahin M, Karim R, Razvy MA, Hannan MM, Sultana R, Hossain M, Islam R (2007) An efficient method for in vitro clonal propagation of a newly introduced sweetener plant (Stevia rebaudiana Bertoni.) in Bangladesh. Am-Eur J Sci Res 2:121–125

    Google Scholar 

  • Alan AR, Zeng H, Assani A, Shi WL, McRae HE, Murch SJ, Saxena PK (2007) Assessment of genetic stability of the germplasm lines of medicinal plant Scutellaria baicalensis Georgi (Huang-qin) in long-term, in vitro maintained cultures. Plant Cell Rep 26:1345–1355

    Article  CAS  PubMed  Google Scholar 

  • Alhady MR (2011) Micropropagation of Stevia rebaudiana Bertoni. A new sweetening crop in Egypt. Global J Biotechnol Biochem 6:178–182

    Google Scholar 

  • Ali A, Ahmad T, Abbasi NA, Hafiz IA (2009) Effect of different concentrations of auxins on in vitro rooting of olive cultivar ‘Moraiolo’. Pak J Bot 41:1223–1231

    CAS  Google Scholar 

  • Anbazhagan M, Kalpana M, Rajendran R, Natarajan V, Dhanavel D (2010) In vitro production of Stevia rebaudiana Bertoni. Emir J Food Agric 22:216–222

    Article  Google Scholar 

  • Atalay E, Erisen S, Yorgancilar M, Tanur M (2011) Micropropagation of Stevia rebaudiana Bertoni. Curr Opin Biotechnol 22:15–152

    Article  Google Scholar 

  • Aziz R, Khaled K (2017) Stevia Rebaudiana Bertoni; Rapid micropropagation, stevioside accumulation and genetic fidelity using ISSR markers. J Agric Chem Biotechnol 8:295–301

    Google Scholar 

  • Borah R, Kumaria S, Choudhury H (2017) In vitro plant regeneration of Magnolia punduana: an endemic and threatened plant species. Plant Tissue Cult Biotechnol 27:153–159

    Article  Google Scholar 

  • Brahmachari G, Mandal LC, Roy R, Mondal S, Brahmachari AK (2011) Stevioside and related compounds–molecules of pharmaceutical promise: a critical overview. Arch Pharm 344:5–19

    Article  CAS  Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, Van Wormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Gene Genomics 3:75–100

    Article  Google Scholar 

  • Carakostas MC, Curry LL, Boileau AC, Brusick DJ (2008) Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol 46:S1–S10

    Article  CAS  PubMed  Google Scholar 

  • Chan P, Xu DY, Liu JC, Chen YJ, Tomlinson B, Huang WP, Cheng JT (1998) The effect of stevioside on blood pressure and plasma catecholamines in spontaneously hypertensive rats. Life Sci 63:1679–1684

    Article  CAS  PubMed  Google Scholar 

  • Chandana BC, Kumari Nagaveni HC, Heena MS, Shashikala SK, Lakshmana D (2018) Role of plant tissue culture in micropropagation, secondary metabolites production and conservation of some endangered medicinal crops. J Pharmacogn Phytochem 3:246–251

    Google Scholar 

  • Chandra S, Bandopadhyay R, Kumar V, Chandra R (2010) Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett 32:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • D’Amato F, Bayliss MW (1985) Cytogenetics of plant cell and tissue cultures and their regenerates. Crit Rev Plant Sci 3:73–112

    Article  Google Scholar 

  • Das A, Gantait S, Mandal N (2010) Micropropagation of an elite medicinal plant: Stevia rebaudiana Bert. Int J Agric Res 6:40–48

    Article  Google Scholar 

  • Deshmukh N, Talkal R, Khan N (2017) In vitro propagation and determination of genetic stability of micropropagated plants of Stevia rebaudiana. Int J Adv Res Innov Ideas Educ 3:884–894

    Google Scholar 

  • Doležel J, Valárik M, Vrána J, Lysák MA, Hibová E, Bartos J, Gasmanová N, Doleželová M, Safár J, Simková H (2004) Molecular cytogenetics and cytometry of bananas (Musa spp.). In: Banana improvement: cellular molecular biology and induced mutations, vol 1, pp 229–244

    Google Scholar 

  • Domãnguez F, Chávez M, Garduño-Ramírez ML, Chávez-Avila VM, Mata M, Cruz-Sosa F (2010) Honokiol and magnolol production by in vitro micropropagated plants of Magnolia dealbata, an endangered endemic Mexican species. Nat Prod Commun 5:235–240

    Google Scholar 

  • Ferreira CM, Handro W (1988) Micropropagation of Stevia rebaudiana through leaf explants from adult plants. Planta Med 54:157–160

    Article  CAS  PubMed  Google Scholar 

  • Fiuk A, Bednarek PT, Rybczyński JJ (2010) Flow cytometry, HPLC-RP, and metAFLP analyses to assess genetic variability in somatic embryo-derived plantlets of Gentiana pannonica Scop. Plant Mol Biol Rep 28:413–420

    Article  CAS  Google Scholar 

  • Fletcher RA, Gilly A, Sankhla N, Davis TD (2000) Triazoles as plant growth regulators and stress protectants. Hortic Rev 24:55–138

    CAS  Google Scholar 

  • Fujita H, Edahiro T (1978) Safety utilization of stevia sweetener. Food Ind 22:1–8

    CAS  Google Scholar 

  • Gantait S, Mandal N, Bhattacharyya S, Das PK (2009) In vitro mass multiplication with genetic clonality in elephant garlic (Allium ampeloprasum L.). J Crop Weed 5:100–104

    Google Scholar 

  • Gantait S, Das A, Mandal N (2015) Stevia: a comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17:95–106

    Article  Google Scholar 

  • Gantait S, Das A, Banerjee J (2018) Geographical distribution, botanical description and self-incompatibility mechanism of genus Stevia—a review. Sugar Tech 20:1–10

    Article  CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant propagation by tissue culture. Exegetics Ltd., London

    Google Scholar 

  • Hossain MA, Siddique AB, Rahman SM, Hossain MA (2010) Chemical composition of the essential oils of Stevia rebaudiana Bertoni leaves. Asian J Trad Med 5:56–61

    CAS  Google Scholar 

  • Hutchinson M, Murch SJ, Saxena PK (1996) Morphoregulatory role of thidiazuron: evidence of the involvement of endogenous auxin in thidiazuron-induced somatic embryogenesis of geranium (Pelargonium·hortorum Bailey). J Plant Physiol 149:573–579

    Article  CAS  Google Scholar 

  • Hwang SJ (2006) Rapid in vitro propagation and enhanced stevioside accumulation in Stevia rebaudiana Bert. J Plant Biol 49:267–270

    Article  CAS  Google Scholar 

  • Ibrahim IA, Nasr MI, Mohammed BR, El-Zefzafi MM (2008) Plant growth regulators affecting in vitro cultivation of Stevia rebaudiana. Sugar Tech 10:254–259

    Article  CAS  Google Scholar 

  • Israeli Y, Reuveni O, Lahav E (1991) Qualitative aspects of somaclonal variations in banana propagated by in vitro techniques. Sci Hortic 48:71–88

    Article  Google Scholar 

  • Janarthanam B, Gopalakrishnan M, Sai GL, Sekar A (2009) Plant regeneration from leaf derived callus of Stevia rebaudiana Bertoni. Plant Tissue Cult Biotechnol 19:133–141

    Article  Google Scholar 

  • Jeppesen PB, Gregersen S, Poulsen CR, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate- sensitive K+-channel activity. Meta 49:208–214

    CAS  Google Scholar 

  • Kalpana M, Anbazhagan M, Natarajan V, Dhanavel D (2010) Improved micropropagation method for the enhancement of biomass in Stevia rebaudiana Bertoni. Rec Res Sci Tech 2:8–13

    CAS  Google Scholar 

  • Karim Z, Uesugi D, Nakayama N, Hossain MM, Ishihara K, Hamada H (2015) Identification of stevioside using tissue culture-derived stevia (Stevia rebaudiana) leaves. Biochem Insights 8:33–37

    PubMed  Google Scholar 

  • Kawiak A, Łojkowska E (2004) Application of RAPD in the determination of genetic fidelity in micropropagated Drosera plantlets. In Vitro Cell Dev Biol Plant 40:592–595

    Article  CAS  Google Scholar 

  • Kazmi A, Khan MA, Mohammad S, Ali A, Ali H (2019) Biotechnological production of natural calorie free steviol glycosides in Stevia rebaudiana: an update on current scenario. Curr Biotechnol 8:70–84

    Article  Google Scholar 

  • Keshvari T, Najaphy A, Kahrizi D, Zebarjadi A (2018) Callus induction and somatic embryogenesis in Stevia rebaudiana Bertoni as a medicinal plant. Cell Mol Biol 64:46–49

    Article  PubMed  Google Scholar 

  • Krikorian AD, Berquam DL (1969) Plant cell and tissue cultures: the role of Haberlandt. Bot Rev 35:59–67

    Article  Google Scholar 

  • Lassner MW, Orton TJ (2018) Detection of somatic variation. Isozymes in plant genetics and breeding, part A. Elsevier, Amsterdam, pp 209–218

    Google Scholar 

  • Lata H, Chandra S, Techen N, Wang YH, Khan IA (2013) Molecular analysis of genetic fidelity in micropropagated plants of Stevia rebaudiana Bert. using ISSR marker. Am J Plant Sci 4:964–971

    Article  Google Scholar 

  • Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L, Ah-Hen K (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    Article  CAS  PubMed  Google Scholar 

  • Li J, Baga M, Hucl P, Chibbar RN (2011) Development of microsatellite markers in canary seed (Phalaris canariensis L.). Mol Breed 28:611–621

    Article  CAS  Google Scholar 

  • Lozzi A, Abdelwahd R, Mentag R, Abousalim A (2019) Development of a new culture medium and efficient protocol for in vitro micropropagation of Ceratonia siliqua L. In Vitro Cell Dev Biol Plant 55:615–624

    Article  CAS  Google Scholar 

  • Majumder S, Rahman MM (2016) Micropropagation of Stevia rebaudiana Bertoni. through direct and indirect organogenesis. J Inn Pharma Biol Sci 3:47–56

    CAS  Google Scholar 

  • Martins M, Sarmento D, Oliveira DD (2004) Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23:492–496

    Article  CAS  PubMed  Google Scholar 

  • Meera Manjusha AV, Sathyanarayana BN (2008) Acclimatization studies in stevia (Stevia rebaudiana Bert.). In: Proc. IV International symposium on acclimatization and establishment of micropropagated plants, pp 129–133

    Google Scholar 

  • Melis MS (1999) Effects of chronic administration of Stevia rebaudiana on fertility in rats. J Ethnopharmcol 67:157–161

    Article  CAS  Google Scholar 

  • Merkle S, Dean JFD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Pal A (2006) In vitro regeneration of Stevia rebaudiana (Bert.) from the nodal explants. J Plant Biochem Biotechnol 16:59–62

    Article  Google Scholar 

  • Mitra M, Gantait S, Mandal N (2020) Coleus forskohlii: advancements and prospects of in vitro biotechnology. Appl Microbiol Biotechnol 104:2359–2371

    Article  CAS  PubMed  Google Scholar 

  • Modi AR, Patil G, Kumar N, Singh AS, Subhash N (2012) A simple and efficient in vitro mass multiplication procedure for Stevia rebaudiana Bertoni and analysis of genetic fidelity of in vitro raised plants through RAPD. Sugar Tech 14:391–397

    Article  CAS  Google Scholar 

  • Moktaduzzaman M, Rahman SMM (2009) Regeneration of Stevia rebaudiana and analysis of somaclonal variation by RAPD. Biotechnology 8:449–455

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2006) TDZ-induced triple-response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci 170:185–190

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John's Wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1995) Thidiazuron-induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogea): Endogenous growth regulator levels and significance of cotyledons. Physiol Plant 94:268–276

    Article  CAS  Google Scholar 

  • Nehra NS, Kartha KK, Stushnott C, Giles KL (1992) The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry. Plant Cell Tissue Org Cult 29:257–268

    Article  CAS  Google Scholar 

  • Ojha A, Sharma VN, Sharma V (2010) An efficient protocol for in vitro clonal propagation of natural sweetener plant (Stevia rebaudiana Bertoni). Afr J Plant Sci 4:319–321

    CAS  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Ann Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  CAS  Google Scholar 

  • Ramírez-Mosqueda MA, Iglesias-Andreu LG, Ramírez-Madero G, Hernández-Rincón EU (2016) Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. S Afr J Bot 106:238–243

    Article  Google Scholar 

  • Rani V, Raina SN (1996) PCR technology. BOTA 46:78–81

    Google Scholar 

  • Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330

    Article  CAS  Google Scholar 

  • Rani V, Parida A, Raina SN (1995) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Rep 14:459–462

    Article  CAS  PubMed  Google Scholar 

  • Razak UN, Ong CB, Yu TS, Lau LK (2014) In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Braz Arc Biol Technol 57:23–28

    Article  Google Scholar 

  • Ryynänen L, Aronen T (2005) Genome fidelity during short-and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell Tissue Org Cult 83:21–32

    Article  Google Scholar 

  • Sahoo Y, Pattnaik SK, Chand PK (1997) Plant regeneration from callus cultures of Morus indica L. derived from seedlings and mature plants. Sci Hortic 69:85–98

    Article  CAS  Google Scholar 

  • Sairkar P, Chandravanshi MK, Shukla NP, Mehrotra NN (2009) Mass production of an economically important medicinal plant Stevia rebaudiana using in vitro propagation techniques. J Med Plants Res 3:266–270

    Google Scholar 

  • Shahzad A, Parveen S (2013) In vitro conservation protocols for some commercially important medicinal plants. In: Recent trends in biotechnology and therapeutic applications of medicinal plants. Springer, Dordrecht, pp 323–347

    Chapter  Google Scholar 

  • Shenoy VB, Vasil IK (1992) Biochemical and molecular analysis of plants derived from embryogenic cultures of Napier grass (Pennisetum purpureum K. Schum.). Theor Appl Genet 83:947–955

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Dwivedi P, Atri N (2014) In vitro shoot multiplication of Stevia and assessment of stevioside content and genetic fidelity of the regenerants. Sugar Tech 16:430–439

    Article  CAS  Google Scholar 

  • Singh M, Saharan V, Dayma J, Rajpurohit D, Sen Y, Sharma A (2017a) In vitro propagation of Stevia rebaudiana (Bertoni): an overview. Int J Curr Microbiol App Sci 6:1010–1022

    Article  CAS  Google Scholar 

  • Singh M, Saharan V, Rajpurohit D, Sen Y, Joshi A, Sharma A (2017b) Thidiazuron induced direct shoot organogenesis in Stevia rebaudiana and assessment of clonal fidelity of regenerated plants by RAPD and ISSR. Int J Curr Microbiol Appl Sci 6:1690–1702

    Article  Google Scholar 

  • Sinta MM, Amanah DM (2019) Acclimatization and early growth of tissue culture-derived Stevia rebaudiana at low altitude area in Bogor, Indonesia. Menara Perkebunan 87:68–76

    Google Scholar 

  • Sivaram L, Mukundan U (2003) In vitro culture studies on Stevia rebaudiana. In Vitro Cell Dev Biol Plant 39:520–523

    Article  Google Scholar 

  • Soliman HI, Metwali EM, Almaghrabi OA (2014) Micropropagation of Stevia rebaudiana Betroni and assessment of genetic stability of in vitro regenerated plants using inter simple sequence repeat (ISSR) marker. Plant Biotechnol 37:786–793

    Google Scholar 

  • Sreedhar RV, Venkatachalam L, Thimmaraju R, Bhagyalalakhmi N, Naeayan MS, Ravishankar GA (2008) Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor. Biol Plant 52:355–360

    Article  CAS  Google Scholar 

  • Swanson SM, Mahady GB, Beecher CWW (1992) Stevioside biosynthesis by callus, root, shoot and rooted-shoot cultures in vitro. Plant Cell Tissue Org Cult 28:151–157

    Article  CAS  Google Scholar 

  • Tefera W, Wannakrairoj S (2006) Synergistic effects of some plant growth regulators on in vitro shoot proliferation of Korarima [Aframonum corrorima (Braun) Jansen]. Afr J Biotechnol 5:1894–1901

    CAS  Google Scholar 

  • Thilakarathne PL, Peiris SE, Lankika PC (2019) Efficient low cost seesap (CSUP) technique for micropropagation of newly introduced sweetener plant, Stevia rebaudiana Bertoni. Afr J Biotechnol 18:540–547

    CAS  Google Scholar 

  • Thiyagarajan M, Venkatachalam P (2012) Large scale in vitro propagation of Stevia rebaudiana (Bert) for commercial application: pharmaceutically important and antidiabetic medicinal herb. Ind Crop Prod 37:111–117

    Article  CAS  Google Scholar 

  • Uddin MS, Chowdhury MSH, Khan MMMH, Uddin MB, Ahmed R, Baten MA (2006) In vitro propagation of Stevia rebaudiana Bert in Bangladesh. Afr J Biotechnol 5:1238–1240

    CAS  Google Scholar 

  • Venkatachalam L, Sreedhar RV, Bhagyalakshmi N (2007) Genetic analyses of micropropagated and regenerated plantlets of banana as assessed by RAPD and ISSR markers. In Vitro Cell Dev Biol Plant 43:267–274

    Article  CAS  Google Scholar 

  • Wang SY, Steffens GL, Faust M (1986) Breaking bud dormancy in apple with a plant bioregulator, thidiazuron. Phytochemistry 25:311–317

    Article  CAS  Google Scholar 

  • Yadav A, Kajla S, Poonia AK, Yadav IS, Yadav RC (2016) An efficient micropropagation protocol for Stevia rebaudiana. Med Plants 8:65–73

    Google Scholar 

  • Yesmin S (2019) In vitro micropropagation of Stevia rebaudiana Bertoni. Plant Tissue Cult Biotechnol 29:277–284

    Article  Google Scholar 

  • Yücesan B, Mohammed A, Büyükgöçmen R, Altuğ C, Kavas Ö, Gürel S, Gürel E (2016) In vitro and ex vitro propagation of Stevia rebaudiana Bertoni with high Rebaudioside-A content—a commercial scale application. Sci Hortic 203:20–28

    Article  Google Scholar 

  • Ziv M (1990) The effect of growth retardants on shoot proliferation and morphogenesis in liquid cultured gladiolus plants. Acta Hortic 280:207–214

    Article  Google Scholar 

  • Ziv M, Ronen G, Raviv M (1998) Proliferation of meristematic clusters in disposable pre sterilized plastic bioreactors for the large-scale micropropagation of plants. In Vitro Cell Dev Biol Plant 34:152–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivasankarreddy, K., Abha Manohar, K., Shukla, G., Vineeta, Rather, M.M., Chakravarty, S. (2021). In Vitro Approaches for Mass Propagation of Stevia rebaudiana. In: Gantait, S., Verma, S.K., Sharangi, A.B. (eds) Biotechnology of Anti-diabetic Medicinal Plants. Springer, Singapore. https://doi.org/10.1007/978-981-16-3529-8_5

Download citation

Publish with us

Policies and ethics