Skip to main content
Log in

Geographical Distribution, Botanical Description and Self-Incompatibility Mechanism of Genus Stevia

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Stevia rebaudiana Bertoni, popularly known as ‘candy leaf’, is a sweet native herb of Paraguay. It became economically important for its significant contribution to the sugar and beverage industry throughout the world. This plant has been known to contain a calorie-free natural sugar in its leaves, which is an alternative to other artificially produced sugar substitutes. Stevia is conventionally propagated through seed and cutting, owing to its self-incompatibility, insufficient pollinator activity, and poor seed set, which results in the origination of heterozygous plants with varying concentration of glucosides in leaves, with low multiplication rate. This article compiles the literatures and depicts an overview on the geographical distribution, morphological, reproductive and cytological features, along with incompatibility mechanism of Stevia that would assist researchers to explore further and genetically refine this potential herb with immense medicinal importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: Chatsudthipong and Muanprasat 2009; modified by Authors)

Fig. 2
Fig. 3

(Source: Das 2009)

Similar content being viewed by others

References

  • Barathi, N. 2003. Stevia—The calorie free natural sweetener. Natural Product Radiance 2: 120–122.

    Google Scholar 

  • Brandle, J.E., and N. Rosa. 1992. Heritability for yield, leaf:stem ratio and stevioside content estimated from a landrace cultivar of Stevia rebaudiana. Canadian Journal of Plant Science 72: 1263–1266.

    Article  CAS  Google Scholar 

  • Brandle, J.E., A.N. Starratt, and M. Gijzen. 1998. Stevia rebaudiana: Its agricultural, biological, and chemical properties. Canadian Journal of Plant Science 78: 527–536.

    Article  CAS  Google Scholar 

  • Carneiro, J.W.P. 2007. Stevia rebaudiana (Bert.) Bertoni: Stages of plant development. Canadian Journal of Plant Science 87: 861–865.

    Article  Google Scholar 

  • Chalapathi, M.V., B. Shivaraj, and V.R. Ramakrishna Prama. 1997. Nutrient uptake and yield of stevia (Stevia rebaudiana Bertoni) as influenced by methods of planting and fertilizer levels. Crop Research 14: 205–208.

    Google Scholar 

  • Chatsudthipong, V., and C. Muanprasat. 2009. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology and Therapeutics 121: 41–54.

    Article  CAS  PubMed  Google Scholar 

  • Crowe, L. 1954. Incompatibility in Cosmos bipinnatus. Heredity 8: 1–11.

    Article  Google Scholar 

  • Darlington, C., and A.P. Wylie. 1995. Chromosome atlas of flowering plants, vol. 2, 519. London: George Allen and Unwin Ltd.

    Google Scholar 

  • Das, A. 2009. In vitro cloning, clonal fidelity and quality evaluation in Stevia rebaudiana (Bert.). PhD Thesis, Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India.

  • Das, A., S. Gantait, and N. Mandal. 2010. Rapid in vitro mass multiplication through direct organogenesis and test of clonal fidelity in stevia (Stevia rebaudiana Bert.). International Journal of Agricultural Research 6: 40–48.

    Google Scholar 

  • Das, A., B.N. Saha, A. Maji, S. Kumar, M. Kumar, and N. Mandal. 2015. Reproductive phenology and factors affecting reproductive success in stevia (Stevia rebaudiana Bert.). New Agriculturist 26: 247–255.

    Google Scholar 

  • de Oliveira, V.M., E.R. Forni-Martins, P.M. Magalhaes, and A.M. Alves. 2004. Chromosomal and morphological studies of diploid and polyploid cytotypes of Stevia rebaudiana (Bertoni) Bertoni (Eupatorieae, Asteraceae). Genetics and Molecular Biology 27: 215–222.

    Article  Google Scholar 

  • Dickinson, H.G., and J. Lawson. 1975. Pollen tube growth in the stigma of Oenothera organensis following compatible and incompatible intraspecific pollinations. Proceedings of Royal Society of London 188: 327–344.

    Article  Google Scholar 

  • Dickinson, H.G., and D. Lewis. 1974. Changes in the pollen grain wall of Linum grandiflorum following compatible and incompatible intraspecific pollinations. Annals of Botany 38(1): 23–29.

    Article  Google Scholar 

  • Duke, J.A., and J.C. deCellier. 1993. Stevia rebaudiana (Bert.). In CRC Handbook of Alternative Cash Crops, ed. J. Duke, 422–424. London: CRC Press Inc.

    Google Scholar 

  • Dwivedi, R.S. 1999. Unnurtured and untapped super sweet nonsacchariferous plant species in India. Current Science 76: 1454–1461.

    CAS  Google Scholar 

  • Edlund, A.F., R. Swanson, and D. Preuss. 2004. Pollen and stigma structure and function: The role of diversity in pollination. Plant Cell 16: S84–S97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar, F.R., and L. Valledor Gand Rallo. 1983. Influence of pistil extract and temperature on in vitro pollen germination and pollen tube growth of olive cultivars. Journal of Horticultural Science 58: 219–227.

    Article  Google Scholar 

  • European Commission. 1999. Opinion on Stevia rebaudiana plants and leaves. Scientific Committee on Food. CS/NF/STEV/3 Final Dt. June 17.

  • Frederico, A.P., P.M. Ruas, M.A. Marin-Morales, C.F. Fuas, and J.N. Nakajima. 1996. Chromosome studies in some Stevia Cav. (Compositae) species from Southern Brazil. Brazilin Journal of Genetics 19: 605–609.

    Article  Google Scholar 

  • Galiano, N.G. 1987. Estudios cromosomicos en species argentines de Stevia (Compositae). Darwiniana 28: 311–315.

    Google Scholar 

  • Gantait, S., A. Das, and N. Mandal. 2015. Stevia: A comprehensive review on ethnopharmacological properties and in vitro regeneration. Sugar Tech 17: 95–106.

    Article  Google Scholar 

  • Gentry, A.H. 1996. A field guide of the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceus taxa. The University of Chicago Press, Chicago, pp. 895.

  • Goettemoeller, J., and A. Ching. 1999. Seed germination in Stevia rebaudiana. In Perspectives on new crops and new uses, ed. J. Janick, 510–511. Alexandria: ASHS Press.

    Google Scholar 

  • Heslop-Harrison, J. 1975. Incompatibility and the pollen-stigma interaction. Annual Review of Plant Physiology 6: 403–425.

    Article  Google Scholar 

  • Heslop-Harrison, J. 1979. Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Annals of Botany 44: 1–47.

    Article  Google Scholar 

  • Heslop-Harrison, Y. 1981. Stigma characteristics and angiosperm taxonomy. Nordic Journal of Botany 1: 401–420.

    Article  Google Scholar 

  • Heslop-Harrison, Y. 2000. Control gates and micro-ecology: The pollen-stigma interaction in perspective. Annals of Botany 85: 5–13.

    Article  Google Scholar 

  • Hiscock, S.J., and A.M. Allen. 2008. Diverse cell signalling pathways regulate pollen–stigma interactions: The search for consensus. New Phytologist 179: 286–317.

    Article  CAS  PubMed  Google Scholar 

  • Hiscock, S.J., J. Coleman, F.M. Dewey, and H.G. Dickinson. 1994. Identification and localization of an active cutinase in the pollen of Brassica napus L. Planta 193: 377–384.

    Article  CAS  Google Scholar 

  • Hiscock, S.J., D. Bown, S.J. Gurr, and H.G. Dickinson. 2002a. Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sexual Plant Reproduction 15: 65–74.

    Article  CAS  Google Scholar 

  • Hiscock, S.J., K. Hoedemaekers, W.E. Friedman, and H.G. Dickinson. 2002b. The stigma surface and pollen–stigma interactions in Senecio squalidus L. (Asteraceae) following cross (compatible) and self (incompatible) pollinations. International Journal of Plant Sciences 163: 1–16.

    Article  Google Scholar 

  • Howlett, B.J., R.B. Knox, J.D. Paxton, and J. Heslop-Harrison. 1975. Pollen wall proteins: physicochemical characterization and role in self-incompatibility in Cosmos bipinnatus. Proceedings Royal Society of London B 188: 167–182.

    Article  Google Scholar 

  • Jia, G.N. 1984. An experiment on the cultivation of Stevia rebaudiana (Bert.). Shanxi Agricultura Science Shanxi Nongye Kexue 1: 20–21.

    Google Scholar 

  • Johnson, M.A., and D. Preuss. 2003. On your mark, get set, GROW! LePRK2–LAT52 interactions regulate pollen tube growth. Trends in Plant Science 8: 97–99.

    Article  CAS  PubMed  Google Scholar 

  • Kawatani, T., Y. Kaneki, and T. Tanabe. 1977. On the cultivation of Kaa-hee (Stevia rebaudiana (Bert.). Japanese Journal of Tropical Agriculture 20: 137–142.

    Google Scholar 

  • Kenrick, J., and R.B. Knox. 1981. Post-pollination exudates from stigmas of Acacia (Mimosaceae). Annals of Botany 48: 103–106.

    Article  Google Scholar 

  • Kinghorn, A.D., and D.D. Soejarto. 2002. Discovery of terpenoid and phenolic sweeteners from plants. Pure and Applied Chemistry 74: 1169–1179.

    Article  CAS  Google Scholar 

  • Knox, R.B. 1973. Pollen-wall proteins: Pollen–stigma interactions in ragweed and Cosmos (Compositae). Journal of Cell Science 12: 421–443.

    CAS  PubMed  Google Scholar 

  • Kudo, M. 1974. Stevia rebaudiana (Bert.). Science Cultura 34: 2.

    Google Scholar 

  • Lawrence, W.J.C. 1980. Melhoramento Genético Vegetal, vol. 6, 75. São Paulo: EDUSP.

    Google Scholar 

  • Lester, T. 1999. Stevia rebaudiana. Sweet leaf. The Australian New Crops Newsletter 11: 1.

    Google Scholar 

  • Lewis, W.H. 1992. Early uses of Stevia rebaudiana (Asteraceae) leaves as a sweetener in Paraguay. Economic Botany 46: 336–337.

    Article  Google Scholar 

  • Lord, E.M. 2003. Adhesion and guidance in compatible pollination. Journal of Experimental Botany 54: 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist, A. 1964. The nature of the two loci incompatibility system in grasses. IV. Interaction between the loci in relation to pseudo-compatibility in Festuca pratensia Huds. Heraditas 52: 221–234.

    Article  Google Scholar 

  • Maiti, R.K., and S.S. Purohit. 2008. Stevia: A miracle plant for human health. Agrobios (India) Jodhpur, India.

  • Megeji, N.W., J.K. Kumar, V. Singh, and P.S. Ahuja. 2005. Introducing Stevia rebaudiana a natural zero caloric sweetener. Current Science 88: 801–804.

    CAS  Google Scholar 

  • Metivier, J., and A.M. Viana. 1979. The effect of long and short day length upon the growth of whole plants and the level of soluble proteins, sugars and stevioside in leaves of Stevia rebaudiana. Journal of Experimental Botany 30: 1211–1222.

    Article  CAS  Google Scholar 

  • Midmore, D.J., and A.H. Rank. 2002. A new rural industry stevia to replace imported chemical sweeteners. Rural Industries Research and Development Corporation, Pub No. W02/22, p. 55.

  • Mizukami, H., and H. Shiba Kand Ohashi. 1983. Effect of temperature on growth and stevioside formation of Stevia rebaudiana. Shoyakugaku Zasshi 37: 175–179.

    CAS  Google Scholar 

  • Monteiro, R. 1980. Taxonomia e biologia da reproducao da Stevia rebaudiana Bert. Ph.D. Thesis, Universidade Estadual de Campinas, Brazil.

  • Monteiro, W.R., M.D.R. Castro, S.C.M. Viveiros, and P.G. Mahlberg. 2001. Development and some histochemical aspects of foliar glandular trichomes of Stevia rebaudiana, Asteraceae. Revista Basileira de Botanica 24: 349–357.

    CAS  Google Scholar 

  • Oddone, B. 1997. How to grow stevia. Technical manual. Guarani Botanicals, Pawtucket, CT. Progress Report 122.

  • Parsons, P. 2003. Stevia: Too good to be approved. OrganicNZ 62: 26.

    Google Scholar 

  • Postweiler, K., S. Stosser, and S.F. Anvari. 1985. The effect of different temperatures on the viability of ovules in the cherries. Scientia Horticultuare 25: 235–239.

    Article  Google Scholar 

  • Ramesh, K., S. Virendra, and N.W. Megeji. 2006. Cultivation of stevia [Stevia rebaudiana (Bert.)]: A comprehensive review. Advances in Agronomy 89: 137–177.

    Article  Google Scholar 

  • Sakaguchi, M., and T. Kan. 1982. As pesquisasjaponesas com Stevia rebaudiana (Bert) Bertoni e o esteviosideo. Ciencia e Cultura (Sao Oaulo) 34: 235–248.

    CAS  Google Scholar 

  • Sedgley, M., and M.A. Blesing. 1982. Foreign pollination of the stigma of watermelon (Citrullus lanatus [Thunb.] Matsum and Nakai). Botanical Gazette 143: 210–215.

    Article  Google Scholar 

  • Shock, C.C. 1982. Experimental cultivation of Rebaudis Stevia in California. Agronomy Progress Report 122.

  • Skaria, B.P., R. Joseph, S. Malhew, and P.P. Joy. 2004. Stevia: A sweet herb. Indian Journal of Arecanut, Spices and Medicinal Plant 6: 24–27.

    Google Scholar 

  • Soejatro, D.D. 2002. Botany of stevia and Stevia rebaudiana. In Medicinal and aromatic Plants-Industrial Profiles, vol. 19: Stevia, ed. A.D. Kinghorn, 18–40. London: Taylor & Francis.

    Google Scholar 

  • Soejatro, D.D., C.M. Compadre, P.J. Medon, S.K. Kamath, and A.D. Kinghorn. 1983. Potential sweetening agents of plant origin. II. Field search for sweet tasting Stevia species. Economic Botany 37: 71–79.

    Article  Google Scholar 

  • Sumida, T. 1980. Studies on Stevia rebaudiana Bertoni as a possible new crop for sweetening resource in Japan. Journal of the Central Agricultural Experiment Station 31: 1–71.

    Google Scholar 

  • Valois, A.C.C. 1992. Stevia rebaudiana Bert: uma alternative econômica. Comunicado Técnico (CENARGEN) 13: 1–13.

    Google Scholar 

  • Viana, A.M. 1981. Analysis of Stevia rebaudiana Bert. for stevioside during photoperiod of 16 and 18 hours. First Brazilian seminar on Stevia rebaudiana. Brazil 25–26: 11.

    Google Scholar 

  • Vithanage, H.I.M.V., and R.B. Knox. 1977. Development and cytochemistry of stigma surface and response to self and foreign pollination in Helianthus annuus. Phytomorphology 27: 168–179.

    CAS  Google Scholar 

  • WHO. 2015. World report on ageing and health. Geneva: World Health Organization.

    Google Scholar 

  • Yadav, A.K., S. Singh, D. Dhyani, and P.S. Ahuja. 2011. A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]. Canadian Journal of Plant Science 91: 1–27.

    Article  Google Scholar 

  • Yadav, A.K., S. Singh, and R. Rajeev. 2014. Self-incompatibility evidenced through scanning electron microscopy and pollination behaviour in Stevia rebaudiana. Indian Journal of Agricultural Sciences 84: 93–100.

    Google Scholar 

  • Zaidan, L.B.P., S.M.C. Dietrich, and G.M. Felippe. 1980. Effect of photoperiod on flowering and stevioside content in plants of Stevia rebaudiana Bertoni. Japanese Journal of Crop Science 49: 569–574.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Department of Agricultural Biotechnology and Directorate of Research, Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India, for providing the key research and e-library facilities.

Authors’ contribution

SG and AD conceived the idea of the review and drafted the initial manuscript; SG, AD, and JB scrutinized and corrected the manuscript to its submission-ready version. All the authors approved the final version of the manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Gantait.

Ethics declarations

Conflict of interest

The authors of this article declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantait, S., Das, A. & Banerjee, J. Geographical Distribution, Botanical Description and Self-Incompatibility Mechanism of Genus Stevia . Sugar Tech 20, 1–10 (2018). https://doi.org/10.1007/s12355-017-0563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0563-1

Keywords

Navigation