Skip to main content

Interactions Between Edaphoclimatic Conditions and Plant–Microbial Inoculants and Their Impacts on Plant Growth, Nutrient Uptake, and Yields

  • Chapter
  • First Online:
Advances in the Domain of Environmental Biotechnology

Abstract

Microorganisms play essential roles in regulating the ecosystem. Several interactions occur between plants and their associated rhizobacteria, cyanobacteria, and/or mycorrhizal fungi, which result in better plant growth. This chapter presents general aspects regarding interactions between edaphoclimatic conditions and plant–microbial inoculants and their impacts on plant growth, nutrient uptake, and yields. The different roles of the arbuscular mycorrhiza fungi (AMF) and plant-growth-promoting microbes (PGPM) are highlighted. Although the presented data demonstrated the remarkable abilities of these microorganisms, there is still much to be done on both explorations as well as the implementation of PGPM. Single microorganism inoculants, as well as formulations, have been proved to significantly increase crop production at a very low cost when compared to chemical fertilizers. Exploration that involves the understanding of the mechanism and at the same time implementation needs to take care of a great deal of optimization on field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Bano A, Fatima M (2010) Higher soybean yield by inoculation with N-fixing and P-solubilizing bacteria. Agron Sustain Dev 30:487–495

    Article  CAS  Google Scholar 

  • Ahmad M et al (2018) Perspectives of microbial inoculation for sustainable development and environmental management. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02992

  • Ahmed M, Stal LJ, Hasnain S (2010) Association of non-heterocystous cyanobacteria with crop plants. Plant Soil 336:363–375

    Article  CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Temprano FJ (2009) Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain. Eur J Agron 30:205–211

    Article  Google Scholar 

  • Allison FE, Hoover SR, Morris HJ (1937) Physiological studies with the nitrogen-fixing alga, Nostoc muscorum. Bot Gaz 98:433–463

    Article  CAS  Google Scholar 

  • Al-Niemi TS, Kahn ML, McDermott TR (1997) P metabolism in the bean-Rhizobium tropici symbiosis. Plant Physiol 113:1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaral HF, Lucas WG (2019) Are there soybean productivity increases and profitability in the association between nitrogen fertilization in the "seeding" and Bradyrhizobium inoculation? (Há aumento da produtividade da soja e rentabilidade na associação entre adubação nitrogenada na "semeadura" e inoculação com Bradyrhizobium?). In: ACd O, Tullio L (eds) Características do Solo e sua Interação com as Plantas, vol 2. Atena Editora, Belo Horizonte, pp 130–138. https://doi.org/10.22533/at.ed.17819171015

    Chapter  Google Scholar 

  • Andrade D, Colozzi Filho A (2014) Microalgae of continental waters volume 2: production of biomass and co-products Microalgas de águas continentais, vol 2. produção de biomassa e coprodutos

    Google Scholar 

  • Andrade DS, Colozzi Filho A, Giller KE (2003) The soil microbial community and soil tillage. In: Titi AE (ed) Soil tillage in agroecosystem. Advances in Agroecology. CRC Press LLC, Boca Raton, pp 51–81

    Google Scholar 

  • Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus-Nodulating Rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68:4025–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Argaw A, Akuma A (2015) Rhizobium leguminosarum bv. Viciae sp. inoculation improves the agronomic efficiency of N of common bean (Phaseolus vulgaris L.). Environ Syst Res 4:11

    Article  Google Scholar 

  • Armendariz AL, Talano MA, Nicotra MFO, Escudero L, Breser ML, Porporatto C, Agostini E (2019) Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem 138:26–35

    Article  CAS  PubMed  Google Scholar 

  • Arya N, Rana A, Rajwar A, Sahgal M, Sharma AK (2018) Biocontrol efficacy of Siderophore producing indigenous Pseudomonas strains against Fusarium wilt in tomato. Natl Acad Sci Lett 41:133–136. https://doi.org/10.1007/s40009-018-0630-5

    Article  CAS  Google Scholar 

  • Backer R et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

    CAS  Google Scholar 

  • Barazetti AR, Simionato AS, Navarro MOP, Santos IM, Modolon F, Andreata MF, Liuti G, Cely MV, Chryssafidis AL, Dealis ML, Andrade F (2019) Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled and field conditions. Appl Soil Ecol 142:25–33. https://doi.org/10.1016/j.apsoil.2019.05.015

  • Barbosa T (2009) Cianobacterias tóxicas e processos de remoção. Universidade Federal de Minas Gerais, Belo Horizonte

    Google Scholar 

  • Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology. CRC press, Boca Raton

    Book  Google Scholar 

  • Basal O, Szabó A (2019) Inoculation enhances soybean physiology and yield under moderate drought. Life Int J Health Life-Sci 5:1–13

    Article  Google Scholar 

  • Bechtaoui N et al (2019) Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biol Open 8:bio043968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benemann JR, Weare N (1974) Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184:174–175

    Article  CAS  PubMed  Google Scholar 

  • Bergman B, Rai A, Rasmussen U (2007) Cyanobacterial associations. In: Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, Dordrecht, pp 257–301

    Chapter  Google Scholar 

  • Bhat M, Rasool R, Ramzan S (2019) Plant growth promoting rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci Agric 3:23–25

    Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2009) Elementos da natureza e propriedades dos solos. Bookman Editora, Porto Alegre

    Google Scholar 

  • Cakmakci R, Dönmez MF, Erdoğan Ü (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    CAS  Google Scholar 

  • Câmara GDS (2014) Biological fixation of nitrogen in soyabean. Informações Agronômicas 147:1–9

    Google Scholar 

  • Canbolat MY, Bilen S, Çakmakçı R, Şahin F, Aydın A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fertil Soils 42:350–357

    Article  CAS  Google Scholar 

  • Cardoso EJ, Nogueira MA, Zangaro W (2017) Importance of Mycorrhizae in tropical soils. In: Diversity and benefits of microorganisms from the tropics. Springer, Cham, pp 245–267

    Chapter  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cardoso JD, Gomes DF, Goes KCGP, Fonseca Junior NS, Dorigo OF, Hungria M, Andrade DS (2009) Relationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plants. Soil Biol Biochem 41:1760–1763. https://doi.org/10.1016/j.soilbio.2009.05.008

    Article  CAS  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20:283–290

    Article  CAS  PubMed  Google Scholar 

  • Cely MV et al (2016) Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front Microbiol 7:720

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Cissoko M et al (2018) Actinorhizal signaling molecules: Frankia root hair deforming factor shares properties with NIN inducing factor. Front Plant Sci 9:1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Dai L, Zhang G, Yu Z, Ding H, Xu Y, Zhang Z (2019) Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. Int J Mol Sci 20:2265

    Article  CAS  PubMed Central  Google Scholar 

  • Dey SK, Chakrabarti B, Prasanna R, Pratap D, Singh SD, Purakayastha TJ, Pathak H (2017) Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea crop. Arch Agron Soil Sci 63:1927–1937

    Article  CAS  Google Scholar 

  • Di Salvo LP, Cellucci GC, Carlino ME, de Salamone IEG (2018) Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Appl Soil Ecol 126:113–120

    Article  Google Scholar 

  • Döbereiner J (1997) Biological nitrogen fixation in the tropics: social and economic contributions. Soil Biol Biochem 29:771–774. https://doi.org/10.1016/S0038-0717(96)00226-X

    Article  Google Scholar 

  • Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of Nostoc. J Phycol 31:2–18

    Article  CAS  Google Scholar 

  • Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2019) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 59:1498–1513

    Article  CAS  PubMed  Google Scholar 

  • El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    Article  CAS  PubMed  Google Scholar 

  • Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv.‘elkoca-05’). J Plant Nutr 33:2104–2119

    Article  CAS  Google Scholar 

  • EL-Shinnawil M, El-Beltagy A, Ghazal F, HANFY WM, Salem GS (2016) Colonization of wheat roots (Triticum aestivum L.) by N2-fixing. Cyanobact J Arid Land Stud 26:161–165

    Google Scholar 

  • España M, Cabrera-Bisbal E, López M (2006) Study of nitrogen fixation by tropical legumes in acid soil from Venezuelan savannas using 15N. Interciencia 31:197–201

    Google Scholar 

  • Etesami H (2020) Enhanced phosphorus fertilizer use efficiency with microorganisms. In: Meena RS (ed) Nutrient dynamics for sustainable crop production. Springer, Cham, pp 215–245

    Chapter  Google Scholar 

  • Farbo MG et al (2018) Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int J Food Microbiol 284:1–10. https://doi.org/10.1016/j.ijfoodmicro.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1969) Cell differentiation and pigment composition in Anabaena cylindrica. Arch Microbiol 67:62–70

    CAS  Google Scholar 

  • Ferreira MC, Andrade DDS, Chueire LMDO, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637. https://doi.org/10.1016/S0038-0717(99)00189-3

    Article  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fishilevich E et al (2016) Use of chromatin remodeling ATPases as RNAi targets for parental control of western corn rootworm (Diabrotica virgifera virgifera) and Neotropical brown stink bug (Euschistus heros). Insect Biochem Mol Biol 71:58–71. https://doi.org/10.1016/j.ibmb.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  • Fleming H, Haselkorn R (1973) Differentiation in Nostoc muscorum: nitrogenase is synthesized in heterocysts. Proc Natl Acad Sci 70:2727–2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39

    Article  CAS  PubMed  Google Scholar 

  • Freire JRJ (1982) Research into the Rhizobium/leguminosae symbiosis. In: Nitrogen cycling in ecosystems of Latin America and the Caribbean, Plant and Soil, vol 67. Springer Science & Business Media, Cham, pp 227–239

    Chapter  Google Scholar 

  • Frey B, Kremer J, Rüdt A, Sciacca S, Matthies D, Lüscher P (2009) Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur J Soil Biol 45:312–320

    Article  Google Scholar 

  • Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2018) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45:328–339. https://doi.org/10.1071/FP17167

    Article  CAS  PubMed  Google Scholar 

  • Galindo FS et al (2019) Maize yield response to nitrogen rates and sources associated with Azospirillum brasilense. Agron J 111:1985–1997

    Article  CAS  Google Scholar 

  • Gavilanes FZ et al (2020) Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases grain yield of maize hybrids. Rhizosphere 15:100224. https://doi.org/10.1016/j.rhisph.2020.100224

    Article  Google Scholar 

  • Ghorchiani M, Etesami H, Alikhani HA (2018) Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric Ecosyst Environ 258:59–70

    Article  CAS  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39:103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x

    Article  PubMed  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CAB International, Oxon

    Book  Google Scholar 

  • Giller KE, Wilson KJ (1991) Nitrogen fixation in tropical cropping systems. CAB, Wallingford

    Google Scholar 

  • Goodfellow S, Zhang D, Wang M-B, Zhang R (2019) Bacterium-mediated RNA interference: potential application in plant protection. Plan Theory 8:572

    CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  CAS  Google Scholar 

  • Grover JP, Scott JT, Roelke DL, Brooks BW (2020) Dynamics of nitrogen-fixing cyanobacteria with heterocysts: a stoichiometric model. Mar Freshw Res 71:644–658

    Article  CAS  Google Scholar 

  • Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res 2:79–97

    Article  Google Scholar 

  • Hamdia MAE-S, Shaddad M, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Havugimana E, Bhople BS, Byiringiro E, MUGABO JP (2016) Role of dual inoculation of rhizobium and Arbuscular Mycorrhizal (AM) Fungi on pulse crops production. Walailak J Sci Technol 13:1–7

    Google Scholar 

  • van der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Peraza RA, Hamel C, Fernández F, Ferrer RL, Furrazola E (2011) Soil–strain compatibility: the key to effective use of arbuscular mycorrhizal inoculants? Mycorrhiza 21:183–193

    Article  PubMed  Google Scholar 

  • Hillel D (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Elsevier, Burlington

    Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Horácio EH, Zucareli C, Gavilanes FZ, Yunes JS, dos Santos Sanzovo AW, Andrade DS (2020) Co-inoculation of rhizobia, azospirilla and cyanobacteria for increasing common bean production Co-inoculação de rizobio, azospirillum e cianobactérias no aumento da produção de feijão comum Semina: Ciências Agrárias. Londrina 41:2015–2028

    Google Scholar 

  • Howieson J, Ballard R (2004) Optimising the legume symbiosis in stressful and competitive environments within southern Australia—some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun 1:1–7

    Article  CAS  Google Scholar 

  • Hungria M, Araujo RS, Silva Júnior EB, Zilli JÉ (2017) Inoculum rate effects on the soybean symbiosis in new or old fields under tropical conditions. Agron J 109:1106–1112. https://doi.org/10.2134/agronj2016.11.0641

    Article  Google Scholar 

  • Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. https://doi.org/10.1007/s11104-009-0262-0

    Article  CAS  Google Scholar 

  • Hungria M, Nogueira M, Araujo R (2015b) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817. https://doi.org/10.4236/ajps.2015.66087

    Article  CAS  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013a) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801

    Article  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013b) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801. https://doi.org/10.1007/s00374-012-0771-5

    Article  Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2015a) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817. https://doi.org/10.4236/ajps.2015.66087

    Article  CAS  Google Scholar 

  • Hungria M, Vargas MA (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164

    Article  Google Scholar 

  • Hyakumachi M, Kubota M (2003) Fungi as plant growth promoter and disease suppressor fungal biotechnology in agricultural. In: Arora DK (ed) Food and environmental application. Marcel Dekker, New York, pp 101–110

    Google Scholar 

  • IJdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    Article  CAS  PubMed  Google Scholar 

  • Itou Y, Okada S, Murakami M (2001) Two structural isomeric siderophores from the freshwater cyanobacterium Anabaena cylindrica (NIES-19). Tetrahedron 57:9093–9099

    Article  CAS  Google Scholar 

  • Jacob S, Sudini HK (2016) Indirect plant growth promotion in grain legumes: role of actinobacteria. In: Plant growth promoting Actinobacteria. Springer, Singapore, pp 17–32

    Chapter  Google Scholar 

  • Jadhav S, Talekar S (2020) Growth of soyabean [Glycine Max L.(Merr)] under the influence of blue green algal (BGA) biofertilizer BIOINFOLET. A Q J Life Sci 17:87–89

    Google Scholar 

  • Jäger K, Bartók T, Ördög V, Barnabás B (2010) Improvement of maize (Zea mays L.) anther culture responses by algae-derived natural substances. S Afr J Bot 76:511–516

    Article  CAS  Google Scholar 

  • Jayapala N, Mallikarjunaiah NH, Puttaswamy H, Gavirangappa H, Ramachandrappa NS (2019) Rhizobacteria Bacillus spp. induce resistance against anthracnose disease in chili (Capsicum annuum L.) through activating host defense response. Egypt J Biol Pest Control 29:45. https://doi.org/10.1186/s41938-019-0148-2

    Article  Google Scholar 

  • Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Develop 5:108–119

    Google Scholar 

  • Jiang C et al (2020) Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. Tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Mol Plant Pathol 21:854–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Liu J, Liu J, Huang X (2012) Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Sci China Life Sci 55:474–482

    Article  CAS  PubMed  Google Scholar 

  • Jing M et al (2019) Paddy system with a hybrid rice enhances cyanobacteria Nostoc and increases N2 fixation. Pedosphere 29:374–387

    Article  Google Scholar 

  • Jing X et al (2020) Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb Biotechnol 13:118–133

    Article  CAS  PubMed  Google Scholar 

  • Jishma P, Remakanthan A, Radhakrishnan E (2019) Engineering Rhizobacterial functions for the improvement of plant growth and disease resistance. In: Microbial interventions in agriculture and environment. Springer, Singapore, pp 451–469

    Chapter  Google Scholar 

  • Jolicoeur M, Williams R, Chavarie C, Fortin J, Archambault J (1999) Production of Glomus intraradices propagules, an arbuscular mycorrhizal fungus, in an airlift bioreactor. Biotechnol Bioeng 63:224–232

    Article  CAS  PubMed  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2009) Contribution of arbuscular mycorrhiza to soil quality in contrasting cropping systems. Agric Ecosyst Environ 134:36–45

    Article  Google Scholar 

  • Kang S-M et al (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2016) Plant growth promoting Rhizobacteria-an efficient tool for agriculture promotion. Adv Plants Agric Res 4:426–434

    Google Scholar 

  • Khan MA, Asaf S, Khan AL, Jan R, Kang S-M, Kim K-M, Lee I-J (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20:1–14

    Article  CAS  Google Scholar 

  • Khan MA et al (2019) Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings. Biomed Res Int 2019:1–15

    Google Scholar 

  • Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535

    Article  CAS  PubMed  Google Scholar 

  • Koch A et al (2016) An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery. PLoS Pathog 12:e1005901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00845

  • Kraemer SM, Duckworth OW, Harrington JM, Schenkeveld WD (2015) Metallophores and trace metal biogeochemistry. Aquat Geochem 21:159–195

    Article  CAS  Google Scholar 

  • Krolow R, Mistura C, Coelho R, Siewerdt L, Zonta B (2004) Effect of phosphorus and potassium on development and nodulation of three cool season annual legumes. Brazil J Anim Sci 33:2224–2230

    Google Scholar 

  • Kumar P, Patra JK, Chandra P (2018) Advances in microbial biotechnology: current trends and future prospects. CRC Press, Boca Raton

    Book  Google Scholar 

  • Lal M (2018) Sulfur, phosphorus and Iron metabolism in plants. In: Bhatla S, Lal M (eds) Plant physiology, development and metabolism. Springer Nature, Singapore, pp 481–515

    Chapter  Google Scholar 

  • Lana MDC, Dartora J, Marini D, Hann JE (2012) Inoculation with Azospirillum, associated with nitrogen fertilization in maize. Revista Ceres 59:399–405

    Article  CAS  Google Scholar 

  • Larkum AW (2020) Light-harvesting in cyanobacteria and eukaryotic algae: an overview. In: Photosynthesis in algae: biochemical and physiological mechanisms. Springer, Cham, pp 207–260

    Chapter  Google Scholar 

  • Latef AAHA, Alhmad MFA, Kordrostami M, Abo-Baker ABAE, Zakir A (2020) Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul 39:1–14

    CAS  Google Scholar 

  • Leggett M, Diaz-Zorita M, Koivunen M, Bowman R, Pesek R, Stevenson C, Leister T (2017) Soybean response to inoculation with Bradyrhizobium japonicum in the United States and Argentina. Agron J 109:1031–1038

    Article  Google Scholar 

  • Li H, Jiang X (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64:235–241

    Article  CAS  Google Scholar 

  • Liu K, Garrett C, Fadamiro H, Kloepper JW (2016) Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biol Control 99:8–13. https://doi.org/10.1016/j.biocontrol.2016.04.007

    Article  Google Scholar 

  • Loreto C, Rosales N, Bermúdez J, Morales E (2003) Producción de pigmentos y proteínas de la cianobacteria Anabaena PCC 7120 en relación a la concentración de nitrógeno e irradiancia. Gayana Botánica 60:83–89

    Article  Google Scholar 

  • Lu R, Maduro M, Li F, Li H, Broitman-Maduro G, Li W, Ding S (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436:1040–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • MAPA — Ministério da Agricultura PeA (2011) Instrução Normativa No 13, de 24 de março de 2011. Diário Oficial da União da República Federativa do Brasil, Brasilia

    Google Scholar 

  • Maqubela M, Mnkeni P, Issa OM, Pardo M, D’Acqui L (2009) Nostoc cyanobacterial inoculation in south African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315:79–92

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F, Marx J-C, Gerday C (2008) Psychrophiles: from biodiversity to biotechnology. Springer, Cham

    Book  Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Marshall, VG (2000) Impacts of forest harvesting on biological processes in northern forest soils. Forest Ecology and Management 133(1–2):43–60

    Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press, Amsterdam

    Google Scholar 

  • Martins MR et al (2018) Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15 N recovery by maize in a Cerrado Oxisol. Plant Soil 422:239–250

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer Academic Publishers, Dordrecht, p 849

    Book  Google Scholar 

  • Mercante FM, Otsubo AA, Brito OR (2017) New native rhizobia strains for inoculation of common bean in the Brazilian savanna. Rev Bras Ciênc Solo 41

    Google Scholar 

  • Mhatre PH et al (2019) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocatal Agric Biotechnol 17:119–128. https://doi.org/10.1016/j.bcab.2018.11.009

    Article  Google Scholar 

  • Moon M, Kim CW, Park W-K, Yoo G, Choi Y-E, Yang J-W (2013) Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii. Algal Res 2:352–357

    Article  Google Scholar 

  • Morad M, Sara S, Alireza E, Reza CM, Mohammad D (2013) Effects of seed inoculation by rhizobium strains on yield and yield components in common bean cultivars (Phaseolus vulgaris L.). Int J Biosci 3:134–141

    Article  Google Scholar 

  • Moretti LG, Lazarini E, Bossolani JW, Parente TL, Caioni S, Araujo RS, Hungria M (2018) Can additional inoculations increase soybean nodulation and grain yield? Agron J 110:715–721

    Article  CAS  Google Scholar 

  • Morris EK, Morris D, Vogt S, Gleber S-C, Bigalke M, Wilcke W, Rillig M (2019) Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J 13:1639–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosse B, Stribley D, LeTacon F (1981) Ecology of mycorrhizae and mycorrhizal fungi. In: Advances in microbial ecology. Springer, Berlin, pp 137–210

    Chapter  Google Scholar 

  • Munyanziza E, Kehri H, Bagyaraj D (1997) Agricultural intensification, soil biodiversity and agro-ecosystem function in the tropics: the role of mycorrhiza in crops and trees. Appl Soil Ecol 6:77–85

    Article  Google Scholar 

  • Muro-Pastor AM, Brenes-Álvarez M, Vioque A (2017) A combinatorial strategy of alternative promoter use during differentiation of a heterocystous cyanobacteria. Environ Microbiol Rep 9(4):449–458

    Article  CAS  PubMed  Google Scholar 

  • Myo EM, Liu B, Ma J, Shi L, Jiang M, Zhang K, Ge B (2019) Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol Control 134:23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017

    Article  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Naserirad H, Soleymanifard A, Naseri R (2011) Effect of integrated application of bio-fertilizer on grain yield, yield components and associated traits of maize cultivars. Am Eurasian J Agric Environ Sci 10:271–277

    Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Ndakidemi PA, Dakora FD, Nkonya EM, Ringo D, Mansoor H (2006) Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Aust J Exp Agric 46:571–577. https://doi.org/10.1071/EA03157

    Article  Google Scholar 

  • Nogueira COG, Oliveira DP, Ferreira PAA, Pereira JPDAR, Vale HMM, Andrade MJB, Moreira FMS (2017) Agronomic efficiency of Rhizobium strains from the Amazon region in common bean. Acta Amazôn 47:273–276

    Google Scholar 

  • Novo MDCDSS, Tanaka RT, Mascarenhas HAA, Bortoletto N, Gallo PB, Pereira JCVNA, Vargas ÁAT (1999) Nitrogênio e potássio na fixação simbiótica de N2 por soja cultivada no inverno. Sci Agric 56:143–156

    Article  Google Scholar 

  • Odoh CK (2017) Plant growth promoting rhizobacteria (PGPR): a bioprotectant bioinoculant for sustainable agrobiology. A review. Int J Adv Res Biol Sci 4:123–142

    Article  CAS  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197–197. https://doi.org/10.1007/s11274-017-2364-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A, Ventura S (2017) The current status of cyanobacterial nomenclature under the “prokaryotic” and the “botanical” code. Antonie Van Leeuwenhoek 110:1–13

    Article  CAS  Google Scholar 

  • Ozturk A, Caglar O, Sahin F (2003) Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J Plant Nutr Soil Sci 166:262–266

    Article  CAS  Google Scholar 

  • Pangesti N et al (2016) Jasmonic acid and ethylene signaling pathways regulate Glucosinolate levels in plants during Rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J Chem Ecol 42:1212–1225. https://doi.org/10.1007/s10886-016-0787-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel P, Shah R, Joshi B, Ramar K, Natarajan A (2019) Molecular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Colletotrichum falcatum. Biotechnol Rep 21:e00317. https://doi.org/10.1016/j.btre.2019.e00317

    Article  Google Scholar 

  • Patel VK, Sundaram S, Patel AK, Kalra A (2017) Characterization of seven species of cyanobacteria for high-quality biomass production Arabian. J Sci Eng 43:1–13

    Google Scholar 

  • Patra B, Singh J (2019) A review: usage of biofertilizer in cereal crops. Curr J Appl Sci Technol 36:1–8

    Article  CAS  Google Scholar 

  • Peng G, Zhao X, Li Y, Wang R, Huang Y, Qi G (2019) Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol Res 227:126297. https://doi.org/10.1016/j.micres.2019.126297

    Article  CAS  PubMed  Google Scholar 

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2009) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21:135–144

    Article  Google Scholar 

  • Pichardo S, Pflugmacher S (2011) Study of the antioxidant response of several bean variants to irrigation with water containing MC-LR and cyanobacterial crude extract. Environ Toxicol 26:300–306

    Article  CAS  PubMed  Google Scholar 

  • Pierik R, Tholen D, Poorter H, Visser EJ, Voesenek LA (2006) The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci 11:176–183

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, van Wees SC, Hoffland E, van Pelt JA, van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225. https://doi.org/10.1105/tpc.8.8.1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R et al (2016) Cyanobacteria-based bioinoculants influence growth and yields by modulating the microbial communities favourably in the rhizospheres of maize hybrids. Eur J Soil Biol 75:15–23

    Article  Google Scholar 

  • Ramond J-B, Tshabuse F, Bopda CW, Cowan DA, Tuffin MI (2013) Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench). Plant Soil 372:265–278

    Article  CAS  Google Scholar 

  • Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA (2020) Screening for novel biocontrol agents applicable in plant disease management – a review. Biol Control 144:104240. https://doi.org/10.1016/j.biocontrol.2020.104240

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, Bonilla R (2012) Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl Soil Ecol 61:264–272

    Article  Google Scholar 

  • Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard N-U, Sakuragi Y (2012) Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162:134–147

    Article  CAS  PubMed  Google Scholar 

  • Rufini M, Da Silva MAP, Ferreira PAA, de Souza Cassetari A, Soares BL, De Andrade MJB, de Souza Moreira FM (2014) Symbiotic efficiency and identification of rhizobia that nodulate cowpea in a Rhodic Eutrudox. Biol Fertil Soils 50:115–122

    Article  Google Scholar 

  • Ruiu L (2020) Plant-growth-promoting Bacteria (PGPB) against insects and other agricultural pests. Agronomy 10:861

    Article  CAS  Google Scholar 

  • Sainaz A, Ragaa A (2013) Effect of some red marine algae as biofertilizers on growth of maize (Zea mayz L.) plants international. Food Res J 20:1629–1632

    Google Scholar 

  • Salantur A, Ozturk A, Akten S (2006) Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria. Plant Soil Environ 52:111

    Article  Google Scholar 

  • Samago TY, Anniye EW, Dakora FD (2018) Grain yield of common bean (Phaseolus vulgaris L) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia. Symbiosis 75:245–255

    Article  PubMed  Google Scholar 

  • Sammauria R, Kumawat S, Kumawat P, Singh J, Jatwa TK (2020) Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch Microbiol 202:1–17

    Article  CAS  Google Scholar 

  • Santos M, Cerezini P, Kuwano B, Terassi F, Hungria M, Nogueira M (2014) Inibição da nodulação por N-mineral em soja. In: Embrapa Soja-Resumo em anais de congresso (ALICE). In: Encontro nacional de microbiologia ambiental, 14., João Pessoa, 2014 …,

    Google Scholar 

  • Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 9:205. https://doi.org/10.1186/s13568-019-0932-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Res 50:250–256

    CAS  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Sfredo GJ, Lantmann A (2007) Enxofre nutriente necessário para maiores rendimentos da soja Embrapa Soja-Circular Técnica. INFOTECA-E, Brasília

    Google Scholar 

  • Sfredo GJ, Oliveira MCND (2010) Soja: molibdênio e cobalto Embrapa Soja-Documentos. INFOTECA-E, Brasília

    Google Scholar 

  • Shariatmadari Z, Riahi H, Seyed Hashtroudi M, Ghassempour A, Aghashariatmadary Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutr 59:535–547

    Article  CAS  Google Scholar 

  • Sharif T, Khalil S, Ahmad S (2003) Effect of Rhizobium sp., on growth of pathogenic fungi under in vitro conditions. Pak J Biol Sci 6:1597–1599

    Article  Google Scholar 

  • Sharma S, Chen C, Navathe S, Chand R, Pandey SP (2019) A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci Rep 9:4054. https://doi.org/10.1038/s41598-019-40930-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Hu H, Peng H, Wang W, Zhang X (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sholkamy EN, El-Komy H, Al-Arfaj AA, Abdel-Megeed A, Mostafa AA (2012) Potential role of Nostoc muscorum and Nostoc rivulare as biofertilizers for the enhancement of maize growth under different doses of n-fertilizer. Afr J Microbiol Res 6:7435–7448

    Article  CAS  Google Scholar 

  • Siczek A, Horn R, Lipiec J, Usowicz B, Łukowski M (2015) Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions. Soil Tillage Res 153:175–184

    Article  Google Scholar 

  • Siczek A, Lipiec J (2011) Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil Tillage Res 114:50–56

    Article  Google Scholar 

  • Silva ER, Zoz J, Oliveira CES, Zuffo AM, Steiner F, Zoz T, Vendruscolo EP (2019) Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Arch Microbiol 201:325–335

    Article  CAS  PubMed  Google Scholar 

  • Silva I, Smyth T, Barros N, Novais R (2002) Physiological aspects of aluminum toxicity and tolerance in plants. Tópicos em ciência do solo 2:277–335

    Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Singh H, Reddy MS (2011) Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur J Soil Biol 47:30–34

    Article  CAS  Google Scholar 

  • Singh I (2018) Plant growth promoting Rhizobacteria (PGPR) and their various mechanisms for plant growth enhancement in stressful conditions: a review. Eur J Biol Res 8:191–213

    CAS  Google Scholar 

  • Soares BL et al (2016) Agronomic and economic efficiency of common-bean inoculation with rhizobia and mineral nitrogen fertilization. Rev Bras Ciênc Solo 40:e0150235

    Article  CAS  Google Scholar 

  • Soares MM (2013) Nodulação, nutrição, componentes de rendimento e qualidade de sementes de soja em função do recobrimento de sementes e parcelamento da adubação fosfatada

    Google Scholar 

  • Solomon T, Pant LM, Angaw T (2012) Effects of inoculation by Bradyrhizobium japonicum strains on nodulation, nitrogen fixation, and yield of soybean (Glycine max L. Merill) varieties on Nitisols of Bako. Western Ethiopia ISRN Agron 2012:261475. https://doi.org/10.5402/2012/261475

    Article  Google Scholar 

  • de Souza GK, Sampaio J, Longoni L, Ferreira S, Alvarenga S, Beneduzi A (2019) Soybean inoculants in Brazil: an overview of quality control. Braz J Microbiol 50:205–211. https://doi.org/10.1007/s42770-018-0028-z

    Article  CAS  PubMed  Google Scholar 

  • de Souza JEB, de Brito Ferreira EP (2017) Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla. Agric Ecosyst Environ 237:250–257

    Article  Google Scholar 

  • Souza LH, Novais RF, Alvarez VVH, Villani EMA (2010) Efeito do pH do solo rizosférico e não rizosférico de plantas de soja inoculadas com Bradyrhizobium japonicum na absorção de boro, cobre, ferro, manganês e zinco. Rev Bras Ciênc Solo 34:1641–1652

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438. https://doi.org/10.1101/cshperspect.a001438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley J, Preetha G (2016) Pesticide toxicity to non-target organisms. Springer, Berlin

    Book  Google Scholar 

  • Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (2013) The prokaryotes: a handbook on habitats, isolation and identification of bacteria. Springer Science & Business Media, Berlin

    Google Scholar 

  • Steiner F, Ferreira HCP, Zuffo AM (2019) Can co-inoculation of Rhizobium tropici and Azospirillum brasilense increase common bean nodulation and grain yield? Semina: Ciências Agrárias 40:81–98. https://doi.org/10.5433/1679-0359.2019v40n1p81

    Article  Google Scholar 

  • Stewart W (1971) Physiological studies on nitrogen-fixing blue-green algae. Plant Soil 35:377–391

    Article  Google Scholar 

  • Stoffel SCG, Soares C, Sousa aRF, Meyer E, Lovato PE, ilio GAJ (2020) Yield increase of soybean inoculated with a commercial arbuscular mycorrhizal inoculant in Brazil. Afr J Agric Res 16:702–713

    Google Scholar 

  • Suárez-Moreno ZR et al (2019) Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial Rice pathogens. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.00290

  • Sudeep K et al (2020) Production, characterization, and industrial application of pectinase enzyme isolated from fungal strains. Fermentation 6:59

    Article  CAS  Google Scholar 

  • Sueoka N (1960) Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 46:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Yields and economic benefits of soybean (Glycine max L.) as affected by Bradyrhizobium japonicum inoculation and phosphorus supplementation. Am J Res Commun 1:159–172

    Google Scholar 

  • Tariq M, Noman M, Ahmed T, Hameed A, Manzoor N, Zafar M (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:38–43

    Article  Google Scholar 

  • Tewari S, Pooniya V, Sharma S (2020) Next generation bioformulation prepared by amalgamating Bradyrhizobium, cell free culture supernatant, and exopolysaccharides enhances the indigenous rhizospheric rhizobial population, nodulation, and productivity of pigeon pea. Appl Soil Ecol 147:103363. https://doi.org/10.1016/j.apsoil.2019.103363

    Article  Google Scholar 

  • Tewari S, Sharma S (2020) Rhizobial-metabolite based biocontrol of fusarium wilt in pigeon pea. Microb Pathog 147:104278. https://doi.org/10.1016/j.micpath.2020.104278

    Article  CAS  PubMed  Google Scholar 

  • Thajuddin N, Subramanian G (2010) Cyanobacterial biodiversity and potential applications in biotechnology. Current Science Association, Bangalore

    Google Scholar 

  • Uzoh IM, Babalola OO (2018) Rhizosphere biodiversity as a premise for application in bio-economy. Agric Ecosyst Environ 265:524–534

    Article  Google Scholar 

  • Verma PP, Shelake RM, Das S, Sharma P, Kim J-Y (2019) Plant growth-promoting Rhizobacteria (PGPR) and Fungi (PGPF): potential biological control agents of diseases and pests. In: Singh DP, Gupta VK, Prabha R (eds) Microbial interventions in agriculture and environment, Research trends, priorities and prospects, vol 1. Springer, Singapore, pp 281–311. https://doi.org/10.1007/978-981-13-8391-5_11

    Chapter  Google Scholar 

  • Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Sci 264:48–56

    Article  CAS  PubMed  Google Scholar 

  • Viljoen JJF, Labuschagne N, Fourie H, Sikora RA (2019) Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Tropical Plant Pathol 44:284–291. https://doi.org/10.1007/s40858-019-00283-2

    Article  Google Scholar 

  • Whitton BA (1992) Diversity, ecology, and taxonomy of the cyanobacteria. In: Photosynthetic prokaryotes. Springer, New York, pp 1–51

    Google Scholar 

  • Widnyana IK (2018) PGPR (plant growth promoting Rhizobacteria) benefits in spurring germination, growth and increase the yield of tomato plants. In: Recent advances in tomato breeding and production. IntechOpen, London

    Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

  • Yadegari M, Rahmani HA (2010) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components. Afr J Agric Res 5:792–799

    Google Scholar 

  • Yagi R, Andrade DS, Waureck A, Gomes JC (2015) Nodulações e Produtividades de Grãos de Feijoeiros diante da Adubação Nitrogenada ou da Inoculação com Rhizobium freirei. Rev Bras Ciênc Solo 39:1661–1670

    Article  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani P (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Microbial strategies for crop improvement. Springer, Berlin, pp 23–50

    Chapter  Google Scholar 

  • Zambrano Gavilanes F et al (2019) Efecto de la inoculación con cianobacterias y coinoculación con Azospirillum brasilense sobre características fitométricas en maíz. Bioagro 31:193–202

    Google Scholar 

  • Zarrouk C (1966) Contribution a L’etude D’une Cianophycee: Influence de Divers Facteurs Physiques Et Chimiques Sur la Croissance Et la Photosynthese de Spirulina Maxima (Setch. Et Garndner) Geitler. Faculte des Sciences, Universite de Paris, Paris

    Google Scholar 

  • Zeffa DM, Fantin LH, Koltun A, de Oliveira AL, Nunes MP, Canteri MG, Gonçalves LS (2020) Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ 8:e7905

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang W, Li Y, Yang W, Shen G (2011) Mixotrophic cultivation of Botryococcus braunii. Biomass Bioenergy 35:1710–1715

    Article  CAS  Google Scholar 

  • Zuffo AM, Steiner F, Busch A, da Silva Santos DM (2019) Adubação nitrogenada na soja inibe a nodulação e não melhora o crescimento inicial das plantas. Revista em Agronegócio e Meio Ambiente 12:333–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gavilanes, F.Z. et al. (2021). Interactions Between Edaphoclimatic Conditions and Plant–Microbial Inoculants and Their Impacts on Plant Growth, Nutrient Uptake, and Yields. In: Maddela, N.R., García Cruzatty, L.C., Chakraborty, S. (eds) Advances in the Domain of Environmental Biotechnology. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-8999-7_22

Download citation

Publish with us

Policies and ethics