Skip to main content
Log in

Development of microsatellite markers in canary seed (Phalaris canariensis L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Annual canarygrass, commonly known as canary seed (Phalaris canariensis L.), is a self-pollinated diploid cereal (2n = 12) with a genome size of 3,800 Mbp. Canary seed is presently used for bird-feed with a potential to develop it for human consumption. Marker-assisted selection can be used to accelerate breeding of new canary seed cultivars. Microsatellites or simple sequence repeat (SSR) markers generally show a high degree of polymorphism in different plant genera. FIASCO (Fast Isolation by AFLP of Sequences COntaining repeats) was used to generate microsatellite markers specific for canary seed. An enriched SSR (AG)17 library derived from DNA isolated from a canary seed cultivar (CDC Togo) was produced. Analysis and DNA sequencing of the library resulted in 744 clones from which 132 primer pairs were designed. Seventy-eight functional markers amplified unique products from canary seed DNA. These SSR markers revealed the biodiversity among a panel of 48 canary seed accessions. Polymorphic information content (PIC) values of 37 polymorphic microsatellites ranged from 0.08 to 0.73 with an average of 0.36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

EST:

Expressed sequence tag

FIASCO:

Fast isolation by AFLP of sequences containing repeats

PCR:

Polymerase chain reaction

PIC:

Polymorphic information content

RAPD:

Random amplification of polymorphic DNA

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeat

References

  • Abajian C (1994) SPUTNIK, http://abajian.net/sputnik/ Accessed 30 July 2010

  • Abdel-Aal E-SM, Hucl PJ (2005) Hairless canary seed: a potential food crop. In: Abdel-Aal Elsayed, Wood Peter (eds) Specialty grains for food and feed. American Association of Cereal Chemists, St. Paul, pp 203–222

    Google Scholar 

  • Abdel-Aal E-SM, Hucl PJ, Sosulski FW (1997a) Structural and compositional characteristics of canary seed (Phalaris canariensis L.). J Agric Food Chem 45:3049–3055

    Article  CAS  Google Scholar 

  • Abdel-Aal E-SM, Hucl PJ, Sosulski FW (1997b) Characteristics of canary seed (Phalaris canariensis L.) starch. Starch/Stärke 49:475–480

    Article  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Sorrells ME, Tanksley SD (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Appleby N, Edward D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Daryl JS et al (eds) Plant genomics: methods in molecular biology, vol 513. Humana press, a part of Springer Science, New York, pp 19–39

    Chapter  Google Scholar 

  • Båga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Func Integr Genomics 7:53–68

    Article  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 274:227–274

    Article  CAS  Google Scholar 

  • De Vienne D (2003) Construction of genetic linkage maps. In: De Vienne D (ed) Molecular markers in plant genetics and biotechnology. Science Publishers, Enfield, pp 47–79

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Altmann T, Röder S (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  PubMed  CAS  Google Scholar 

  • Grover A, Aishwarya V, Sharma PC (2007) Biased distribution of microsatellite motifs in the rice genome. Mol Genet Genomics 277:469–480

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Lawson MJ, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14

    Article  PubMed  Google Scholar 

  • Li X, Paech N, Nield J, Hayman D, Langridge P (1997) Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Mol Biol 34:223–232

    Article  PubMed  CAS  Google Scholar 

  • Matus M, Hucl PJ (1999) Isozyme variation within and among accessions of annual phalaris species in North American germplasm collections. Crop Sci 39:1222–1228

    Article  CAS  Google Scholar 

  • Matus-Cádiz MA, Hucl PJ, Vandenberg A (2003) Inheritance of hull pubescence and seed color in annual canarygrass. Can J Plant Sci 83:471–474

    Article  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • O’Neil CH, Jordon P, Bhatt TS, Newman RH (1986) Silica and oesophageal cancer. Ciba Found Symp 121:214–230

    Google Scholar 

  • Parida SK, Anand Raj Kumar K, Dalal V, Singh NK, Mohapatra M (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Strömberg AEC, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich DS, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Robinson RG (1983) Elias annual canarygrass. Crop Sci 23:1011

    Article  Google Scholar 

  • Röder S, Korzun V, Wendehake K, Plaschke J, Tixier M, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system. Applied Biostatistics Inc, New York

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M, Wingfield B (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechnology 46:217–223

    Article  CAS  Google Scholar 

  • Specialty Crop Report 2009 www.agriculture.gov.sk.ca/Specialty_crop_report Accessed 30 July 2010

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Deng Y, Tan J, Hu S, Yu J, Xue Q (2007) A genome-wide microsatellite polymorphism database for the indica and japonica rice. DNA Res 14:37–45

    Article  PubMed  Google Scholar 

  • Zhang Y, He J, Patrick Z, Bouton JH, Monteros MJ (2008) Genome-wide identification of microsatellites in white clover (Trifolium repens L.) using FIASCO and phpSSRMiner. Plant Meth. doi:10.1186/1746-4811-4-19

Download references

Acknowledgments

This research was conducted with the financial support of the Agriculture, Food and Rural Revitalization (PH & RNC), Canary Seed Growers Association (PH), Canada Research Chair, and Canada Foundation for Innovation (RNC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra N. Chibbar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Båga, M., Hucl, P. et al. Development of microsatellite markers in canary seed (Phalaris canariensis L.). Mol Breeding 28, 611–621 (2011). https://doi.org/10.1007/s11032-010-9513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9513-2

Keywords

Navigation