Skip to main content

Double Haploid Production and Its Applications in Crop Improvement

  • Chapter
  • First Online:
Agricultural Biotechnology: Latest Research and Trends

Abstract

Haploid plants are those having gametophytic chromosome number while doubled haploids are haploids that are produced after chromosome duplication. The production of haploids and doubled haploids (DHs) through gametic tissues allows a single-step development of complete homozygous lines from heterozygous parents. DHs shorten the time required to produce homozygous plants in comparison with the conventional breeding which requires several generations of selfing. The production of haploids and DHs provides a particularly attractive biotechnological tool, and the development of haploidy technology and protocols to produce homozygous plants had a significant impact on agricultural systems. Nowadays, these biotechnologies represent an integral part of the breeding programs of many agronomically important crops. There are several available methods to obtain haploids and DHs, of which in vitro anther or isolated microspore culture is the most effective and widely used. This chapter throws the light on the current status of knowledge on the production of haploids and DHs through anther or pollen cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DH:

Doubled haploid

MCS:

Multi-cellular structure

PCD:

Programmed cell death

PEG:

Poly-ethylene glycol

SAM:

Shoot apical meristem

References

  • Adhikari PB, Kang WH (2017) Association of floral bud and anther size with microspore developmental stage in campari tomato. Hortic Sci Technol 35:608–617

    Google Scholar 

  • Ahmad I, Day JP, Mac Donald MV, Ingram DS (1991) Haploid culture and UV mutagenesis in rapid cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria brassicola. Ann Bot 67:521–525

    Article  Google Scholar 

  • Ahman I, Bengtsson T (2019) Introgression of resistance to Rhopalosiphumpadi L. from wild barley into cultivated barley facilitated by doubled haploid and molecular marker techniques. Theor Appl Genet 132:1397–1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajithkumar K, Naik MK, Sreenivasa MY, Naik G, Amaresh YS, Girijesh GK (2019) Evaluation of maize hybrids and inbred lines for resistance to pre-harvest aflatoxin and fumonisin producing fungal contamination in the field. Int J Chem Stud 7:809–818

    CAS  Google Scholar 

  • Akhtar N (2013) Endogenous polyamines: a temporal cellular modulator of somatic embryogenesis in guava (Psidium guajava L.) cv. Allahabad Safeda. Res Plant Sci 1:4–14

    Google Scholar 

  • Alan AR, Lim W, Mutschler MA, Earle ED (2007) Complementary strategies for ploidy manipulations in gynogenic onion (Allium cepa L.). Plant Sci 173:25–31

    Article  CAS  Google Scholar 

  • Asif M (2013) Progress and opportunities of doubled haploid productio. Springer, Cham

    Book  Google Scholar 

  • Assani A, Bakry F, Kerbellec F, Haicour R, Wenzel G, Foroughi-Wehr B (2003) Production of haploids from anther culture of banana [Musa balbisiana (BB)]. Plant Cell Rep 21:511–516

    Article  CAS  PubMed  Google Scholar 

  • Ayed OS, De Buyser J, Picard E, Trifa Y, Slim Amara H (2010) Effect of pre-treatment on isolated microspores culture ability in durum wheat (Triticum turgidum sub sp. Durum Desf.). J Plant Bred Crop Sci 2:30–38

    Google Scholar 

  • Baenziger PS, Kudirka DT, Schaeffer GW, Lazar MD (1984) The significance of doubled haploid variation. In: Gustafson JP (ed) Gene manipulation in plant improvement. Springer, Boston

    Google Scholar 

  • Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: YPS B (ed) Biotechnology in agriculture and forestry, part I. haploids in crop improvement, vol 12. Springer, Berlin, pp 1–44

    Google Scholar 

  • Bakos F, Jager K, Barnabás B (2005) Regeneration of haploid plants after distant pollination of wheat via zygote rescue. Acta Biol Crac 47:167–171

    Google Scholar 

  • Bakry F, Assani A, Kerbellec F (2008) Haploid induction: androgenesis in Musa balbisiana. Fruits 63:45–49

    Article  CAS  Google Scholar 

  • Barany I, Testillano PS, Mityko J, Risueno MC (2001) The switch of the microspore program in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int J Plant Dev Biol 45:39–40

    Google Scholar 

  • Barkley A, Chumley FG (2012) A doubled haploid laboratory for Kansas wheat breeding: an economic analysis of biotechnology adoption. Int Food Agribus Manag Rev 15:99–119

    Google Scholar 

  • Basay S, Ellialtıoglu SS (2013) Effect of genotypical factors on the effectiveness of anther culture in eggplant (Solanum melongena L). Turk J Biol 37:499–505

    Article  CAS  Google Scholar 

  • Bazrkar-Khatibani L, Fakheri BL, Hosseini-Chaleshtori M, Mahender A, Mahdinejad N, Ali J (2019) Genetic mapping and malidation of quantitative trait loci (QTL) for the grain appearance and quality traits in rice (Oryza sativa L.) by using recombinant inbred line (RIL) population. Int J Genomics 2019:1–13. https://doi.org/10.1155/2019/3160275

    Article  CAS  Google Scholar 

  • Belchev I, Tchorbadjieva M, Pantchev I (2004) Effect of 5-azacytidine on callus induction and plant regeneration potential in anther culture of wheat (Triticum aestivum L.) Bulgarian. J Plant Physiol 30:45–50

    CAS  Google Scholar 

  • Beversdorf WD, Kott LS (1987) An in vitro mutagenesis/selection system for Brassica napus. Iowa State J Res 61:435–443

    Google Scholar 

  • Bhat J, Murthy H (2007) Factors affecting in-vitro gynogenic haploid production in niger (Guizotia abyssinica (L. f.) Cass.). Plant Gr Reg 52:241–248

    Article  CAS  Google Scholar 

  • Bilynska O (2020) Influence of spike pretreatment at low temperatures on efficiency of spring barley haploid production in anther culture in vitro. Prob Cryobio Cryomed 30:68–76

    Article  Google Scholar 

  • Bohanec B (2009) Doubled haploids via gynogenesis. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8854-4_2

    Chapter  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, Van Lammeren AA, Miki BL, Custers JB (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouvier L, Guerif P, Djulbic M, Durel CE, Chevreau E, Lespinasse Y (2002) Chromosome doubling of pear haploid plants and homozygosity assessment using isozyme and microsatellite markers. Euphytica 123:255–262

    Article  CAS  Google Scholar 

  • Brauner PC, Schipprack W, Utz HF, Bauer E, Mayer M, Schön C-C, Melchinger AE (2019) Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm. Theor Appl Genet 132:1897–1908

    Article  CAS  PubMed  Google Scholar 

  • Broughton S, Sidhu PK, Davies PA (2014) In vitro culture for doubled haploids: tools for molecular breeding. Methods Mol Biol 1145:167–189

    Article  PubMed  Google Scholar 

  • Burbulis N, Blinstrubiene A, Sliesaravicius A, Venskutoniene E (2005) Influence of genotype, growth regulators, sucrose level and preconditioning of donor plants on flax (LinumusitatissimumL.) anther culture. Acta Biol Hung 56:323–331

    Article  PubMed  Google Scholar 

  • Burbulis N, Kupriene R (2005) Induction of somatic embryos on in vitro cultured zygotic embryos of spring Brassica napus. Acta Univ Latv (Biology) 691:137–143

    Google Scholar 

  • Burbulis N, Kupriene R, Liakas V (2007) Somatic embryogenesis and plant regeneration in immature zygotic embryos of Brassica napus. Acta Univ Latv 723:27–35

    Google Scholar 

  • Burun B, Poyrazoglu EC (2002) Embryo culture in barley (Hordeum vulgare L.). Turk J Bio 26:175–180

    Google Scholar 

  • Buyukalaca S, Comlekcioglu N, Abak K, Ekbic E, Kilic (2004) Effects of silver nitrate and donor plant growing conditions on production of pepper (Capsicum annuum L.) haploid embryos via anther culture. Europ J Hort Sci 69:206–209

    Google Scholar 

  • Çakmak E, Uncuoğlu AA, Aydın Y (2019) Evaluation of in vitro genotoxic effects induced by in vitro anther culture conditions in sunflower. Plant Signal Behav 14:1633885. https://doi.org/10.1080/15592324.2019.1633885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calayugan MI, Formantes AK, Amparado A, Descalsota-Empleo GI, Nha CT, Inabangan-Asilo MA, Swe ZM, Hernandez JE, Borromeo TH, Lalusin AG, Mendioro MS (2020) Genetic analysis of agronomic traits and grain iron and zinc concentrations in a doubled haploid population of rice (Oryza sativa L.). Sci Rep 10(1):1–4

    Article  Google Scholar 

  • Cardoso JC, Martinelli AP, Latado RR (2012) Somatic embryogenesis from ovaries of sweet orange cv. Tobias. Plant Cell Tiss Org Cult 109:171–177

    Article  Google Scholar 

  • Castillo AM, Cistue L, Valles MP, Soriano M (2009) Chromosome doubling in monocots. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 329–338. https://doi.org/10.1007/978-1-4020-8854-4_27

    Chapter  Google Scholar 

  • Castro Aviles A, Alan Harrison S, Joseph Arceneaux K, Brown-Guidera G, Esten Mason R, Baisakh N (2020) Identification of QTLs for resistance to Fusarium head blight using a doubled haploid population derived from southeastern United States soft red winter wheat varieties AGS 2060 and AGS 2035. Gene 11:699

    Article  Google Scholar 

  • Cegielska-Taras T, Szala L, Krzymanski J (1999) An in vitro mutagenesis-selection system for Brassica napus L. new horizons for an old crop. In: Proceedings of the 10th international rapeseed congress, Canberra, pp 1–4

    Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Kenaschuk E, Dribnenki P (1998) High frequency of plant regeneration from anther culture in flax, Linum usitatissimum L. Plant Breed 117:463–467

    Article  CAS  Google Scholar 

  • Chuong PV, Deslauriers C, Kott LS, Beversdorf WD (1988) Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Can J Bot 66:1653–1657

    Article  Google Scholar 

  • Ciner DO, Tipirdamaz R (2002) The effects of cold treatment and charcoal on the in vitro androgenesis of pepper (Capsicum annuum L.). Turk J Bot 26:131–139

    Google Scholar 

  • Coumans M, Zhong D (1995) Doubled haploid sunflower (Helianthus annuus) plant production by androgenesis: fact or artifact? Part 2. In vitro isolated microspore culture. Plant Cell Tiss Org Cult 41:203–309

    Article  CAS  Google Scholar 

  • Croser JS, Lulsdorf MM, Grewal RK, Usher KM, Siddique KH (2011) Isolated microspore culture of chickpea (Cicerarietinum L.): induction of androgenesis and cytological analysis of early haploid divisions. In Vitro Cell Dev Biol 47:357–368

    Article  CAS  Google Scholar 

  • Da Silva JAT, Winarto B, Dobránszki J, Zeng S (2015) Anther culture of Anthurium: a review. Acta Physiolog Plant 37:173–182

    Article  Google Scholar 

  • Dagustu N (2008) Diallel analysis of anther culture response in wheat (Triticum aestivum L.). Afr J Biotechnol 7:3419–3423

    CAS  Google Scholar 

  • Deambrogio E, Dale PJ (1980) Effects of 2, 4-D on the frequency of regenerated plants in barley and on genetic variability between them. Cereal Res Commun 8:417–423

    CAS  Google Scholar 

  • Deng Y, Tang B, Zhou X, Fu W, Tao L, Zhang L, Chen J (2020) Direct regeneration of haploid or doubled haploid plantlets in cucumber (Cucumis sativus L.) through ovary culture. Plant Cell Tiss Org Cult 142:253–268

    Article  CAS  Google Scholar 

  • Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers. Sci Hortic 119:246–251

    Article  CAS  Google Scholar 

  • Doi H, Hoshi N, Yamada E, Yoko S, Nishihara M, Hikage T, Takahata Y (2013) Efficient haploid and doubled haploid production from unfertilized ovule culture of gentians (Gentiana spp.). Breed Sci 63:400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi H, Takahashi R, Hikage T, Takahata Y (2010) Embryogenesis and doubled haploid production from anther culture in gentian (Gentiana triflora). Plant Cell Tiss Org Cult 102:27–33

    Article  Google Scholar 

  • Doi H, Yokoi S, Hikage T, Nishihara M, Tsutsumi KI, Takahata Y (2011) Gynogenesis in gentians (Gentiana triflora, G. Scabra): production of haploids and doubled haploids. Plant Cell Rep 30:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Dolcet-Sanjuan R, Claveria E, Huerta A (1997) Androgenesis in Capsicum annuum L.—effects of carbohydrate and carbon dioxide enrichment. J Am Soc Hort Sci 122:468–475

    Article  CAS  Google Scholar 

  • Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, Żur I, Krzewska M (2014) The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. Protoplasma 251:1077–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumas de Vaulx R, Chambonnet D (1982) Culture in vitro d’antheresd’aubergine (SolanummelongenaL.): stimulation de la production de plantes au moyen de traitements a+ 35 C associes a de faiblesteneurs en substances de croissance. Agronomie 2:983–988

    Article  Google Scholar 

  • Dunwell JM (1981) Stimulation of pollen embryo induction in tobacco by pretreatment of excised anthers in a water-saturated atmosphere. Plant Sci Lett 21:9–13

    Article  Google Scholar 

  • Dunwell JM (1986) Pollen, ovule and embryo culture, as tools in plant breeding. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworths, London, pp 375–404

    Chapter  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, Ortiz R (2015) Haploids: constraints and opportunities in plant breeding. Biotechnol Adv 33:812–829. https://doi.org/10.1016/j.biotechadv.2015.07.001

    Article  PubMed  Google Scholar 

  • Ei-Hennawy MA, Abdalla AF, Shafey SA, Al-Ashkar IM (2011) Production of doubled haploid wheat lines (Triticum aestivum L.) using anther culture technique. Ann Agric Sci 56:63–72

    Article  Google Scholar 

  • Ellialtıoglu SS, Tipirdamaz R (1999) Patlican anter kulturunde absizik asit miktarini azaltici uygulamalarin androgenetik embriyo olusumuna etkisi. Kukem Dergisi 24:23–32

    Google Scholar 

  • El-Mahrouk ME, Maamoun MK, El-Banna AN, Omran SA, Dewir YH, El-Hendawy S (2018) In vitro gynogenesis and flow cytometry analysis of the regenerated haploids of black cumin (Nigella sativa). Hort Sci 53:681–686

    Google Scholar 

  • Ferrie AMR, Mollers C (2011) Haploids and doubled haploids in Brassica Spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Article  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  CAS  PubMed  Google Scholar 

  • Garcia C, de Almeida A-AF, Costa M, Britto D, Valle R, Royaert S, Marelli J-P (2019) Abnormalities in somatic embryogenesis caused by 2, 4-D: an overview. Plant Cell Tiss Org Cult (PCTOC) 137:193–212

    Article  CAS  Google Scholar 

  • Gemes-Juhasz A, Balogh P, Ferenczy A, Kristof Z (2002) Effect of optimal stage of female gametophyte and heat treatment on in vitro gynogenesis induction in cucumber (Cucumis sativus L.). Plant Cell Rep 21:105–111

    Article  CAS  Google Scholar 

  • Germanà M, Chiancone B (2001) Gynogenetic haploids of citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Org Cult 66:59–66

    Article  Google Scholar 

  • Germana MA (2006) Doubled haploid production in fruit crops. Plant Cell Tiss Org Cult 86:131–146

    Article  Google Scholar 

  • Germana MA (2009) Haploid and doubled haploids in fruit trees. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Heidelberg, pp 241–263

    Chapter  Google Scholar 

  • Germana MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  CAS  PubMed  Google Scholar 

  • Gil-Humanes J, Barro F (2009) Production of doubled haploids in Brassica. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Dordrecht, pp 65–73

    Chapter  Google Scholar 

  • Goncharova YK, VEreshchagina SA, Gontcharov SV (2020) Nutrient media for double haploid production in anther culture of rice hybrids. Plant Cell Biotechnol Mol Biol 20:215–1223

    Google Scholar 

  • Górecka K, Kiszczak W, Krzyżanowska D, Kowalska U, Kapuścińska A (2014) Effect of polyamines on in vitro anther cultures of carrot (Daucus carota L.). Turk J Biol 38:593–600

    Article  Google Scholar 

  • Gu H, Sheng X, Zhao Z, Yu H, Wang J (2014) Initiation and development of microspore embryogenesis and plant regeneration of Brassica nigra. In Vitro Cell Dev Biol Plant 50(5):534–540

    Article  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497–498

    Article  Google Scholar 

  • Gurel S, Gurel E, Kaya Z (2000) Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Rep 19:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Hacham Y, Holland N, Butterfield C, Ubeda-Tomas S, Bennett MJ, Chory J, Savaldi-Goldstein S (2011) Brassinosteroid perception in the epidermis controls root meristem size. Development 138:839–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hartwig T, Corvalan C, Best NB, Budka JS, Zhu JY, Choe S, Schulz B (2012) Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and Maize. PLoS One 7(5):e36625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heberle-Bors E (1985) In vitro haploid formation from pollen: a critical review. Theor Appl Genet 71:361–374

    Article  CAS  PubMed  Google Scholar 

  • Heidari-Zefreh AA, Shariatpanahi ME, Mousavi A, Kalatejari S (2019) Enhancement of microspore embryogenesis induction and plantlet regeneration of sweet pepper (Capsicum annuum L.) using putrescine and ascorbic acid. Protoplasma 256:13–24

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Oleszczuk S, Daghma DES, Zimny J, Melzer M, Kumlehn J (2012) Analysis of T-DNA integration and generative segregation in transgenic winter triticale (Triticosecale wittmack). BMC Plant Biol 12:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentour S, El Goumi Y, Oubaidou R, El Aanachi S, Lamsaouri O, Essayagh S, Houmairi H, Fakiri M (2020) Results of in vitro androgenesis under increasing salinity conditions for three moroccan spring barley varieties (Hordeum vulgare L.). J Microbial Biotechnol Food Sci 10(1):112–116

    Article  CAS  Google Scholar 

  • Hoekstra S, Van Bergen S, Van Brouwershaven I, Schilperoort R, Wang M (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218

    Article  CAS  Google Scholar 

  • Hooghvorst I, Ribas P, Nogués S (2020) Chromosome doubling of androgenic haploid plantlets of rice (Oryza sativa) using antimitotic compounds. Plant Breed 139:754–761

    Article  CAS  Google Scholar 

  • Hu H, Yang HY (eds) (1986) Haploids in higher plants in vitro. China Academic Publishers/Springer-Verlag, Beijing/Berlin

    Google Scholar 

  • Hu K, Xie Y, Wu C, Frei UK, Lübberstedt T (2020) Genetic variation of seedling traits responded to brassinosteroid and gibberellin inhibitors in maize (Zea mays) doubled haploid lines. Plant Breed 139:870–882. https://doi.org/10.1111/pbr.12845

    Article  CAS  Google Scholar 

  • Hu S, Sanchez DL, Wang C, Lipka AE, Yin Y, Gardner CAC, Lubberstedt T (2017) Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). Plant Sci 263:132–141

    Article  CAS  PubMed  Google Scholar 

  • Hussain B, Kha M, Ali Q, Shaukat S (2012) Double haploid production is the best method for genetic improvement and genetic studies of wheat. Int J Agro Vet Med Sci 6:216–228

    Google Scholar 

  • Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1:273–282

    Article  Google Scholar 

  • Isah T, Umar S (2020) Influencing in vitro clonal propagation of Chonemorpha fragrans (moon) Alston by culture media strength, plant growth regulators, carbon source and photo periodic incubation. J For Res 31:27–43

    Article  CAS  Google Scholar 

  • Jia Y, Zhang QX, Pan HT, Wang S-Q, Liu QL, Sun LX (2014) Callus induction and haploid plant regeneration from baby primrose (Primula forbesii Franch.) anther culture. Sci Hortic 176:273–281

    Article  CAS  Google Scholar 

  • Kantartzi SK, Roupakias DG (2009) In vitro gynogenesis in cotton (Gossypium sp.). Plant Cell Tiss Org Cult 96:53–57

    Article  Google Scholar 

  • Karakullukcu S, Abak K (1993) Studies on anther culture of eggplant. II. Effects of sugars and growth regulators. Turk J Agric For 17:811–820

    CAS  Google Scholar 

  • Karkour L, Fenni M, Ramla D, Gaad D, Benbelkacem A (2019) Evaluation of agronomic performances of rainfed barley double-haploids (dhs) lines under semi-arid conditions. Biodiversitas J Biol Divers 20:1398–1408

    Google Scholar 

  • Kawano M, Yahata M, Shimizu T, Honsho C, Hirano T, Kunitake H (2020) Production of doubled-haploid (DH) selfed-progenies in ‘Banpeiyu’pummelo [Citrus maxima (Burm.) Merr.] and its genetic analysis with simple sequence repeat markers. Sci Hortic 277:109782

    Article  Google Scholar 

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109. https://doi.org/10.1038/nature20827

    Article  CAS  PubMed  Google Scholar 

  • Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292

    Article  CAS  PubMed  Google Scholar 

  • Koleva-Gudeva LR, Spasenoski M, Trajkova F (2007) Somatic embryogenesis in pepper anther culture: the effect of incubation treatments and different media. Sci Hortic 111:114–119

    Article  CAS  Google Scholar 

  • Kumar KR, Singh KP, Raju D, Bhatia R, Panwar S (2020a) Maternal haploid induction in African marigold (Tagetes erecta L.) through in vitro culture of un-fertilized ovules. Plant Cell Tiss Org Cult 3:1–16

    Google Scholar 

  • Kumar S, Jindal S, Sarao N, Dhaliwal M (2020b) Callus induction and plant regeneration of tomato through anther culture. Veg Sci 47:23–27

    Google Scholar 

  • Kumari M, Clarke HJ, Small I, Siddique KHM (2009) Albinismin plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Crit Rev Plant Sci 28:393–409

    Article  CAS  Google Scholar 

  • Kumlehn J, Brettschneider R, Lörz H, Kranz E (1997) Zygote implantation to cultured ovules leads to direct embryogenesis and plant regeneration of wheat. Plant J 12:1473–1479

    Article  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lantos C, Bóna L, Boda K, Pauk J (2014) Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (X Triticosecale wittmack) for androgenic parameters. Euphytica 197:27–37

    Article  CAS  Google Scholar 

  • Li H, Singh RP, Braun H, Pfeiffer WH, Wang J (2013) Doubled haploids versus conventional breeding in CIMMYT wheat breeding programs. Crop Sci 53:74–83. https://doi.org/10.2135/cropsci2012.02.0116

    Article  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luitel BP, Kang WH (2013) In vitro androgenic response of minipaprika (Capsicum annuum L.) genotypes in different culture media. Hortic Environ Biotechnol 54:162–171

    Article  Google Scholar 

  • Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueno MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574

    Article  CAS  PubMed  Google Scholar 

  • Maharani A, Fanata WID, Laeli FN, Kim K-M, Handoyo T (2020) Callus induction and regeneration from anther cultures of Indonesian Indica black rice cultivar. J Crop Sci Biotech 23:21–28

    Article  Google Scholar 

  • Mahato A, Chaudhary H (2019) Auxin induced haploid induction in wide crosses of durum wheat. Cereal Res Comm 47:552–565

    Article  CAS  Google Scholar 

  • Makowska K, Kaluzniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R (2017) Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tiss Org Cult 131:247–257

    Article  CAS  Google Scholar 

  • Makowska K, Oleszczuk S (2014) Albinism in barley androgenesis. Plant Cell Rep 33:385–392

    Article  CAS  PubMed  Google Scholar 

  • Maraschin SF, Lamers GEM, de Pater BS, Spaink HP, Wang M (2003) 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. J Exp Bot 51:1033–1043

    Article  Google Scholar 

  • Maraschin SDF, De Priester W, Spaink HP, Wang M (2005a) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  CAS  PubMed  Google Scholar 

  • Maraschin SF, Vennik M, Lamers GEM, Spaink HP, Wang M (2005b) Time-lapse tracking of barley androgenesis reveals position determined cell death within pro-embryos. Planta 220:531–540

    Article  CAS  Google Scholar 

  • Mathapati GB, Kalia P, Islam S, Saini N, Kumar A, Khar A (2019) Influence of culture media and their compositions on haploid induction in Indian short day onion. Proc Natl Acad Sci, India Sect B: Biol Sci 89:739–746

    Article  Google Scholar 

  • McDonald MV, Ahgmad I, Menten JOM, Ingram DS (1991) Haploid culture and in vitro mutagenesis (UV light, X-rays, and gamma rays) of rapid cycling Brassica napus for improved resistance to disease. Plant Mutat Breed Crop Improve 2:129–138

    Google Scholar 

  • Melchinger AE, Technow F, Dhillon BS (2011) Gene stacking strategies with doubled haploids derived from biparental crosses: theory and simulations assuming a finite number of loci. Theor Appl Genet 123:1269–1279

    Article  PubMed  Google Scholar 

  • Metwally E, Moustafa S, El-Sawy B, Haroun S, Shalaby T (1998) Production of haploid plants from in vitro culture of unpollinated ovules of Cucurbita pepo. Plant Cell Tissue Organ Cult 52:117–121

    Article  CAS  Google Scholar 

  • Muren RC (1989) Haploid plant induction from unpollinated ovaries in onion. Hort Sci 24:833–834

    Google Scholar 

  • Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding. In: Abdurakhmonov (ed) Plant breeding. Intech, Rijeka, pp 87–106

    Google Scholar 

  • Na H, Kim BS, Kim J (2019) Anther-derived callus induction based on culture medium, myo-inositol, AgNO3 and Fe-EDTA in ‘Seolhyang’ strawberries. J Plant Breed Crop Sci 11:26–32

    Article  CAS  Google Scholar 

  • Nagmani R, Bonga J (1985) Embryogenesis in subcultured callus of Larix decidua. Canadian J Fore Res 15:1088–1091

    Article  Google Scholar 

  • Niroula RK, Bimb HP, Thapa DB, Sah BP, Nayak S (2007) Production of haploid wheat plants from wheat (Triticumaestivum L.) x maize (Zea mays L.) cross system. Himal J Sci 4:65–69

    Google Scholar 

  • Niu Z, Jiang A, Abu Hammad W, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM (2014) Review of doubled haploid production in durum and common wheat through wheat maize hybridization. Plant Breed 133:313–320

    Article  CAS  Google Scholar 

  • Nowaczyk L, Nowaczyk P, Olszewska D (2016) Treating donor plants with 2, 4-dichlorophenoxyacetic acid can increase the effectiveness of induced androgenesis in Capsicum spp. Sci Hortic 205:1–6

    Article  CAS  Google Scholar 

  • Obert B, Szabo L, Mityko J, Pretova A, Barnabas B (2005) Morphological events in cultures of mechanically isolated maize mcirospores. In Vitro Cell Dev Bio Plant 41:775–782. https://doi.org/10.1079/ivp2005701

    Article  Google Scholar 

  • Ohnoutková L, Vlčko T (2020) Homozygous transgenic barley (Hordeum vulgare L.) plants by anther culture. Plants 9:918–929

    Article  PubMed Central  Google Scholar 

  • Oleszczuk S, Tyrka M, Zimny J (2014) The origin of clones among androgenic regenerants of hexaploid triticale. Euphytica 198:325–336

    Article  CAS  Google Scholar 

  • Oleszczuk S, Zimny J, Rabiz-Swider J, Lukaszewski AJ (2011) Aneuploidy among androgenic progeny of hexaploid triticale (×Triticosecale Wittmack). Plant Cell Rep 30:575–586

    Article  CAS  PubMed  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Pasternak T, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, van Onckelen H, Dudits D, Feher A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa (Medicago sativa L.). Plant Physiol 129:1807–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pekar JJ, Murray SC, Isakeit TS, Scully BT, Guo B, Knoll JE, Ni X, Abbas HK, Williams P, Xu W (2019) Evaluation of elite maize inbred lines for reduced Aspergillus flavus infection, aflatoxin accumulation, and agronomic traits. Crop Sci 59:2562–2571

    Article  Google Scholar 

  • Perera PI, Hocher V, Verdeil J-L, Bandupriya H, Yakandawala D, Weerakoon LK (2008) Androgenic potential in coconut (Cocos nucifera L.). Plant Cell Tiss Org Cult 92:293–302

    Article  CAS  Google Scholar 

  • Perry SE, Lehti MD, Fernandez DE (1999) The MADS-domain protein AGAMOUS-like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol 120:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polsoni L, Kott LS, Beversdorf WD (1988) Large-scale microspore culture technique for mutation–selection studies in Brassica napus. Can J Bot 66:1681–1685

    Article  Google Scholar 

  • Prem D, Solís MT, Bárány I, Sanz HR, Risueno MC, Testillano P (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol 12:127–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Premvaranon P, Vearasilp S, S-n T, Karladee D, Gorinstein S (2011) In vitro studies to produce double haploid in Indica hybrid rice. Biologia 66:1074–1081

    Article  CAS  Google Scholar 

  • Pretova A, Williams E (1986) Direct somatic embryogenesis from immature zygotic embryos of flax (Linumusitatissimum L.). J Plant Physiol 126:155–161

    Article  CAS  Google Scholar 

  • Raghavan V (1990) From microspore to embryo: faces of the angiosperm pollen grain. In: Nijkamp HJJ, van der Plas LH, van Hartrigik J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 213–221

    Chapter  Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Marimuthu MPA, Tan EH, Maheshwari S, Henry IM, Marin-Rodriguez B et al (2014) A haploid genetics tool box for Arabidopsis thaliana. Nat Commun 5:5334. https://doi.org/10.1038/ncomms6334

    Article  CAS  PubMed  Google Scholar 

  • Razdan A, Razdan MK, Rajam MV, Raina SN (2008) Efficient protocol for in vitro production of androgenic haploids of Phlox drummondii. Plant Cell Tiss Org Cult 95:245–250

    Article  Google Scholar 

  • Ren J, Wu P, Trampe B, Tian X, Lubberstedt T, Chen S (2017) Novel technologies in doubled haploid line development. Plant Biotechnol J 15:1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds TL, Crawford RL (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothione in transcript during pollen embryogenesis in bread wheat (Triticum aestivum L.). Plant Mol Biol 32:823–826

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, Seguí-Simarro JM (2017) Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica 213:89–103

    Article  Google Scholar 

  • Rivas-Sendra A, Corral-Martínez P, Camacho-Fernández C, Porcel R, Seguí-Simarro JM (2020) Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes. Euphytica 216:1–15

    Article  Google Scholar 

  • Sakina A, Mir S, Najeeb S, Zargar SM, Nehvi FA, Rather ZA, Salgotra RK, Shikari AB (2020) Improved protocol for efficacious in vitro androgenesis and development of doubled haploids in temperate japonica rice. PLoS One 15(11):1–18

    Article  Google Scholar 

  • Salas P, Prohens J, Segui-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274

    Article  CAS  Google Scholar 

  • Salas P, Rivas-Sendra A, Prohens J, Segui-Simarro JM (2012b) Influence of the stage for anther. Euphytica 184:235–250

    Article  Google Scholar 

  • Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012a) Excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184:235–250

    Article  Google Scholar 

  • Sangwan RS, Sangwan-Norreel BS (1990) Anther and pollen culture. In: Bhojwani SS (ed) Plant tissue culture: application and limitation. Development in crop science, vol 19. Elsevier, Amsterdam, pp 220–241

    Chapter  Google Scholar 

  • Sangwan-Norreel BS, Sangwan RS, Paré J (1986) Haploïdieetembryogenèseprovoquée in vitro. Bulletin de la Société Botanique de France. Actualités Botaniques 133:7–39

    Google Scholar 

  • Schmidt EDL, Guzzo F, Toonen MAJ, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    Article  CAS  PubMed  Google Scholar 

  • Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hortic 115:1–6

    Article  Google Scholar 

  • Shon TK, Kim SK, Acquah D, Lee SC (2004) Haploid plantlet production through somatic embryogenesis in anther-derived callus of Bupleurum falcatum. Plant Prod Sci 7:204–211

    Article  Google Scholar 

  • Shtereva LA, Zagorska N, Dimitrov B, Kruleva M, Oanh H (1998) Induced androgenesis in tomato (Lycopersicon esculentum mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18:312–317

    Article  CAS  PubMed  Google Scholar 

  • Slama-Ayed O, Slim-Amara H (2007) Production of doubled haploids in durum wheat (Triticum durum Desf.) through culture of unpollinated ovaries. Plant Cell Tiss Org Cult 91:125–133

    Article  Google Scholar 

  • Ślusarkiewicz-Jarzina A, Pudelska H, Woźna J, Pniewski T (2017) Improved production of doubled haploids of winter and spring triticale hybrids via combination of colchicine treatments on anthers and regenerated plants. J Appl Genet 58:287–295

    Article  PubMed  PubMed Central  Google Scholar 

  • Song H, Lou QF, Luo XD, Wolukau JN, Diao WP, Qian CT, Chen JF (2007) Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell Tiss Org Cult 90:245–254

    Article  CAS  Google Scholar 

  • Sorntip A, Poolsawat O, Kativat C, Tantasawat PA (2017) Gynogenesis and doubled haploid production from unpollinated ovary culture of cucumber (Cucumis sativus L.). Can J Plant Sci 98:353–361

    Google Scholar 

  • Sriskandarajah S, Sameri M, Lerceteau-Kohler E, Westerbergh A (2015) Increased recovery of green doubled haploid plants from barley anther culture. Crop Sci 55:2806–2812

    Article  CAS  Google Scholar 

  • Sudhersan C, Manuel SJ, Al-Sabah L (2008) Haploid plant production from pollen grains of Sturt’s desert pea via somatic embryogenesis. American-Eurasian J Sci Res 3:44–47

    CAS  Google Scholar 

  • Sunderland N (1971) Anther culture: a progress report. Sci Prog (Oxford) 59:527–549

    Google Scholar 

  • Sunderland N, Dunwell JM (1977) Anther and pollen culture. In: Street HE (ed) Plant tissue and cell culture. Blackwell, Oxford, pp 223–265

    Google Scholar 

  • Swanson EB, Coumans MP, Brown GL, Patel JD, Beversdorf WD (1988) The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep 7:83–87

    Article  CAS  PubMed  Google Scholar 

  • Tosca A, Arcara L, Frangi P (1999) Effect of genotype and season on gynogenesis efficiency in Gerbara. Plant Cell Tiss Org Cult 59:77–80

    Article  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Van Geyt J, Speckmann GJ, Halluin KD, Jacobes M (1987) In vitro induction of haploid plants from unpollinated ovules and ovaries of the sugar beet (Beta vulgaris L.). Theor Appl Genet 73:920–925

    Article  PubMed  Google Scholar 

  • Venancio SS, Ortiz RP, Prieto JC, Islas SO, Saldivar SS, Lara SG, Ibarra AT, Rojas NP (2019) Identification of superior doubled haploid maize (Zea mays) inbred lines derived from high oil content subtropical populations. Maydica 64:1–11

    Google Scholar 

  • Van Aderkas P, Bonga J (1988) Formation of haploid embryoids of Larix decidua: early embryogenesis. Am J Bot 75:690–700

    Article  Google Scholar 

  • Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12:597–602

    Article  PubMed  Google Scholar 

  • Wang GF, Qin HY, Sun D, Fan ST, Yang YM, Wang ZX, Xu PL, Zhao Y, Liu YX, Ai J (2018) Haploid plant regeneration from hardy kiwifruit (Actinidia arguta planch.) anther culture. Plant Cell Tiss Org Cult 134(1):15–28

    Article  CAS  Google Scholar 

  • Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas GG (2009) Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 1–34

    Google Scholar 

  • Wędzony M, Żur I, Krzewska M, Dubas E, Szechyńska-Hebda M, Wąsek I (2015) Doubled haploids in triticale. In: Eudes F (ed) Triticale. Springer, Cham, pp 111–128. https://doi.org/10.1007/978-3-319-22551-7_6

    Chapter  Google Scholar 

  • Wenzel G, Frei U, Jahoor A, Graner A, Foroughghi-Wehr B (1995) Haploids-an integral part of applied and basic research. In: Terzi M et al (eds) Current issues in plant molecular and cellular biology. Kluwer, Dordrecht, pp 127–135

    Chapter  Google Scholar 

  • Woodward B, Puonti-Kaerlas J (2001) Somatic embryogenesis from floral tissue of cassava (Manihot esculenta Crantz). Euphytica 120:1–6

    Article  Google Scholar 

  • Yarali F, Yanmaz R (2017) The effects of plant growth regulators on in vitro gynogenic embryo formation in onion (Allium cepa L.). Afr J Biotechnol 16:1977–1983

    Article  CAS  Google Scholar 

  • Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus L. cv. Topas. I. Histo-differentiation. Int J Plant Sci 157:27–39

    Article  Google Scholar 

  • Yu F, Park S, Rodermel SR (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J 37:864–876

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Su Y, Liu Y, Li Z, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H, Sun P (2015) Chromosome doubling of microspore-derived plants from cabbage (Brassica oleracea var. capitata L.) and broccoli (Brassica oleracea var. italica L.). Front Plant Sci 6:1118–1128

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagorska N, Dimitrov B (1995) Induced androgenesis in alfalfa (Medicago sativa L.). Plant Cell Rep 14:249–252

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  CAS  Google Scholar 

  • Zhang C-L, Chen D-F, Elliott MC, Slater A (2001) Thidiazuron-induced organogenesis and somatic embryogenesis in sugar beet (Beta vulgaris L.). In Vitro Cell Dev Biol-Plant 37:305–310

    Article  CAS  Google Scholar 

  • Ziauddin A, Kasha KJ (1990) Long term callus cultures of diploid barley (Hordeum vulgare L.) II. Effect of auxins on chromosome status of cultures and regeneration of plants. Euphytica 48:279–286

    Article  CAS  Google Scholar 

  • Zielinski K, Krzewska M, Zur I, Juzon K, Kopec P, Nowicka A, Moravcikova J, Skrzypek E, Dubas E (2020) The effect of glutathione and mannitol on androgenesis in anther and isolated microspore cultures of rye (Secale cereale L.). Plant Cell Tiss Org Cult 140:577–592

    Article  CAS  Google Scholar 

  • Żur I, Dubas E, Golemiec E, Szechyńska-Hebda M, Janowiak F, Wędzony M (2008) Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale. Plant Cell Tiss Org Cult 94:319–328

    Article  Google Scholar 

Download references

Acknowledgement

The authors Awadhesh Kumar Mishra (AKM) and Rajesh Saini (RS) wish to thank University Grants Commission (UGC), New Delhi for fellowship supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Nath Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.K., Saini, R., Tiwari, K.N. (2021). Double Haploid Production and Its Applications in Crop Improvement. In: Kumar Srivastava, D., Kumar Thakur, A., Kumar, P. (eds) Agricultural Biotechnology: Latest Research and Trends . Springer, Singapore. https://doi.org/10.1007/978-981-16-2339-4_4

Download citation

Publish with us

Policies and ethics