Skip to main content

Advertisement

Log in

Utilization of Waste Sorghum Grain for Producing Superabsorbent for Personal Care Products

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Modification of useful starch extracted from waste sorghum grains was carried out for production of superabsorbent materials which can be used in personal care products. Starch was extracted using alkali steeping method. It was characterized for swelling power, percentage transmittance and iodine binding values. The extracted starch was modified via graft copolymerization of acrylic acid and acrylamide onto starch to produce biodegradable absorbent material. The changes in modified starch structure were assessed using TGA, FTIR and SEM. The evaluation of enhancement in the properties was done by performing absorption tests. The reaction parameters were optimized to achieve higher graft add-on level and water absorption capacity. The absorbent product was further subjected to saponification for further enhancing its water absorption capacity (368.8 g/g). The product prepared by using optimized parameters of reaction was made highly porous by introducing sodium bicarbonate during the reaction. It showed a significant increase in the rate of water absorption and enhancement in water absorption capacity (380.9 g/g).The modified product showed 101.1 and 77.0 g/g absorption of artificial blood and artificial urine, respectively. This modified product was infused in commercially available sanitary napkin and baby diaper. Further, it was tested for fluid absorption and centrifuge retention capacity and it performed distinctly better than the commercial products. This superabsorbent material showed 12% weight loss after 28 days when biodegradability test by soil burial method was carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown PR, McWilliam A, Khamphoukeo K (2013) Post-harvest damage to stored grain by rodents in village environments in Laos. Int Biodeterior Biodegrad 82:104–109. doi:10.1016/j.ibiod.2012.12.018

    Article  Google Scholar 

  2. Teli MD, Waghmare NG (2009) Synthesis of superabsorbent from carbohydrate waste. Carbohydr Polym 78:492–496. doi:10.1016/j.carbpol.2009.05.006

    Article  CAS  Google Scholar 

  3. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B 365:3065–3081. doi:10.1098/rstb.2010.0126

    Article  Google Scholar 

  4. Buffo RA, Weller CL, Parkhurst AM (1998) Relationships among grain sorghum quality factors. Cereal Chem 75:100–104

    Article  CAS  Google Scholar 

  5. Udachan IS, Sahu AK, Hend FM (2012) Extraction and characterization of sorghum (Sorghum bicolor L. Moench) starch. Int Food Res J 19:315–319

    CAS  Google Scholar 

  6. Zheng Y, Gao T, Wang A (2008) Preparation, swelling, and slow-release characteristics of superabsorbent composite containing sodium humate. Ind Eng Chem Res 47:1766–1773. doi:10.1021/ie0713137

    Article  CAS  Google Scholar 

  7. Liu M, Liang R, Zhan F et al (2007) Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization. Polym Int 56:729–737. doi:10.1002/pi.2196

    Article  CAS  Google Scholar 

  8. Parvathy PC, Jyothi AN, John KS, Sreekumar J (2014) Cassava starch based superabsorbent polymer as soil conditioner: impact on soil physico-chemical and biological properties and plant growth. CLEAN Soil Air Water 42:1610–1617. doi:10.1002/clen.201300143

    Article  CAS  Google Scholar 

  9. Qiao D, Liu H, Yu L et al (2016) Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr Polym 147:146–154. doi:10.1016/j.carbpol.2016.04.010

    Article  CAS  Google Scholar 

  10. Teli MD, Mallick A (2015) Modification of Sorghum Starch for Production of Superabsorbents. Int Res J Eng Technol 2:442–448

    Google Scholar 

  11. Parvathy PC, Jyothi AN (2012) Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide). Starch Stärke 64:207–218. doi:10.1002/star.201100077

    Article  CAS  Google Scholar 

  12. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    CAS  Google Scholar 

  13. Wu JH, Wei YL, Lin JM, Lin SB (2003) Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polym Int 52:1909–1912. doi:10.1002/pi.1303

    Article  CAS  Google Scholar 

  14. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245. doi:10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  15. Mohammed AD, Young DA, Vosloo HCM (2014) Synthesis and study of superabsorbent properties of acryloylated starch ester grafted with acrylic acid. Starch Stärke 66:393–399. doi:10.1002/star.201300174

    Article  CAS  Google Scholar 

  16. Pourjavadi A, Barzegar S (2009) Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems. Starch Stärke 61:161–172. doi:10.1002/star.200800063

    Article  CAS  Google Scholar 

  17. Wei Q (2014) Fast-swelling porous starch-g-poly(acrylic acid) superabsorbents. Iran Polym J 23:637–643. doi:10.1007/s13726-014-0257-4

    Article  CAS  Google Scholar 

  18. Chen J, Park H, Park K (1998) Synthesis of superporous hydrogels: Hydrogels with fast swelling and superabsorbent properties. J Biomed Mater Res 44:53–62. doi:10.1002/(SICI)1097-4636(199901)

    Article  Google Scholar 

  19. Teli MD, Sheikh J (2011) Rheological study of starch extracted from germinated and non-germinated maize vis-a-vis printing. Carbohydr Polym 86:897–902. doi:10.1016/j.carbpol.2011.05.040

    Article  CAS  Google Scholar 

  20. Subramanian V, Hoseney RC, Bramel-cox P (1994) Shear thinning properties of sorghum and corn starches’. Cereal Chem 71:272–275

    CAS  Google Scholar 

  21. Bhosale R, Singhal R (2007) Effect of octenylsuccinylation on physicochemical and functional properties of waxy maize and amaranth starches. Carbohydr Polym 68:447–456. doi:10.1016/j.carbpol.2006.11.011

    Article  CAS  Google Scholar 

  22. Juliano BO (1971) A Simplified assay for milled-rice amylose. Cereal Sci Today 16:334–340

    Google Scholar 

  23. Phang Y-N, Chee S-Y, Lee C-O, Teh Y-L (2011) Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym Degrad Stab 96:1653–1661

    Article  CAS  Google Scholar 

  24. Gautam N, Kaur I (2013) Soil burial biodegradation studies of starch grafted polyethylene and identification of Rhizobium meliloti therefrom. J Environ Chem Ecotoxicol 5:147–158. doi:10.5897/JECE09.022

    CAS  Google Scholar 

  25. Indian Standard (1993) SPECIFICATION FOR SANITARY NAPKINS. MHD 14: Hospital Planning. India

  26. Martinez AW, Phillips ST (2007) Supporting information for patterned paper as a platform for inexpensive, low volume, portable bioassays. https://gmwgroup.harvard.edu/pubs/Supplemental/983.pdf

  27. Teli MD, Mallick A, Warge V (2015) Studies in general acceptance and efficacy of baby diapers. J Text Assoc 76:9–14

    Google Scholar 

  28. Teli MD, Mallick A, Srivastava A (2015) Parameters of choice of sanitary napkins—a techno-commercial survey. J Text Assoc 76:235–242

    Google Scholar 

  29. Li Y, Li X, Zhou L et al (2004) Study on the synthesis and application of salt-resisting polymeric hydrogels. Polym Adv Technol 15:34–38. doi:10.1002/pat.444

    Article  CAS  Google Scholar 

  30. Mudiyanselage TK, Neckers DC (2008) Highly absorbing superabsorbent polymer. J Polym Sci Part A 46:1357–1364

    Article  CAS  Google Scholar 

  31. Schott H (1992) Swelling kinetics of polymers. J Macromol Sci Part B 31:1–9

    Article  CAS  Google Scholar 

  32. Meng Y, Ye L (2017) Synthesis and swelling property of the starch-based macroporous superabsorbent. J Appl Polym Sci. doi:10.1002/app.44855

    Google Scholar 

  33. Parvathy PC, Jyothi AN (2012) Water sorption kinetics of superabsorbent hydrogels of saponified cassava starch-graft-poly(acrylamide). Starch Staerke 64:803–812. doi:10.1002/star.201200001

    Article  CAS  Google Scholar 

  34. Mencer HJ, Gomzi Z (1994) Swelling kinetics of polymer-solvent systems. Eur Polym J 30:33–36. doi:10.1016/0014-3057(94)90229-1

    Article  CAS  Google Scholar 

  35. Wilske B, Bai M, Lindenstruth B et al (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res 21:9453–9460. doi:10.1007/s11356-013-2103-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grant Commission, India for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangesh D. Teli.

Ethics declarations

Conflict of interest

The authors declare no financial/commercial conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teli, M.D., Mallick, A. Utilization of Waste Sorghum Grain for Producing Superabsorbent for Personal Care Products. J Polym Environ 26, 1393–1404 (2018). https://doi.org/10.1007/s10924-017-1044-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1044-z

Keywords

Navigation