Skip to main content

Advertisement

Log in

Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Sorghum is the second most cultivated crop in Africa and is a staple food source in many African communities. Exploiting the associated plant growth-promoting bacteria (PGPB) has potential as an agricultural biotechnology strategy to enhance sorghum growth, yield and nutritional properties. Therefore this study aimed to evaluate factors that shape bacterial communities associated with sorghum farmed in South Africa, and to detect bacteria consistently associated with sorghum which may impart PGP activities.

Methods

Terminal-Restriction Fragment Length Polymorphism (T-RFLP) was used to assess factors that potentially shape rhizospheric (rhizosphere and rhizoplane) and endophytic (root, shoot, stem) bacterial communities associated with South African sorghum, and together with Denaturing Gradient Gel Electrophoresis (DGGE) to identify consistently sorghum-associated bacterial taxa.

Results

The sorghum rhizospheric communities were less variable than the endophytic ones. Geographical location was the main driver in describing bacterial community assemblages found in rhizospheric sorghum-linked niches, with total NO3-N, NH4-N, nitrogen, carbon, pH and, to a lesser extent, clay content identified as the main abiotic factors shaping sorghum-associated soil communities. Endophytic communities presented rather stochastic assemblages, with pH being the main variable explaining their structures. Despite community variations, specific bacterial taxa were consistently detected in sorghum-created rhizospheric and endophytic environments, irrespective of environmental factor effects.

Conclusions

Soil structure and composition, which are influenced by agricultural practices, played major roles in shaping sorghum-associated edaphic bacterial communities. In contrast, endophytic bacterial communities displayed more variation. Nevertheless, potentially agronomically relevant (cyano)bacterial taxa constantly associated with sorghum were identified which is suggestive of their deterministic recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DG, Duggan PS (2012) Signaling in cyanobacteria–plant symbioses. In: Perotto S, Baluška F (eds) Signaling and communication in plant symbiosis. Springer, Berlin Heidelberg, pp 93–121

    Chapter  Google Scholar 

  • Bai Y, Aoust FD, Smith DL, Driscoll BT (2002) Isolation of plant growth promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238

    Article  PubMed  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Blackwood CB, Hudleston D, Zak DR, Buyer JS (2007) Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl Environ Microbiol 73:5276–5283

    Article  PubMed  CAS  Google Scholar 

  • Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  CAS  Google Scholar 

  • Carson JK, Rooney D, Gleeson DB, Clipson N (2007) Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol Ecol 61:414–423

    Article  PubMed  CAS  Google Scholar 

  • Clarke K (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  • Coelho MRR, de Vos M, Carneiro NP, Marriel IE, Paiva E, Seldi L (2008) Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett 279:15–22

    Article  PubMed  CAS  Google Scholar 

  • Coelho MRR, Carneiro NP, Marriel IE, Seldin L (2009) Molecular detection of nifH gene-containing Paenibacillus in the rhizosphere of sorghum (Sorghum bicolor) sown in Cerrado soil. Lett Appl Microbiol 48:611–617

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clemet C, Barka EA (2005) Use of plant-growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinforma 10:171

    Article  Google Scholar 

  • Dicko MH, Gruppen H, Traore AS, Voragen AGJ, van Berkel WJH (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5:384–395

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fierer N, Jackson RB (2005) The diversity and biogeography of soil bacterial communities. PNAS 103:626–631

    Article  Google Scholar 

  • Food and Agricultural Organization (FAO) (1995) FAO food and nutrition series, no. 27 Sorghum and millet in human nutrition. http://www.fao.org/docrep/T0818E/T0818E00.htm

  • Food and Agricultural Organization/World Food Production (FAO/WFP) (2010) Crop and food security assessment mission to Mozambique. http://www.fao.org/docrep/012/ak350e/ak350e00.htm

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Funnel-Harris DL, Sattler SE, Pedersen JF (2013) Characterization of fluorescent Pseudomonas spp. Associated with roots and soil of two sorghum genotypes. Eur J Plant Pathol. doi:10.1007/s10658-013-0179-6

    Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn MA, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  PubMed  CAS  Google Scholar 

  • Gottel NR, Castro HF, Kerley M et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    Article  PubMed  CAS  Google Scholar 

  • Hafeez FY, Yasmin S, Ariani D, Mehboob-ur-Rahman Zafar Y, Malik KA (2006) Plant growth-promoting bacteria as biofertilizer. Agron Sustain Dev 26:143–150

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Schimd M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Kevin Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  Google Scholar 

  • Lauber C, Knight R, Hamady M, Fierer N (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  CAS  Google Scholar 

  • Loiret F, Ortega E, Kleiner D, Ortega-Rodes P, Rodes R, Dong Z (2004) A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97:504–511

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, De Weger L, Bennett J (1991) Microbial stimulation of plant growth and protection from disease. Curr Opin Biotechnol 2:457–464

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterial primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed  CAS  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev 4:102–112

    Article  CAS  Google Scholar 

  • Mendes R, Pizzirani-Kleiner A, Araujo W, Raaijmarkers J (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73:7259–7267

    Article  PubMed  CAS  Google Scholar 

  • Morgan JAW, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  PubMed  CAS  Google Scholar 

  • Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Nijland R, Burgess JG, Errington J, Veening J-W (2010) Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PLoS One 5:e9724. doi:10.1371/journal.pone.0009724

    Article  PubMed  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    Article  PubMed  CAS  Google Scholar 

  • Non-Affiliated Soil Analysis Work Committee (1990) Handbook of standard soil testing methods for advisory purposes, vol 160. Soil Science Society of South Africa, Pretoria

    Google Scholar 

  • Panchal H, Ingle S (2011) Isolation and characterization of endophytes from the root of the medicinal plant Chlorophytum borivilianum (Safed musli). J Adv Dev Res 2:205–209

    Google Scholar 

  • Pedersen WL, Chakrabarty K, Klucas RV, Vidave AK (1978) Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl Environ Microbiol 35:129–135

    PubMed  CAS  Google Scholar 

  • Reysenbach A-L, Pace NR (1995) In: Robb FT, Place AR (eds) Archaea: a laboratory. Manual – thermophiles. Cold Spring Harbour Laboratory Press, New York, pp 101–107

    Google Scholar 

  • Rodriguez-Caballero A, Ramond J-B, Welz PJ, Cowan DA, Odlare M, Burton SG (2012) Treatment of high ethanol concentration wastewater by biological sand filters: enhanced COD removal and bacterial community dynamics. J Environ Manag 109:54–60

    Article  CAS  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    Article  CAS  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) A review. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Rout ME, Chrzanowski TH (2009) The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil 315:163–172

    Article  CAS  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Saito A, Ikeda S, Ezura H, Minamisawa K (2007) A minireview. Microbial community analysis of the phytosphere using culture-independent methodologies. Microbes Environ 22:93–105

    Article  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant–microbe interactions: Can multi-species transcriptomics help? Trends Biotechnol 30:177–184

    Article  PubMed  CAS  Google Scholar 

  • Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Sercu B, van de Werfhorst LC, Murray JLS, Holden PA (2011) Cultivation-independent analysis of bacteria in IDEXX quanti-tray/2000 fecal indicator assays. Appl Environ Microbiol 77:627–633

    Article  PubMed  CAS  Google Scholar 

  • Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. J Microb Ecol 53:562–570

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Taylor JRN (2003) Overview: importance of sorghum in Africa. http://www.afripro.org.uk/papers/Paper01Taylor.pdf

  • Terakado-Tonooka J, Ohwaki Y, Yamakawa H, Tanaka F, Yoneyama T, Fujihara S (2008) Expressed nifH genes of endophytic bacteria detected in field-grown sweet patatoes (Ipoema batatas L.). Microbes Environ 23:89–93

    Article  PubMed  Google Scholar 

  • Tyson GW, Baker BJ, Alle EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidic microbial community. Appl Environ Microbiol 71:6319–6324

    Article  PubMed  CAS  Google Scholar 

  • van Felten A, Meyer JB, Défago G, Maurhofer M (2011) Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples. J Microbiol Methods 84:379–387

    Article  Google Scholar 

  • Zinniel DK, Lambrecht P, Beth Harris N, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the South African National Research Foundation (NRF) for funding the study. We would also like to acknowledge Dr Shagi from the North West academic farm of the ARC (Agricultural Research Council), Mr Osterhaizen (Free State farmer) and the community farm at Jane Furst (Limpopo) for allowing us to sample sorghum. We thank anonymous reviewers who suggested modifications that greatly improved the manuscript. J-BR holds a NRF Free-standing Postdoctoral Fellowship from the National Research Foundation of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marla I. Tuffin.

Additional information

Responsible Editor: Paul Bodelier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramond, JB., Tshabuse, F., Bopda, C.W. et al. Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench). Plant Soil 372, 265–278 (2013). https://doi.org/10.1007/s11104-013-1737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1737-6

Keywords

Navigation