Skip to main content

Abstract

This chapter provides an overview of sorghum (Sorghum bicolor L.) biomass pretreatment methods to produce biofuels. Sorghum is an important food, feed, and fuel crop that serves multiple purposes of human food, pet food, animal feed, and feedstock for bioenergy production. There are enormous opportunities to produce different types of biofuels from sorghum-based biomass. First, composition, structure, and uses of different sorghum plant parts (stalks, leaves, grain, starch, and oil) are briefly described. Then, we present and discuss in detail different pretreatment methods (physical, chemical, physicochemical, and biological) that enable the utilization of sorghum biomass for biofuel production. There have been significant improvements in different pretreatment methods and their efficiencies for biofuel production. The best methods will depend on the availability of facilities and resources. Further investigations should be directed towards developing simpler, more effective and energy-saving technologies for biofuel production from sorghum-based feedstock. Since most of the sorghum pretreatment processes generate inhibitors of microbial growth and reduce product yield, the need for a detoxification stage is emphasized. Future research should focus towards developing the appropriate pretreatment strategies and overall process integration for improved processing of biomass and final biofuel production. A smart combination of two or more pretreatment methods for efficient biomass processing, selective recovery, and reduced inhibitor formation should be researched. A strong collaboration, partnership, and support from industry, private sector, and public sector will be required for successful implementation and establishment of large-scale biofuel production plants from different bioenergy feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhyaru DN, Bhatt NS, Modi HA (2014) Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol 3:182–190

    Article  Google Scholar 

  • Aggarwal NK, Nigam P, Singh D, Yadav BS (2001) Process optimization for the production of sugar for the bioethanol industry from sorghum, a non-conventional source of starch. World J Microbiol Biotechnol 17:411–415

    Article  CAS  Google Scholar 

  • Akanksha K, Prasad A, Sukumaran RK, Madhavan-Nampoothiri K, Pandey A, Rao SS, Binod P (2014) Dilute acid pretreatment and enzymatic hydrolysis of sorghum biomass for sugar recovery—a statistical approach. Indian J Exp Biol 52:1082–1089

    PubMed  Google Scholar 

  • Akanksha K, Sukumaran RK, Pandey A, Rao SS, Binod P (2016) Material balance studies for the conversion of sorghum stover to bioethanol. Biomass Bioenergy 85:48–52

    Article  CAS  Google Scholar 

  • Arenas-Cárdenas P, López-López A, Moeller-Chávez GE, León-Becerril E (2017) Current pretreatments of lignocellulosic residues in the production of bioethanol. Waste Biomass Valor 8:161–181

    Article  CAS  Google Scholar 

  • Barcelos CA, Maeda RN, Betancur GJV, Pereira N Jr (2011) Ethanol production from sorghum grains [Sorghum bicolor (L.) Moench]: evaluation of the enzymatic hydrolysis and the hydrolyzate fermentability. Braz J Chem Eng 28:597–604

    Article  CAS  Google Scholar 

  • Barcelos CA, Maeda RN, Santa Anna LMM, Pereira N Jr (2016) Sweet sorghum as a whole-crop feedstock for ethanol production. Biomass Bioenergy 94:46–56

    Article  CAS  Google Scholar 

  • Berenji J, Dahlberg J, Sikora V, Latkovic D (2011) Origin, history, morphology, production, improvement, and utilization of broomcorn [Sorghum bicolor (L.) Moench] in Serbia. Econ Bot 65:190–208

    Article  Google Scholar 

  • Bundhoo ZMA, Mohee R (2018) Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. Ultrason Sonochem 40:298–313

    Article  CAS  PubMed  Google Scholar 

  • Cadoche L, Lopez GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30:153–157

    Article  CAS  Google Scholar 

  • Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin P-Y, Tan T-W (2013) Pervaporation integrate with laccase was an efficient method in detoxification of lignocellulose hydrolyzate. Bioresour Technol 145:97–102

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Sun C, Liu R, Yin R, Wu X (2012) Comparison of the effects of five pretreatment methods on enhancing the enzymatic digestibility and ethanol production from sweet sorghum bagasse. Bioresour Technol 111:215–221

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J Chem Eng 33:873–879

    Article  CAS  Google Scholar 

  • Cao W, Sun C, Qiu J, Li X, Qiu J, Liu R (2017) Methane production enhancement from products of alkaline hydrogen peroxide pretreated sweet sorghum bagasse. RSC Adv 7:5701–5707

    Article  CAS  Google Scholar 

  • Carson L, Setser C, Sun XS (2000) Sensory characteristics of sorghum composite bread. Int J Food Sci Technol 35:465–471

    Article  CAS  Google Scholar 

  • Castro E, Nieves IU, Rondón V, Sagues WJ, Fernández-Sandoval MT, Yomano LP, York SW, Erickson J, Vermerris W (2017) Potential for ethanol production from different sorghum cultivars. Ind Crop Prod 109:367–373

    Article  CAS  Google Scholar 

  • Chen C, Dr B, Aita A, Walker M (2012) Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour Technol 110:190–197

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Keener TC, Lee J-Y, Zhou X (2012) Dilute acid pretreatment for cellulosic alcohol production. Biomass Conv Bioref 2:169–177

    Article  CAS  Google Scholar 

  • Chiremba C, Taylor JRN, Rooney LW, Beta T (2012) Phenolic acid content of sorghum and maize cultivars varying in hardness. Food Chem 134:81–88

    Article  CAS  Google Scholar 

  • Choudhary R, Umagiliyage AL, Liang Y, Siddaramu T, Haddock J, Markevicius G (2012) Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy 39:218–226

    Article  CAS  Google Scholar 

  • Chuck-Hernandez C, Perez-Carrillo E, Serna-Saldivar SO (2009) Production of bioethanol from steam-flaked sorghum and maize. J Cereal Sci 50:131–137

    Article  CAS  Google Scholar 

  • Ciampitti IA, Prasad PVV (2016) Historical synthesis - analysis of changes in grain nitrogen dynamics in sorghum. Front Plant Sci 7:275

    Article  PubMed  PubMed Central  Google Scholar 

  • Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D (2009) Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl Biochem Biotechnol 158:164–179

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg J, Berenji J, Sikora V, Latkovic D (2011) Assessing sorghum [Sorghum bicolor (L) Moench] germplasm for new traits: food, fuels and unique uses. Maydica 56(1750):85–92

    Google Scholar 

  • Darkwah K, Wang L, Shahbazi A (2016) Simultaneous saccharification and fermentation of sweet sorghum after acid pretreatment. Energy Source Pt A 38:1485–1492

    Article  CAS  Google Scholar 

  • Deshavath NN, Dasu VV, Goud VV, Rao PS (2017a) Development of dilute sulfuric acid pretreatment method for the enhancement of xylose fermentability. Biocatal Agric Biotechnol 11:224–230

    Article  Google Scholar 

  • Deshavath NN, Mohan M, Veeranki VD, Goud VV, Pinnamaneni SR, Benarjee T (2017b) Dilute acid pretreatment of sorghum biomass to maximize the hemicellulose hydrolysis with minimized levels of fermentative inhibitors for bioethanol production. Biotech 7:139

    Google Scholar 

  • Deshpande V, Keskar S, Mishra C, Rao M (1986) Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme Microb Technol 8:149–152

    Article  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Zouzouho OC, Traoré AS, van Berkel WJH, Voragen AGJ (2006) Effects of germination on amylases and phenolics related enzymes in fifty sorghum varieties grouped according to food-end use properties. J Sci Food Agric 86(6):953–963

    Article  CAS  Google Scholar 

  • Dogaris I, Karapati S, Mamma D, Kalogeris E, Kekos D (2009a) Hydrothermal processing and enzymatic hydrolysis of sorghum bagasse for fermentable carbohydrates production. Bioresour Technol 100:6543–6549

    Article  CAS  PubMed  Google Scholar 

  • Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009b) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crop Prod 29:404–411

    Article  CAS  Google Scholar 

  • EPA (2017) Proposed rule; renewable fuel standard program; Grain sorghum oil pathway (82 Fed. Reg. 61, 205; December 27, 2017). Docket ID No. EPA-HQ-OAR-2017-0655. https://www.govinfo.gov/content/pkg/FR-2017-12-27/pdf/2017-27946.pdf

  • Evers T, Millar S (2002) Cereal grain structure and development: some implications for quality. J Cereal Sci 36:261–284

    Article  Google Scholar 

  • Fennell LP, Boldor D (2014) Continuous microwave drying of sweet sorghum bagasse biomass. Biomass Bioenergy 70:542–552

    Article  CAS  Google Scholar 

  • Ganesh Kumar C, Pradeep Kumar M, Gupta S, Shyam Sunder M, Veera Mohana Rao K, Jagadeesh B, Swapna V, Kamal A (2015) Isolation and characterization of cellulose from sweet sorghum bagasse. Sugar Tech 17:395–403

    Article  CAS  Google Scholar 

  • Godin B, Nagle N, Sattler S, Agneessens R, Delcarte J, Wolfrum E (2016) Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries. Biotechnol Biofuels 9(1):251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Godwin ID, Gray SJ (2000) Overcoming productivity and quality constraints in sorghum: the role for genetic engineering. In: O'Brien L, Henry RJ (eds) Transgenic cereals. AACC, St Paul, MN, pp 153–177

    Google Scholar 

  • Goshadrou A, Karimia K, Taherzadeh MJ (2011) Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Ind Crop Prod 34:1219–1225

    Article  CAS  Google Scholar 

  • Guragain YN, Wilson J, Staggenborg S, McKinney L, Wang D, Vadlani PV (2013) Evaluation of pelleting as a pre-processing step for effective biomass deconstruction and fermentation. Biochem Eng J 77:198–207

    Article  CAS  Google Scholar 

  • Guragain YN, Ganesh KM, Bansal S, Sai Sathish R, Rao N, Vadlani PV (2014) Low-lignin mutant biomass resources: effect of compositional changes on ethanol yield. Ind Crop Prod 61:1–8

    Article  CAS  Google Scholar 

  • Hadbaoui Z, Djeridane A, Yousfi M, Saidi M, Nadjemi B (2010) Fatty acid, tocopherol composition and the antioxidant activity of the lipid extract from the sorghum grains growing in Algeria. Mediterr J Nutr Metab 3:215–220

    Article  Google Scholar 

  • Hassan S, Imran M, Ahmad N, Khan MK (2017) Lipids characterization of ultrasound and microwave processed germinated sorghum. Lipids Health Dis 16:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heenan SP, Hamid N, Dufour JP, Harvey W, Delahunty CM (2009) Consumer freshness perceptions of breads, biscuits and cakes. Food Qual Prefer 20:380–390

    Article  Google Scholar 

  • Heredia-Olea E, Pérez-Carrillo E, Serna-Saldívar SO (2013) Production of ethanol from sweet sorghum bagasse pretreated with different chemical and physical processes and saccharified with fiber degrading enzymes. Bioresour Technol 134:386–390

    Article  CAS  PubMed  Google Scholar 

  • Heredia-Olea E, Pérez-Carrillo E, Montoya-Chiw M, Serna-Saldívar SO (2015) Effects of extrusion pretreatment parameters on sweet sorghum bagasse enzymatic hydrolysis and its subsequent conversion into bioethanol. Biomed Res Int 2015:325905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoseney RC (1994) Principles of cereal science and technology. American Association of Cereal Chemists, St Paul

    Google Scholar 

  • Hugo LF, Rooney LW, Taylor JRN (2003) Fermented sorghum as a functional ingredient in composite breads. Cereal Chem 80:495–499

    Article  CAS  Google Scholar 

  • Imam T, Capareda S (2012) Ultrasonic and high-temperature pretreatment, enzymatic hydrolysis and fermentation of lignocellulosic sweet sorghum to bio-ethanol. Int J Ambient Energ 33:152–160

    Article  CAS  Google Scholar 

  • Jia F, Chawhuaymak J, Riley MR, Zimmt W, Ogden KL (2013) Efficient extraction method to collect sugar from sweet sorghum. J Biol Eng 7:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur P, Uppal SK, Dhir C (2015) Comparative study of chemical pretreatments and acid saccharification of bagasse of sugar crops for ethanol production. Sugar Tech 17:412–417

    Article  CAS  Google Scholar 

  • Kim M, Han KJ, Jeong Y, Day DF (2012) Utilization of whole sweet sorghum containing juice, leaves, and bagasse for bio-ethanol production. Food Sci Biotechnol 21:1075–1080

    Article  CAS  Google Scholar 

  • Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  CAS  PubMed  Google Scholar 

  • Klinger JL, Westover TL, Emerson RM, Luke Williams C, Hernandez S, Monson GD, Chadron Ryan J (2018) Effect of biomass type, heating rate, and sample size on microwave enhanced fast pyrolysis product yields and qualities. Appl Energy 228:535–545

    Article  CAS  Google Scholar 

  • Lavudi S, Oberoi HS, Mangamoori LN (2017) Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology. 3 Biotech 7:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Guragain YN, Bastola KP, Vadlani PV (2017) Innovative methods to generate clean sugar stream from biomass feedstocks for efficient fermentation. Bioprocess Biosyst Eng 40:633–641

    Article  CAS  PubMed  Google Scholar 

  • Li BZ, Balan V, Yuan YJ, Dale BE (2010) Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresour Technol 101:1285–1292

    Article  CAS  PubMed  Google Scholar 

  • Li P, Cai D, Zhang C, Li S, Qwui P, Chen C, Wang Y, Wang Z (2016) Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Bioresour Technol 221:636–644

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang Y, Xu J, Yuan Z (2016) Batch-based enzymatic saccharification of sweet sorghum bagasse. Energ Source Pt A 38:264–269

    Article  CAS  Google Scholar 

  • Manzanares P, Ballesteros I, Negro MJ, Oliva JM, Gonzalez A, Ballesteros M (2012) Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conv Bioref 2:123–132

    Article  CAS  Google Scholar 

  • Marx S, Ndaba B, Chiyanzu I, Schabort C (2014) Fuel ethanol production from sweet sorghum bagasse using microwave irradiation. Biomass Bioenergy 65:145–150

    Article  CAS  Google Scholar 

  • McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727

    Article  CAS  PubMed  Google Scholar 

  • Mehmood S, Orhan I, Ahsan Z, Aslan S, Gulfraz M (2008) Fatty acid composition of seed oil of different Sorghum bicolor varieties. Food Chem 109:855–859

    Article  CAS  PubMed  Google Scholar 

  • Michalsk K, Ledakowicz S (2014) Alkaline hydrogen peroxide pretreatment of energy crops for biogas production. Chem Pap 68:913–922

    Article  CAS  Google Scholar 

  • Michalska K, Miazek K, Krzystek L, Ledakowicz S (2012) Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour Technol 119:72–78

    Article  CAS  PubMed  Google Scholar 

  • Millet MA, Baker AJ, Scatter LD (1976) Physical and chemical pretreatment for enhancing cellulose saccharification. Biotechnol Bioeng Symp 6:125–153

    Google Scholar 

  • Mishra V, Jana AK (2017) Fungal pretreatment of sweet sorghum bagasse with combined CuSO4-gallic acid supplement for improvement in lignin degradation, selectivity, and enzymatic saccharification. Appl Biochem Biotechnol 183:200–217

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Jana AK (2019) Sweet sorghum bagasse pretreatment by Coriolus versicolor in mesh tray bioreactor for selective delignification and improved saccharification. Waste Biomass Valor 10:2689–2702

    Article  CAS  Google Scholar 

  • Mishra V, Jana AK, Jana MM, Gupta A (2017a) Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour Technol 236:49–59

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Jana AK, Jana MM, Gupta A (2017b) Improvement of selective lignin degradation in fungal pretreatment of sweet sorghum bagasse using synergistic CuSO4-syringic acid supplements. J Environ Manage 193:558–566

    Article  CAS  PubMed  Google Scholar 

  • Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A (2013) Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind Crop Prod 49:580–585

    Article  CAS  Google Scholar 

  • Monroe GE, Nichols RL, Bryan WL, Sumner HR (1984) Sweet sorghum juice extraction with 3-roller mills. Trans ASABE 27(3):651–654

    Article  Google Scholar 

  • Moodley P, Gueguim Kana EB (2017a) Development of a steam or microwave-assisted sequential salt-alkali pretreatment for lignocellulosic waste: effect on delignification and enzymatic hydrolysis. Energ Conver Manage 148:801–808

    Article  CAS  Google Scholar 

  • Moodley P, Gueguim Kana EB (2017b) Comparison of a two-stage and a combined single stage salt-acid based lignocellulosic pretreatment for enhancing enzymatic saccharification. Ind Crop Prod 108:219–224

    Article  CAS  Google Scholar 

  • Nasidi M, Agu R, Deeni Y, Walker G (2015) Improved production of ethanol using bagasse from different sorghum cultivars. Biomass Bioenergy 72:288–299

    Article  CAS  Google Scholar 

  • Nikzad M, Movagharnejad K, Talebnia F, Najafpour G, Farahi AHG (2014) A study on alkali pretreatment conditions of sorghum stem for maximum sugar recovery using statistical approach. Chem Ind Chem Eng Q 20:261–271

    Article  CAS  Google Scholar 

  • Nozari B, Mirmohamadsadeg S, Karimi K (2018) Bioenergy production from sweet sorghum stalks via a biorefinery perspective. Appl Microbiol Biotechnol 102:3425–3438

    Article  CAS  PubMed  Google Scholar 

  • Ostovareh S, Karimi K, Zamani A (2015) Efficient conversion of sweet sorghum stalks to biogas and ethanol using organosolv pretreatment. Ind Crop Prod 66:170–177

    Article  CAS  Google Scholar 

  • Park SH, Bean SR, Wilson JD, Schober TJ (2006) Rapid isolation of sorghum and other cereal starches using sonication. Cereal Chem 83:611–616

    Article  CAS  Google Scholar 

  • Partida-Sedas G, Montes-García N, Carvajal-Zarrabal O, López-Zamora L, Gómez-Rodríguez J, Aguilar-Uscanga MG (2017) Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box–Behnken design. Sugar Tech 19:317–325

    Article  CAS  Google Scholar 

  • Puligundla P, Oh SE, Mok C (2016) Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review. Carbon Lett 17:1–10

    Article  Google Scholar 

  • Qureshi N, Liu S, Hughes S, Palmquist D, Dien B, Saha B (2016) Cellulosic butanol (ABE) biofuel production from sweet sorghum bagasse (SSB): impact of hot water pretreatment and solid loadings on fermentation employing Clostridium beijerinckii P260. BioEnerg Res 9:1167–1179

    Article  CAS  Google Scholar 

  • Reddy BVS, Ramesh S, Reddy PS (2006) Sorghum genetic resources, cytogenetics and improvement. In: Genetic resources, chromosome engineering, and crop improvement, vol 2. CRC, Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Reddy B, Ramesh S, Reddy S, Ramaiah B, Salimath P, Kachapur R (2007) Sweet sorghum—a potential alternate raw material for bio-ethanol and bioenergy. http://www.icrisat.cgiar.org/Biopower/ddySweetSorghumPotentialAlternative.pdf

  • Riazi S, Rahimnejad M, Najafpour GD (2015) Hydrolysis of sorghum (broomcorn) in diluted hydrochloric acid. Int J Eng Trans B Appl 28:1543–1551

    CAS  Google Scholar 

  • Rooney WL, Serna-Saldivar SO (2000) Sorghum. In: Kulp K (ed) Handbook of cereal science and technology. CRC, Boca Raton, FL, pp 149–176

    Google Scholar 

  • Rooney LW, Waniska RD (2004) Crop utilization and marketing: food and nutritional quality of sorghum and millet. Report project TAM-226. Texas A&M University, College Station, TX, pp 77843–72474

    Google Scholar 

  • Rorke DCS, Suinyuy TN, Gueguim Kana EB (2017) Microwave-assisted chemical pre-treatment of waste sorghum leaves: process optimization and development of an intelligent model for determination of volatile compound fractions. Bioresour Technol 224:590–600

    Article  CAS  PubMed  Google Scholar 

  • Sagues WJ, Bao H, Nemenyi JL, Tong Z (2018) Lignin-first approach to biorefining: utilizing Fenton’s reagent and supercritical ethanol for the production of phenolics and sugars. ACS Sustain Chem Eng 6:4958–4965

    Article  CAS  Google Scholar 

  • Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2012) Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage. Chem Eng J 211:488–492

    Article  CAS  Google Scholar 

  • Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013a) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456

    Article  CAS  Google Scholar 

  • Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013b) Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production. Bioresour Technol 144:149–155

    Article  CAS  PubMed  Google Scholar 

  • Santos JI, Fillat U, Martïn-Sampedro R, Ballesteros I, Manzanares P, Ballesteros M, Eugenio ME, Ibarra D (2015) Lignin-enriched fermentation residues from bioethanol production of fast-growing poplar and forage sorghum. Bioresources 10:5215–5232

    CAS  Google Scholar 

  • Sebestyén Z, Jakab E, May Z, Sipos B, Réczey K (2013) Thermal behavior of native, washed and steam exploded lignocellulosic biomass samples. J Anal Appl Pyrolysis 101:61–71

    Article  CAS  Google Scholar 

  • Serna-Saldivar S, Rooney LW (1995) Structure and chemistry of sorghum and millets. In: Dendy DV (ed) Structure and chemistry of sorghum and millets. AACC, St. Paul, MN, pp 69–124

    Google Scholar 

  • Serna-Saldivar SO, Chuck-Hernandez C, Perez-Carrillo E, Heredia-Olea E (2012) Sorghum as a multifunctional crop for the production of fuel ethanol: current status and future trends. In: Lima MAP (ed) Bioethanol. InTech, Rijeka. http://www.intechopen.com/books/bioethanol/sorghum-as-a-multifunctional-crop-for-the-production-of-fuelethanol-current-status-and-future-trend

    Google Scholar 

  • Shen F, Zhong Y, Saddler JN, Liu R (2011) Relatively high-substrate consistency hydrolysis of steam-pretreated sweet sorghum bagasse at relatively low cellulase loading. Appl Biochem Biotechnol 165:1024–1036

    Article  CAS  PubMed  Google Scholar 

  • Shewale S, Pandit A (2009) Enzymatic production of glucose from different qualities of grain sorghum and application of ultrasound to enhance the yield. Carbohydr Res 344:52–60

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Moreau RA, Hicks KB (2003) Yield and phytosterol composition of oil extracted from grain sorghum and its wet milled fractions. Cereal Chem 80:126–129

    Article  CAS  Google Scholar 

  • Sipos B, Réczey J, Somorai Z, Kádár Z, Dienes D, Réczey K (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162

    Article  CAS  PubMed  Google Scholar 

  • Smith CW, Frederiksen RA (eds) (2000) Sorghum: origin, history, technology and production. Wiley, New York

    Google Scholar 

  • Srinivas Rao P, Vinutha KS, Kumar GSA, Chiranjeevi T, Uma A, Lal P, Prakasham RS, Singh HP, Sreenivasa Rao R, Chopra S, Jose S (2016) Sorghum: a multipurpose bioenergy crop. In: Ciampitti IA, Prasad PVV (eds) Sorghum: state of the art and future perspectives. ASA and CSSA, Madison, WI

    Google Scholar 

  • Stamenkovich O, Siliveru KR, Veljkovic V, Bankovic-Ilic I, Djalovic I, Ciampitti IA, Mitrovic P, Sikora V, Prasad PVV (2020) Production of biofuels from sorghum. Renew Sustain Energy Rev 124:109769

    Article  CAS  Google Scholar 

  • Su MY, Tzeng WS, Shyu YT (2010) An analysis of feasibility of bioethanol production from Taiwan sorghum liquor waste. Bioresour Technol 101:6669–6675

    Article  CAS  PubMed  Google Scholar 

  • Subhedar PB, Gogate PR (2013) Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: a review. Ind Eng Chem Res 52:11816–11828

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Wen J, Sun S, Sun RC (2015) Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems. Biotechnol Biofuels 8(37):1–13

    Google Scholar 

  • Sundstrom E, Yaegashi J, Yan J, Masson F, Papa G, Rodriguez A, Mirsiaghi M, Liang L, He Q, Tanjore D, Pray TR (2018) Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with: Rhodosporidium toruloides to produce advanced biofuels. Green Chem 20(12):2870–2879

    Article  CAS  Google Scholar 

  • Taylor JRN, Dewar J (2001) Developments in sorghum food technologies. In: Taylor SL (ed) Advances in food and nutrition research, vol 43. Academic Press, San Diego, CA

    Google Scholar 

  • Taylor JRN, Schober TJ, Bean SR (2006) Novel food and non-food uses for sorghum and millets. J Cereal Sci 44:252–271

    Article  CAS  Google Scholar 

  • Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F, Zaynab M, Lin S, Zhang H, Lin W (2018) Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: a review. Appl Ecol Environ Res 16:225–249

    Article  Google Scholar 

  • Teli MD, Mallick A (2018) Utilization of waste sorghum grain for producing superabsorbent for personal care products. J Polym Environ 26:1393–1404

    Article  CAS  Google Scholar 

  • Teramura H, Sasaki K, Oshima T, Matsuda F, Okamoto M, Shirai T, Kawaguchi H, Ogino C, Hirano K, Sazuka T, Kitano H, Kikuchi J, Kondo A (2016) Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol Biofuels 9:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teramura H, Sasaki K, Oshima T, Kawaguchi H, Ogino C, Sazuka T (2018) Effective usage of sorghum bagasse: Optimization of organosolv pretreatment using 25% 1-butanol and subsequent nanofiltration membrane separation. Bioresour Technol 252:157–164

    Article  CAS  PubMed  Google Scholar 

  • Tew TL, Cobill RM, Richard EP (2008) Evaluation of sweet sorghum and sorghum×sudangrass hybrids as feedstocks for ethanol production. Bioenergy Res 1:147–152

    Article  Google Scholar 

  • Theerarattananoon K, Xu F, Wilson J, Ballard R, Mckinney L, Staggenborg S, Vadlani P, Pei ZJ, Wang D (2011) Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind Crop Prod 33:325–332

    Article  CAS  Google Scholar 

  • Theerarattananoon K, Xu F, Wilson J, Staggenborg S, Mckinney L, Vadlani P et al (2012) Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess Biosyst Eng 35:615–623

    Article  CAS  PubMed  Google Scholar 

  • Umagiliyage AL, Choudhary R, Liang Y, Haddock J, Watson DG (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Ind Crop Prod 74:977–986

    Article  CAS  Google Scholar 

  • Viator HP, Lu S, Aragon D (2015) Influence of panicles and leafy material on sweet sorghum juice quality. J Am Soc Sugar Cane Technol 35:21–30

    Google Scholar 

  • Vietor DM, Miller FR (1990) Assimilation, partitioning, and nonstructural carbohydrates in sweet compared with grain sorghum. Crop Sci 30:1109–1115

    Article  CAS  Google Scholar 

  • Wang L, Weller CL, Hwang KT (2005) Extraction of lipids from grain sorghum DDG. Trans ASAE 48:1883–1888

    Article  CAS  Google Scholar 

  • Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R (2008) Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35:313–320

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Zhuang X, Yuan Z, Yu Q, Qi W, Wang Q, Tan X (2012) High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresour Technol 108:252–257

    Article  CAS  PubMed  Google Scholar 

  • Waniska RD (2000) Structure, phenolic compounds, and antifungal proteins of sorghum caryopses. In: Technical and institutional options for sorghum grain mold management. Proceedings of an International Consultation, p. 72–106, Patancheru, India. ICRISAT, Patancheru, pp 18–19

    Google Scholar 

  • Waniska RD, Rooney LW (2000) Structure and chemistry of the sorghum caryopsis. In: Smith CW, Frederiksen RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 649–688

    Google Scholar 

  • Waniska RD, Rooney LW, McDonough CM (2004) Sorghum: utilization. In: Colin W (ed) Encyclopedia of grain science. Elsevier, Oxford, pp 126–136

    Chapter  Google Scholar 

  • Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Qin X, Cheng Y, Laskar D, Qiao W, Sun S, Reyes LH, Wang X, Dai SY, Sattler SE, Kao K, Yang B, Zhang X, Yuan JS (2015) Simultaneous conversion of all cell wall components by an oleaginous fungus without chemi-physical pretreatment. Green Chem 17:1657–1667

    Article  CAS  Google Scholar 

  • Xu QQ, Zhao MJ, Yu ZZ, Yin JZ, Li GM, Zhen MY, Zhang QZ (2017) Enhancing enzymatic hydrolysis of corn cob, corn stover and sorghum stalk by dilute aqueous ammonia combined with ultrasonic pretreatment. Ind Crop Prod 109:220–226

    Article  CAS  Google Scholar 

  • Yan S, Wu X, Faubion J, Bean SR, Cai L, Chen YR, Sun XS, Wang D (2012) Ethanol-Production performance of ozone-treated tannin grain sorghum flour. Cereal Chem 89:30–37

    Article  CAS  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Qi W, Wang Q, Tan X (2011a) The effect of metal salts on the decomposition of sweet sorghum bagasse in flow-through liquid hot water. Bioresour Technol 102:3445–3450

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Wang W, Qi W, Wang Q, Tan X (2011b) Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery. Appl Energy 88:2472–2479

    Article  CAS  Google Scholar 

  • Yu Q, Zhuang X, Wang Q, Qi W, Tan X, Yuan Z (2012) Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Bioresour Technol 116:220–225

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Zhuang X, Yuan Z, Qi W, Qiong W, Tan X, Ma L, Wu C (2014) Concentration and detoxification of sweet sorghum bagasse hydrolyzate with nano-filtration membranes. Taiyangneng Xuebao/Acta Energiae Solaris Sinica 35:384–390

    CAS  Google Scholar 

  • Yu Q, Wang Y, Qi W, Wang W, Wang Q, Bian S, Zhu Y, Zhuang X, Wang W, Yuan Z (2018) Phase-exchange solvent pretreatment improves the enzymatic digestibility of cellulose and total sugar recovery from energy sorghum. ACS Sustain Chem Eng 6(2):1723–1731

    Article  CAS  Google Scholar 

  • Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D (2006) Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crop Prod 23:304–310

    Article  CAS  Google Scholar 

  • Zhang G, Hamaker BR (2005) Sorghum (Sorghum bicolor L. Moench) flour pasting properties influenced by free fatty acids and proteins. Cereal Chem 82:534–540

    Article  CAS  Google Scholar 

  • Zhang Z, Qu Y, Zhang X, Lin J (2008) Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602. Appl Biochem Biotechnol 145:39–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ma X, Yu J, Zhang X, Tan T (2011) The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol 102:4585–4589

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Pei Z, Xu F, Wang D, Vadlani P (2015) Effects of ultrasonic vibration-assisted pelleting on chemical composition and sugar yield of corn stover and sorghum stalk. Renew Energy 76:160–166

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang P, Pei Z, Wang D (2017) Investigation on characteristics of corn stover and sorghum stalk processed by ultrasonic vibration-assisted pelleting. Renew Energy 101:1075–1086

    Article  CAS  Google Scholar 

  • Zhang M, Li Z, Chen X, Zhou J (2018) Ultrasonic-assisted pelleting of sorghum stalk: predictive models for pellet density and durability using multiple response surface methodology. Energies 11:1214

    Article  CAS  Google Scholar 

  • Zhao M-J, Xu Q-Q, Zhen M-Y, Li G-X, Yin J-Z (2017) Enhancing enzyme hydrolysis of sorghum stalk by CO2-pressurized liquid hot water pretreatment. Environ Prog Sustain Energy 36:208–213

    Article  CAS  Google Scholar 

  • Zhao MJ, Xu QQ, Li GM, Zhand QZ, Zhou D, Yin JZ, Zhan HS (2019) Pretreatment of agricultural residues by supercritical CO2 at 50–80 °C to enhance enzymatic hydrolysis. J Energ Chem 31:39–45

    Article  Google Scholar 

  • Zhu F (2014) Structure, physicochemical properties, modifications, and uses of sorghum starch. Comp Rev Food Sci Food Saf 13:597–610

    Article  CAS  Google Scholar 

  • Zhuang X, Wang W, Yu Q, Qi W, Wang Q, Tan X, Zhou G, Yuan Z (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project III 45001). It is also a part of the Project 0-14-18 of the SASA Branch in Niš, Serbia. Contribution number 20-176-B from the Kansas Agriculture Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Vara Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veljković, V.B. et al. (2020). Pretreatment Methods for Biofuel Production from Sorghum. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_30

Download citation

Publish with us

Policies and ethics