Skip to main content

Microbial Inoculation to Alleviate the Metal Toxicity in Crop Plants and Subsequent Growth Promotion

  • Chapter
  • First Online:
Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants

Abstract

With increasing anthropogenic activities, soil pollution by heavy metals and metalloids is causing serious quality issues in variable crops irrespective of irrigation pattern or seasonal impact. Rice, wheat, all kinds of lentils and leafy vegetables are contaminated with such metal(loid)s, and soil microbiota has been proven to be a vital biomanagement agent in remediation of such pollution. Rhizospheric bacteria, fungi, along with the mycorrhizal association, and algae are experimentally proven by many researchers over the years that these bioagents have the potential to mitigate metal toxicity at high level and can be applied at fields with proper implementation processes for alleviating the toxic metal(loid) stress on crops. This chapter has summarized the role of soil microbial communities in mitigation of soil metal(loid)s from being phyto-available and compromising crop’s quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Akhtar MJ, Asghar HN et al (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35(2):303–315

    Article  CAS  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microbial Biotechnol 7(3):196–208

    Article  CAS  Google Scholar 

  • Al-Hasan RH, Al-Bader DA, Sorkhoh NA et al (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar Biol 130(3):521–527

    Google Scholar 

  • Al Mamun MA, Omori Y, Papry RI et al (2019a) Bioaccumulation and biotransformation of arsenic by the brown macroalga Sargassum patens C. Agardh in seawater: effects of phosphate and iron ions. J Appl Phycol 31(4):2669–2685

    Article  CAS  Google Scholar 

  • Al Mamun MA, Rahman IM, Datta RR et al (2019b) Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: a culture medium study. Chemosphere 222:705–713

    Article  PubMed  CAS  Google Scholar 

  • Alam MZ, Hoque MA, Ahammed GJ et al (2019a) Arbuscular mycorrhizal fungi, selenium, sulfur, silica-gel and biochar reduce arsenic uptake in plant biomass and improve nutritional quality in Pisum sativum. BioRxiv 663120

    Google Scholar 

  • Alam MZ, Hoque MA, McGee R et al (2019b) Arbuscular Mycorrhizal Fungus (AMF) and reduction of arsenic uptake in lentil crops. BioRxiv 522714

    Google Scholar 

  • Andrade SAL, Silveira APD, Mazzafera P (2010) Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil. Sci Total Environ 408(22):5381–5391

    Article  PubMed  CAS  Google Scholar 

  • Ashour EH, El-Mergawi RA, Radwan SMA (2006) Efficacy of pseudomonas to phytoremediate nickel by canola (Brassica napus L.). J Appl Sci Res 2(7):375–382

    Google Scholar 

  • Bai J, Xiao R, Cui B et al (2011) Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ Pollut 159(3):817–824

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI et al (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37(2):241–250

    Article  CAS  Google Scholar 

  • Bilal S, Shahzad R, Khan AL et al (2019) Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. J Hazard Mater 379:120824

    Article  PubMed  CAS  Google Scholar 

  • Bilal S, Shahzad R, Imran M et al (2020) Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crop Prod 143:111931

    Article  CAS  Google Scholar 

  • Bohumil V (2007) Biosorption and me. Water Res 41:4017–4029

    Article  CAS  Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA et al (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94(1–4):14–17

    Article  CAS  Google Scholar 

  • Braud A, JĂ©zĂ©quel K, Bazot S et al (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing acteria. Chemosphere 74(2):280–286

    Article  CAS  PubMed  Google Scholar 

  • Bruno LB, Karthik C, Ma Y et al (2020) Amelioration of chromium and heat stresses in Sorghum bicolor by Cr6+ reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521

    Article  PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245

    Article  PubMed  CAS  Google Scholar 

  • Cain A, Vannela R, Woo LK (2008) Cyanobacteria as a biosorbent for mercuric ion. Bioresource Technol 99(14):6578–6586

    Article  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836

    Article  CAS  Google Scholar 

  • Chaudhuri SR, Mishra M, De S et al (2017) Microbe-based strategy for plant nutrient management. Biological wastewater treatment and resource recovery, 37

    Google Scholar 

  • Chen X, Li H, Chan WF et al (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89(10):1248–1254

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Arato M, Borghi L et al (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Chen Y, Li Y et al (2019) Changes of heavy metal fractions during co-composting of agricultural waste and river sediment with inoculation of Phanerochaete chrysosporium. J Hazard Mater 378:120757

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  PubMed  CAS  Google Scholar 

  • Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5(4):189–193

    Article  PubMed  CAS  Google Scholar 

  • Crowley D (2008) Impacts of metals and metalloids on soil microbial diversity and ecosystem function. Revista de la ciencia del suelo y nutriciĂłn vegetal 8:6–11

    Article  Google Scholar 

  • DÄ…browska G, Hrynkiewicz K, Trejgell A et al (2017) The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L. Int J Phytoremed 19(7):597–604

    Article  CAS  Google Scholar 

  • Dardanelli MS, Carletti SM, Paulucci NS et al (2010) Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 1–20

    Google Scholar 

  • Das S, Jean JS, Chou ML et al (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18

    Article  PubMed  CAS  Google Scholar 

  • de Souza LA, de Andrade SAL, de Souza SCR et al (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34(2):523–531

    Article  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40(1):74–84

    Article  CAS  Google Scholar 

  • Deng L, Zhu X, Wang X et al (2007) Biosorption of copper (II) from aqueous solutions by green alga Cladophora fascicularis. Biodegradation 18(4):393–402

    Article  PubMed  CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S et al (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63(2):293–299

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A et al (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162

    Article  CAS  Google Scholar 

  • Dwivedi S (2012) Bioremediation of heavy metal by algae: current and future perspective. J Adv Lab Res Biol 3(3):195–199

    Google Scholar 

  • Eid AM, Salim SS, Hassan SED et al (2019) Role of endophytes in plant health and abiotic stress management. In: Microbiome in plant health and disease. Springer, Singapore, pp 119–144

    Chapter  Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ et al (2003) Cultivation-dependent and-independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69(6):3223–3230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faisal M, Hameed A, Hasnain S (2005) Chromium-resistant bacteria and cyanobacteria: impact on Cr (VI) reduction potential and plant growth. J Ind Microbiol Biotechnol 32(11–12):615–621

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    Article  PubMed  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56(4):403–407

    Article  PubMed  CAS  Google Scholar 

  • Ganugi P, Masoni A, Pietramellara G et al (2019) A review of studies from the last twenty years on plant–arbuscular mycorrhizal fungi associations and their uses for wheat crops. Agronomy 9(12):840

    Article  CAS  Google Scholar 

  • Garcia KGV, Mendes Filho PF, Pinheiro JI et al (2020) Attenuation of manganese-induced toxicity in Leucaena leucocephala colonized by arbuscular mycorrhizae. Water Air Soil Pollut 231(1):22

    Article  CAS  Google Scholar 

  • GarcĂ­a-RĂ­os V, Freile-PelegrĂ­n Y, Robledo D et al (2007) Cell wall composition affects Cd2+ accumulation and intracellular thiol peptides in marine red algae. Aquat Toxicol 81(1):65–72

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Aggarwal N (2011) Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatin, and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Regul 30(3):286–300

    Article  CAS  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl Microbiol Biotechnol 37(2):270–276

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Godwin CM, Cotner JB (2018) What intrinsic and extrinsic factors explain the stoichiometric diversity of aquatic heterotrophic bacteria? ISME J 12(2):598–609

    Article  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A et al (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35(4):1000–1012

    Article  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N et al (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Mycorrhizas-functional processes and ecological impact. Springer, Berlin, Heidelberg, pp 107–122

    Chapter  Google Scholar 

  • GuimarĂŁes LHS, Segura FR, Tonani L et al (2019) Arsenic volatilization by Aspergillus sp. and Penicillium sp. isolated from rice rhizosphere as a promising eco-safe tool for arsenic mitigation. J Environ Manage 237:170–179

    Article  CAS  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375(1–2):205–214

    Article  CAS  Google Scholar 

  • Guo T, Li L, Zhai W et al (2019) Distribution of arsenic and its biotransformation genes in sediments from the East China Sea. Environ Pollut 253:949–958

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Equilibrium and kinetic modelling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J Hazard Mater 153(1–2):759–766

    Article  PubMed  CAS  Google Scholar 

  • Gupta V, Ratha SK, Sood A et al (2013) New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—prospects and challenges. Algal Res 2(2):79–97

    Article  Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (Pb) in different plant parts. Pak J Bot 42(6):4363–4370

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180

    Google Scholar 

  • Hansda A, Kumar V (2017) Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 7(2):132

    Article  PubMed  PubMed Central  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Papry RI, Ikeda E et al (2019) Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic. Sci Rep 9(1):1–13

    Article  CAS  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremed 19(6):522–529

    Article  CAS  Google Scholar 

  • He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8(3):192–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hesse E, O’Brien S, Tromas N et al (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett 21(1):117–127

    Article  PubMed  Google Scholar 

  • Hinsinger P, Plassard C, Tang C et al (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248(1–2):43–59

    Article  CAS  Google Scholar 

  • Hoque E, Fritscher J (2019) Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis. Sci Rep 9(1):1–16

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Gupta A et al (2019) Biotransformation of chromium by root nodule bacteria Sinorhizobium sp. SAR1. PLoS One 14(7)

    Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43(15):5884–5889

    Article  PubMed  CAS  Google Scholar 

  • Kaduková J, VirÄŤĂ­ková E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31(2):227–232

    Article  PubMed  CAS  Google Scholar 

  • Kamran MA, Syed JH, Eqani SAMAS et al (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22(12):9275–9283

    Article  CAS  Google Scholar 

  • Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. Handbook of microalgal culture. Appl Phycol Biotechnol 2:602–611

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils: a review. In: Organic farming, pest control and remediation of soil pollutants. Springer, Dordrecht, pp 319–350

    Chapter  Google Scholar 

  • Khan N, Seshadri B, Bolan N et al (2016) Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. In: Advances in agronomy, vol 138. Academic Press, pp 1–96

    Google Scholar 

  • Khan MA, Ramzani PMA, Zubair M et al (2020) Associative effects of lignin-derived biochar and arbuscular mycorrhizal fungi applied to soil polluted from Pb-acid batteries effluents on barley grain safety. Sci Total Environ 710:136294

    Article  PubMed  CAS  Google Scholar 

  • Khanna K, Jamwal VL, Kohli SK et al (2019) Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere. 217:463–474

    Google Scholar 

  • Kohlmeier S, Smits TH, Ford RM et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646

    Article  PubMed  CAS  Google Scholar 

  • Kokyo O, Tao L, Hongyan C et al (2013) Development of profitable phytoremediation of contaminated soils with biofuel crops. J Environ Protect

    Google Scholar 

  • Kumar KV, Srivastava S, Singh N et al (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Kumari N, Rana A, Jagadevan S (2019) Arsenite biotransformation by Rhodococcus sp.: characterization, optimization using response surface methodology and mechanistic studies. Sci Total Environ 687:577–589

    Article  PubMed  CAS  Google Scholar 

  • La Rocca N, Andreoli C, Giacometti GM et al (2009) Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica 47(3):471–479

    Article  CAS  Google Scholar 

  • Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg (II) by cyanobacteria. Appl Environ Microbiol 73(1):243–249

    Article  PubMed  CAS  Google Scholar 

  • Luo SL, Chen L, Chen JL et al (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85(7):1130–1138

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90(2):831–837

    Article  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Vicente JAF et al (2010) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J phytoremed 13(2):126–139

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants – effects on plant growth and Ni uptake. J Hazard Mater 196:230–237

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    Article  PubMed  CAS  Google Scholar 

  • Majumdar A, Barla A, Upadhyay MK et al (2018) Vermiremediation of metal (loid) s via Eichornia crassipes phytomass extraction: a sustainable technique for plant amelioration. J Environ Manage 220:118–125

    Article  PubMed  CAS  Google Scholar 

  • Majumdar A, Upadhyay MK, Kumar JS et al (2019) Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Ecotoxicol Environ Saf 180:770–779

    Article  PubMed  CAS  Google Scholar 

  • Majumdar A, Kumar JS, Sheena et al (2020) Agricultural water management practices and environmental influences on arsenic dynamics in rice field. In: Arsenic in drinking water and food. Springer, Singapore, pp 425–443

    Chapter  Google Scholar 

  • Maldaner J, Steffen GPK, Saldanha CW et al (2020) Combining tolerant species and microorganisms for phytoremediation in aluminium-contaminated areas. Int J Environ Studies 77(1):108–121

    Article  CAS  Google Scholar 

  • Mallick I, Bhattacharyya C, Mukherji S et al (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Manoj SR, Karthik C, Kadirvelu K et al (2020) Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: a review. J Environ Manage 254:109779

    Article  PubMed  CAS  Google Scholar 

  • Mathew DC, Ho YN, Gicana RG et al (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS One 10(3)

    Google Scholar 

  • Megharaj M, Madhavi DR, Sreenivasulu C et al (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53(2):292–297

    Article  PubMed  CAS  Google Scholar 

  • Mitra N, Rezvan Z, Ahmad MS et al (2012) Studies of water arsenic and boron pollutants and algae phytoremediation in three springs, Iran. Int J Ecosys 2(3):32–37

    Article  Google Scholar 

  • Monteiro CM, Marques AP, Castro PM et al (2009) Characterization of Desmodesmus pleiomorphus isolated from a heavy metal-contaminated site: biosorption of zinc. Biodegradation 20(5):629–641

    Article  PubMed  CAS  Google Scholar 

  • Monteiro CM, Castro PM, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208(1–4):17–27

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PM, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Progress 28(2):299–311

    Article  CAS  Google Scholar 

  • Moreira H, Marques AP, Franco AR et al (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21(16):9742–9753

    Article  CAS  Google Scholar 

  • Nogueira MA, Nehls U, Hampp R et al (2007) Mycorrhiza and soil bacteria influence extractable iron and manganese in soil and uptake by soybean. Plant Soil 298(1–2):273–284

    Article  CAS  Google Scholar 

  • O’Brien S, Hodgson DJ, Buckling A (2014) Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc R Soc B: Biol Sci 281(1787):20140858

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Ozturk S, Aslim B (2008) Relationship between chromium (VI) resistance and extracellular polymeric substances (EPS) concentration by some cyanobacterial isolates. Environ Sci Pollut Res 15(6):478–480

    Article  CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey VD (2017) Cyanobacteria-mediated heavy metal remediation. In: Agro-environmental sustainability. Springer, Cham, pp 105–121

    Chapter  Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S et al (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51(1):11–17

    Article  PubMed  CAS  Google Scholar 

  • Panhwar QA, Jusop S, Naher UA et al (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J

    Google Scholar 

  • Papry RI, Ishii K, Al Mamun MA et al (2019) Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity. Sci Rep 9(1):1–16

    Article  CAS  Google Scholar 

  • Pawlik-SkowroĹ„ska B, Pirszel J, Kalinowska R et al (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70(3):201–212

    Article  PubMed  CAS  Google Scholar 

  • Pietro-Souza W, de Campos Pereira F, Mello IS et al (2020) Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 240:124874

    Article  PubMed  CAS  Google Scholar 

  • Pramanik K, Mitra S, Sarkar A et al (2017) Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res 24(31):24419–24437

    Google Scholar 

  • Rady MM, Ahmed SM, El-Yazal MAS et al (2019) Alleviation of cadmium stress in wheat by polyamines. In: Cadmium tolerance in plants. Academic Press, pp 463–496

    Google Scholar 

  • Rajkumar M, Freitas H (2008a) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71(5):834–842

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008b) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technol 99(9):3491–3498

    Article  CAS  Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ et al (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62(5):741–748

    Article  PubMed  CAS  Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain. Curr Microbiol 57(1):78

    Article  PubMed  CAS  Google Scholar 

  • Rattan RK, Datta SP, Chhonkar PK et al (2005) Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agric Ecosyst Environ 109(3–4):310–322

    Article  CAS  Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Roeselers G, Van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235

    Article  PubMed  CAS  Google Scholar 

  • Roman-Ponce B, Reza-Vázquez DM, Gutierrez-Paredes S et al (2017) Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination. Pedosphere 27(3):511–526

    Article  Google Scholar 

  • Romera E, González F, Ballester A et al (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresource Technol 98(17):3344–3353

    Article  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL et al (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42(3):267–272

    Article  CAS  Google Scholar 

  • Saluja B, Sharma V (2014) Cadmium resistance mechanism in acidophilic and alkalophilic bacterial isolates and their application in bioremediation of metal-contaminated soil. Soil Sediment Contam: Int J 23(1):1–17

    Article  CAS  Google Scholar 

  • Sarkar SR, Majumdar A, Barla A et al (2017) A conjugative study of Typha latifolia for expunge of phyto-available heavy metals in fly ash ameliorated soil. Geoderma 305:354–362

    Article  CAS  Google Scholar 

  • Senthilkumar R, Vijayaraghavan K, Thilakavathi M et al (2006) Seaweeds for the remediation of wastewaters contaminated with zinc (II) ions. J Hazard Mater 136(3):791–799

    Article  PubMed  CAS  Google Scholar 

  • Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15(2):524–548

    CAS  Google Scholar 

  • Shahabivand S, Maivan HZ, Goltapeh EM et al (2012) The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity. Plant Physiol Biochem 60:53–58

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Javed MT, Mushtaq A et al (2019) Microbe-mediated mitigation of cadmium toxicity in plants. In: Cadmium toxicity and tolerance in plants. Academic Press, pp 427–449

    Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64(6):1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY et al (2008a) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Sheng X, He L, Wang Q et al (2008b) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(1–2):17–22

    Article  PubMed  CAS  Google Scholar 

  • Sheng XF, Jiang CY, He LY (2008c) Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil. Can J Microbiol 54(5):417–422

    Article  PubMed  CAS  Google Scholar 

  • Shilev S, Naydenov M, Tahsin N et al (2007) Effect of easily biodegradable amendments on heavy metal solubilization and accumulation in technical crops-a field trial. J Environ Eng Landscape Manage 15(4):237–242

    Article  Google Scholar 

  • Sidhu GPS, Bali AS, Bhardwaj R (2019) Use of fungi in mitigating cadmium toxicity in plants. In: Cadmium toxicity and tolerance in plants. Academic Press, pp 397–426

    Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S et al (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technol 101(9):3025–3032

    Article  CAS  Google Scholar 

  • Soni S, Jain S (2014) A review on phytoremediation of heavy metals from soil by using plants to remove pollutants from the environment. Int J Adv Res 2(8):197–203

    Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V et al (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Sullivan TS, Gadd GM (2019) Metal bioavailability and the soil microbiome. In: Advances in agronomy. Academic Press Inc.

    Google Scholar 

  • Sun GL, Reynolds EE, Belcher AM (2019) Designing yeast as plant-like hyperaccumulators for heavy metals. Nat Commun 10(1):1–12

    Article  CAS  Google Scholar 

  • Sun GL, Reynolds EE, Belcher AM (2020) Using yeast to sustainably remediate and extract heavy metals from waste waters. Nat Sustain:1–9

    Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49(2):195–204

    Article  PubMed  CAS  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y et al (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50(5):233–237

    Article  PubMed  CAS  Google Scholar 

  • TĂĽzĂĽn I, BayramoÄźlu G, Yalçın E et al (2005) Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manage 77(2):85–92

    Article  PubMed  CAS  Google Scholar 

  • ul Hassan Z, Ali S, Rizwan M et al (2017) Role of bioremediation agents (bacteria, fungi, and algae) in alleviating heavy metal toxicity. In: Probiotics in agroecosystem. Springer, Singapore, pp 517–537

    Chapter  Google Scholar 

  • ul Islam E, Yang XE, He ZL et al (eds) (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8(1):1–13

    Google Scholar 

  • Upadhyay AK, Singh NK, Singh R et al (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay MK, Yadav P, Shukla A et al (2018) Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. Front Environ Sci 6:24

    Article  Google Scholar 

  • Usman ARA, Mohamed HM (2009) Effect of microbial inoculation and EDTA on the uptake and translocation of heavy metal by corn and sunflower. Chemosphere 76(7):893–899

    Article  PubMed  CAS  Google Scholar 

  • Vijayaraghavan K, Prabu D (2006) Potential of Sargassum wightii biomass for copper (II) removal from aqueous solutions: application of different mathematical models to batch and continuous biosorption data. J Hazard Mater 137(1):558–564

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Mei D, Chen J et al (2019a) Sequestration of heavy metal by glomalin-related soil protein: implication for water quality improvement in mangrove wetlands. Water Res 148:142–152

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yi B, Sun X et al (2019b) Removal and tolerance mechanism of Pb by a filamentous fungus: a case study. Chemosphere 225:200–208

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70(1):36–45

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arc Environ Contam Toxicol 55(1):33–42

    Article  CAS  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20(3–4):503–516

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM et al (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140(1):124–135

    Article  PubMed  CAS  Google Scholar 

  • Youngwilai A, Kidkhunthod P, Jearanaikoon N et al (2020) Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar. Sci Total Environ:136708

    Google Scholar 

  • Zaidi S, Usmani S, Singh BR et al (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  PubMed  CAS  Google Scholar 

  • Zhang YF, He LY, Chen ZJ et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Song X, Shao X et al (2019) Lead immobilization assisted by fungal decomposition of organophosphate under various pH values. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the IISER Kolkata, IISER Bhopal and LMU library facility for collection of scientific information and articles as a base of this chapter. Authors are also stating of no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afsal, F., Majumdar, A., Kumar, J.S., Bose, S. (2020). Microbial Inoculation to Alleviate the Metal Toxicity in Crop Plants and Subsequent Growth Promotion. In: Mishra, K., Tandon, P.K., Srivastava, S. (eds) Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants. Springer, Singapore. https://doi.org/10.1007/978-981-15-8636-1_17

Download citation

Publish with us

Policies and ethics