Skip to main content
Log in

Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Notwithstanding the importance of eggplant in global horticulture, doubled haploid production in this species is still far from being efficient. Although acknowledged to have a role in the efficiency of androgenesis induction, factors such as the growth conditions of donor plant or the in vitro culture environment have not been deeply explored or not explored at all in eggplant, which leaves room for further improvement. In this work, we investigated the effects of different in vivo and in vitro parameters on the androgenic performance of different eggplant genotypes, including two hybrids and a DH line. The in vivo parameters included the exposure of donor plants to different temperature and light conditions and to increased levels of boron. The in vitro parameters included the use of different concentrations of NLN medium components, sucrose and growth regulators, and the suspension of microspores at different densities. Our results showed that whereas greenhouse temperature variations or boron application did not to have a positive influence, greenhouse lighting influenced their viability, thereby conditioning the embryogenic response. Changes in different sucrose, salts and hormone levels had different effects in the genotypes studied, which correlated with their genetic constitution. Finally, we determined the best microspore density, different from that previously proposed. Our work shed light on the role of different factors involved in eggplant microspore cultures, some of them not yet studied, contributing to make microspore culture a more efficient tool in eggplant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi MR, Corral-Martinez P, Mousavi A, Salmanian AH, Moieni A, Seguí-Simarro JM (2009) An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol Plant 31:1313–1317

    Google Scholar 

  • Aulinger IE (2002) Combination of in vitro androgenesis and biolistic transformation: an approach for breeding transgenic maize (Zea mays L.) lines. Swiss Federal Institute of Technology, Zurich, p 115

    Google Scholar 

  • Borderies G, le Bechec M, Rossignol M, Lafitte C, Le Deunff E, Beckert M, Dumas C, Matthys-Rochon E (2004) Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development. Eur J Cell Biol 83:205–212

    CAS  PubMed  Google Scholar 

  • Bueno MA, Gómez A, Sepúlveda F, Seguí-Simarro JM, Testillano PS, Manzanera JA, Risueño MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160:953–960

    CAS  PubMed  Google Scholar 

  • Camacho-Fernández C, Hervás D, Rivas-Sendra A, Marín MP, Seguí-Simarro JM (2018) Comparison of six different methods to calculate cell densities. Plant Methods 14:30

    PubMed  PubMed Central  Google Scholar 

  • Chambonnet D (1988) Production of haploid eggplant plants. Bulletin interne de la Station d’Amélioration des Plantes Maraichères d’Avignon-Montfavet, France, pp 1–10

  • Corral-Martínez P, Seguí-Simarro JM (2012) Efficient production of callus-derived doubled haploids through isolated microspore culture in eggplant (Solanum melongena L.). Euphytica 187:47–61

    Google Scholar 

  • Corral-Martínez P, Seguí-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195:369–382

    Google Scholar 

  • Custers J (2003) Microspore culture in rapeseed (Brassica napus L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 185–193

    Google Scholar 

  • Dunwell JM (1976) A comparative study of environmental and developmental factors which influence embryo induction and growth in cultured anthers of Nicotiana tabacum. Environ Exp Bot 16:109–118

    Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    CAS  PubMed  Google Scholar 

  • Dutta SS, Pale G, Pattanayak A, Aochen C, Pandey A, Rai M (2017) Effect of low light intensity on key traits and genotypes of hilly rice (Oryza sativa) germplasm. J Exp Biol Agric Sci 5:463–471

    CAS  Google Scholar 

  • Esteves P, Clermont I, Marchand S, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33:871–879 (in press)

    CAS  PubMed  Google Scholar 

  • Gaillard A, Vergne P, Beckerte M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10:55–58

    CAS  PubMed  Google Scholar 

  • Höfer M (2004) In vitro androgenesis in apple—improvement of the induction phase. Plant Cell Rep 22:365–370

    PubMed  Google Scholar 

  • Jouannic S, Champion A, Seguí-Simarro JM, Salimova E, Picaud A, Tregear J, Testillano P, Risueno MC, Simanis V, Kreis M, Henry Y (2001) The protein kinases AtMAP3Kepsilon1 and BnMAP3Kepsilon1 are functional homologues of S. pombe cdc7p and may be involved in cell division. Plant J 26:637–649

    CAS  PubMed  Google Scholar 

  • Kim M, Jang I-C, Kim J-A, Park E-J, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434

    CAS  PubMed  Google Scholar 

  • Kim M, Park E-J, An D, Lee Y (2013) High-quality embryo production and plant regeneration using a two-step culture system in isolated microspore cultures of hot pepper (Capsicum annuum L.). Plant Cell Tissue Organ Cult 112:191–201

    CAS  Google Scholar 

  • Lantos C, Juhasz AG, Vagi P, Mihaly R, Kristof Z, Pauk J (2012) Androgenesis induction in microspore culture of sweet pepper (Capsicum annuum L.). Plant Biotechnol Rep 6:123–132

    Google Scholar 

  • Liu L, Huang L, Li Y (2013) Influence of boric acid and sucrose on the germination and growth of areca pollen. Am J Plant Sci 4:1669–1674

    CAS  Google Scholar 

  • Miyoshi K (1996) Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L). Plant Cell Rep 15:391–395

    CAS  PubMed  Google Scholar 

  • Paire A, Devaux P, Lafitte C, Dumas C, Matthys-Rochon E (2003) Proteins produced by barley microspores and their derived androgenic structures promote in vitro zygotic maize embryo formation. Plant Cell Tissue Organ Cult 73:167–176

    CAS  Google Scholar 

  • Parra-Vega V, Seguí-Simarro JM (2013) Improvement of an isolated microspore culture protocol for Spanish sweet pepper (Capsicum annuum L.). In: Lanteri S, Rotino GL (eds) Breakthroughs in the genetics and breeding of Capsicum and Eggplant. Universita degli Studi di Torino, Torino, Italy, pp 161–168

    Google Scholar 

  • Peñaloza P, Toloza P (2018) Boron increases pollen quality, pollination, and fertility of different genetic lines of pepper. J Plant Nutr 41:969–979

    Google Scholar 

  • Rivas-Sendra A, Corral-Martínez P, Camacho-Fernández C, Seguí-Simarro JM (2015) Improved regeneration of eggplant doubled haploids from microspore-derived calli through organogenesis. Plant Cell Tissue Organ Cult 122:759–765

    Google Scholar 

  • Rivas-Sendra A, Calabuig-Serna A, Seguí-Simarro JM (2017a) Dynamics of calcium during in vitro microspore embryogenesis and in vivo microspore development in Brassica napus and Solanum melongena. Front Plant Sci 8:1177

    PubMed  PubMed Central  Google Scholar 

  • Rivas-Sendra A, Campos-Vega M, Calabuig-Serna A, Seguí-Simarro JM (2017b) Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica 213:89

    Google Scholar 

  • Rivas-Sendra A, Corral-Martínez P, Porcel R, Camacho-Fernández C, Calabuig-Serna A, Seguí-Simarro JM (2019) Embryogenic competence of microspores is associated with their ability to form a callosic, osmoprotective subintinal layer. J Exp Bot 70:1267–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robert HS, Grunewald W, Sauer M, Cannoot B, Soriano M, Swarup R, Weijers D, Bennett M, Boutilier K, Friml J (2015) Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 142:702–711

    CAS  PubMed  Google Scholar 

  • Rotino GL (1996) Haploidy in eggplant. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants. Kluwer Academic Publishers, Dordrecht, pp 115–141

    Google Scholar 

  • Salas P, Prohens J, Seguí-Simarro JM (2011) Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica 182:261–274

    CAS  Google Scholar 

  • Salas P, Rivas-Sendra A, Prohens J, Seguí-Simarro JM (2012) Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica 184:235–250

    Google Scholar 

  • Satpute G, Long H, Seguí-Simarro JM, Risueño MC, Testillano PS (2005) Cell architecture during gametophytic and embryogenic microspore development in Brassica napus. Acta Physiol Plant 27:665–674

    Google Scholar 

  • Saxena N, Johansen C (1987) Adaptation of chickpea and pigeonpea to abiotic stresses. Proceedings of the consultants’ workshop held at ICRISAT Center, India, 19–21 December 1984, ICRISAT, Patancheru, India

  • Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Google Scholar 

  • Seguí-Simarro JM (2016) Androgenesis in solanaceae. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis. Springer, New York, pp 209–244

    Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore-derived embryogenesis. Physiol Plant 134:1–12

    PubMed  Google Scholar 

  • Seguí-Simarro JM, Corral-Martínez P, Parra-Vega V, González-García B (2011) Androgenesis in recalcitrant solanaceous crops. Plant Cell Rep 30:765–778

    PubMed  Google Scholar 

  • Sinha R, Eudes F (2015) Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tissue Organ Cult 122(1):227–237

    CAS  Google Scholar 

  • Supena EDJ, Suharsono S, Jacobsen E, Custers JBM (2006) Successful development of a shed-microspore culture protocol for doubled haploid production in Indonesian hot pepper (Capsicum annuum L.). Plant Cell Rep 25:1–10

    CAS  PubMed  Google Scholar 

  • Touraev A, Heberle-Bors E (2003) Anther and microspore culture in tobacco. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 223–228

    Google Scholar 

  • Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant Cell Rep 15:561–565

    CAS  PubMed  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215

    Google Scholar 

  • Tsay H-S (1981) Effects of nitrogen supply to donor plants on pollen embryogenesis in cultured tobacco anthers. J Agric Res China 30:5–13

    Google Scholar 

  • Tsay H-S (1982) Microspore development and haploid embryogenesis of anther culture with five nitrogen doses to the donor tobacco plants. J Agric Res China 31:1–13

    Google Scholar 

  • Tuberosa R, Sanguineti MC, Toni B, Cioni F (1987) Ottenimento di aploidi in melanzana (Solanum melongena L.) mediante coltura di antere. Sementi Elette 3:9–14

    Google Scholar 

  • Żur I, Dubas E, Krzewska M, Janowiak F (2015) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:424

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant AGL2017-88135-R to JMSS from Spanish MICINN, respectively, jointly funded by FEDER. ARS and CCF were supported by predoctoral fellowships from the FPI Programs of Universitat Politècnica de València and Generalitat Valenciana, respectively.

Author information

Authors and Affiliations

Authors

Contributions

JMSS designed the work. PCM, ARS, RP and CCM performed the experiments. JMSS and ARS wrote the manuscript.

Corresponding author

Correspondence to Jose M. Seguí-Simarro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas-Sendra, A., Corral-Martínez, P., Camacho-Fernández, C. et al. Effects of growth conditions of donor plants and in vitro culture environment in the viability and the embryogenic response of microspores of different eggplant genotypes. Euphytica 216, 167 (2020). https://doi.org/10.1007/s10681-020-02709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02709-4

Keywords

Navigation