Skip to main content

Synthetic Seed Technology in Some Ornamental and Medicinal Plants: An Overview

  • Chapter
  • First Online:
Propagation and Genetic Manipulation of Plants

Abstract

Synthetic seed technology has been successfully employed in various medicinal and ornamental plants. It has immense potential in preserving callus, somatic embryo (SE), and other important tissues of valuable germplasm. The method can also be exploited as a tool of multiplication in diverse plant groups. Synthetic seed production in plants facilitates season-independent propagation of elite germplasm, accelerates seedless, ornamental, and ploidy plants multiplication with unique traits. Synthetic seed/encapsulation approach has a high beneficiary role in improved and fast transportation of propagules. The obligatory requirement for application of artificial seed technology en masse involves high-scale production of quality micro-propagules, which nowadays is a serious limiting factor. There are numerous factors controlling the success of development and germination of synthetic seeds. These include matured quality embryos, temperature, storage time, sodium alginate percentage, calcium chloride concentration, hardening time, and plant growth regulators (PGRs) concentrations. Encapsulation technology is an emerging area to open new vista in conserving, propagating, and shipment of valuable plant material for research affecting floriculture and pharmaceutical industry. In this chapter, the artificial seed technique status is reviewed in some plants of ornamental and medicinal importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali A, Munawar A, Naz S (2007) An in vitro study on micropropagation of Caladium bicolor. Int J Agric Biol 5:731–735

    Google Scholar 

  • Ali M, Mujib A, Zafar N, Tonk D (2018) Somatic embryogenesis, biochemical alterations and synthetic seed development in two varieties of coriander (Coriandrum sativum L.). Adv Hortic Sci 32:239–248

    Google Scholar 

  • Anand Y, Bansal YB (2002) Synthetic seed: a novel approach of in vitro plantlet formation in Vasaka (Adhatoda vasica Nees). Plant Biotechnol 19:159–162

    Article  CAS  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444

    Google Scholar 

  • Asmah HN, Hasnida HN, Zaimah NAN, Noraliza A, Salmi NN (2011) Synthetic seed technology for encapsulation and regrowth of in vitro derived Acacia hybrid shoot and axillary buds. Afr J Biotechnol 10:7820–7824

    Article  Google Scholar 

  • Asrar AA (2011) Seed germination induction of Hommaidh (Rumex vesicarius L.) by gibberlic acid and temperature applications. Eurasian J Agricult Environ Sci 10:310–317

    CAS  Google Scholar 

  • Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L). Arab J Biotechnol 9:415–426

    Google Scholar 

  • Bhojwani SS, Razdan MK (2006) Plant tissue culture: theory and practice. Elsevier Science, Netherland, pp 125–166

    Google Scholar 

  • Cangahuala-Inocente GC, Dal Vesco LL, Steinmacher D, Torrees AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (berg) biuret). Induction, conversion and synthetic seeds. Sci Hortic 111:228–234

    Article  CAS  Google Scholar 

  • Chaudhury R, Malik SK (2003) Strategies for achieving short, medium- and long-term conservation of desiccation-sensitive seeds. In: Chaudhury R, Pandey R, Malik SK, Bhag M (eds) Vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 191–200

    Google Scholar 

  • Datta KB, Kanjilal B, Sarker DD (1999) Artificial seed technology: development of a protocol in Geodorum densiflorum (Lam) Schltr. - an endangered orchid. Curr Sci 76(8):1142–1145

    Google Scholar 

  • Daud N, Taha RM, Hasbullah NA (2008) Artificial seed production from encapsulated microshoots of Saintpaulla ionantha Wendl. (African violet). J Appl Sci 8:4662–4667

    Article  Google Scholar 

  • Dave A, Joshi N, Purohit SD (2004) In vitro propagation of Chlorophytum borivilianum using encapsulated shoot buds. Eur J Hortic Sci 69:37–42

    Google Scholar 

  • Deng Z, Hu J, Goktepe F, Harbaugh B (2007) Assessment of genetic diversity and relationships among caladium cultivars and species using molecular markers. J Am Soc Hortic Sci 132:219–229

    Article  CAS  Google Scholar 

  • Faisal M, Alatar AA, Ahmad N, Anis M, Hegazy AK (2012) Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 40°C. Molecules 17:5050–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gantait S, Kundu S, Ali NM, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98

    Article  CAS  Google Scholar 

  • Gantait S, Vijayan J, Majee A (2017) Artificial seed production of Tylophora indica for interim storing and swapping germplasm. Horticult Plant J 3:41–46

    Article  Google Scholar 

  • Gray DJ, Purohit A, Triglano RN (1991) Somatic embryogenesis and development of synthetic seed technology. Crit Rev Plant Sci 10:33–61

    Article  Google Scholar 

  • Hassan NS (2003) In vitro propagation of jojoba (Simmondsia chinensis L.) through alginate-encapsulated shoot apical and axillary buds. Int J Agric Biol 5:513–516

    Google Scholar 

  • Hung C, Trueman S (2012) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34:117–128

    Article  CAS  Google Scholar 

  • Ikhlaq M, Hafiz IA, Micheli M, Ahmad T (2010) In vitro storage of synthetic seeds: effect of different storage conditions and intervals on their conversion ability. Afr J Biotechnol 9:5712–5721

    Google Scholar 

  • Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep 22:16–24

    Article  CAS  PubMed  Google Scholar 

  • Jung SJ, Yoon ES, Jeong JH, Choi YE (2004) Enhanced post-germinative growth of encapsulated somatic embryos of Siberian ginseng by carbohydrate addition to the encapsulation matrix. Plant Cell Rep 23:365–370

    Article  CAS  PubMed  Google Scholar 

  • Kanji M, Yuji S (2001) A method to produce encapsulatable units for synthetic seeds in Asparagus officinalis. Plant Cell Tissue Org Cult 64:27–32

    Article  Google Scholar 

  • Katouzi SSS, Majd A, Fallahian F, Bernard F (2011) Encapsulation of shoot tips in alginate beads containing salicylic acid for cold preservation and plant regeneration in sunflower (Helianthus annuus L.). Aust J Crop Sci 5:1469–1474

    CAS  Google Scholar 

  • Kavyashree R, Gayatri MC, Revanasiddaiah MH (2006) Propagation of mulberry S54 by synthetic seeds of axillary buds. Plant Cell Tissue Org Cult 84:245–249

    Article  Google Scholar 

  • Khor E, Ng WF, Loh CS (1998) Two-coat systems for encapsulation of Spathoglottis plicata (Orchidaceae) seeds and protocorms. Biotechnol Bioeng 59(5):635–639

    Article  CAS  PubMed  Google Scholar 

  • Kitto SK, Janick J (1982) Polyox as an artificial seed coat for asexual embryos. Hortic Sci 17:488–490

    Google Scholar 

  • Lambardi M, Benelli C, Ozudogru EA, Ozden Tokatli Y (2006) Synthetic seed technology in ornamental plants floriculture and ornamental plant biotechnology, vol II. Global Science Books, UK

    Google Scholar 

  • Lata H, Chandra S, Khan IA, Elsohly MA (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L.—an important medicinal plant. Physiol Mol Biol Plants 15:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata H, Chandra S, Natascha T, Khan IA, ElSohly MA (2011) Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage. Biotechnol Lett 33:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Latif Z, Nasir IA, Riazuddin S (2007) Indigenous production of synthetic seeds in Daucus carota. Pak J Bot 39:849–855

    Google Scholar 

  • Lisek A, Orlikowska T (2004) In vitro storage of strawberry and raspberry in calcium-alginate beads at 4°C. Plant Cell Tissue Org Cult 78:167–172

    Article  CAS  Google Scholar 

  • Mandal J, Pattnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (hoary basil), O. basilicum L. (sweet basil), O. gratissimum L. (shrubby basil), and O. sanctum L. (sacred basil). In Vitro Cell Dev Biol Plant 36:287–292

    Article  CAS  Google Scholar 

  • Mathur J, Ahuja PS, Lal N, Mathur AK (1989) Propagation of Valeriana wallichii DC. Using encapsulated apical and axial shoot buds. Plant Sci 60:111–116

    Article  Google Scholar 

  • Mehpara M, Mujib A, Siddiqui ZH (2012) Synthetic seed development and conversion to plantlet in Catharanthus roseus (L.) G. Don. Biotechnology 11:37–43

    Article  CAS  Google Scholar 

  • Mehpara M, Mujib A, Khusrau M (2015) Preparation and low temperature short-term storage for synthetic seeds of Caladium bicolor. Notulae Scientia Biologicae 7:90–95

    Article  Google Scholar 

  • Mohanraj R, Ananthan R, Bai VN (2009) Production and storage of synthetic seeds in Coelogyne breviscapa Lindl. Asian J Biotechnol 1:124–128

    Article  CAS  Google Scholar 

  • Mujib A, Ali M, Tonk D, Isah T, Zafar N (2016) Embryogenesis in ornamental monocots: plant growth regulators as signalling element. In: Mujib A (ed) Somatic embryogenesis in ornamentals and its application. Springer, New York, pp 187–201

    Chapter  Google Scholar 

  • Murashige T (1977) Plant cell and organ cultures as horticultural practices. In: Proceedings of the symposium on tissue culture for horticultural purposes, Ghent, Belgium, 6–9 September 1977

    Google Scholar 

  • Nagananda GS, Satishchandra N, Rajath S (2011) Regeneration of encapsulated protocorm like bodies of medicinally important vulnerable orchid Flickingeria nodosa (Dalz.) Seidenf. Int J Bot 7(4):310

    Article  CAS  Google Scholar 

  • Nandini BP, Sudarshana MS, Rajashekar N (2014) Plant regeneration through somatic embryogenesis and synthetic seed production in Rumex vesicarius L.–a potent medicinal herb. IOSR-J Pharm Biol Sci 9:129–136

    Google Scholar 

  • Nhut DT, Duy N, Havy NN, Khue CD, Khiem DV, Hang NTT, Vinh DN (2004) Artificial seeds for propagation of Anthurium ‘TROPICAL’. J Agric Sci Technol 4:73–78

    Google Scholar 

  • Nieves N, Lorenzo JC, Blanco MA, Gonzalez J, Peralta H, Hernandez M, Santos R, Concepcion O, Borroto CG, Borroto E, Tapia R, Martinez ME, Fundora Z, Gonzalez A (1998) Artificial endosperm of Cleopatra tangerine zygotic embryos: a model for somatic embryo encapsulation. Plant Cell Tissue Org Cult 54:77–83

    Article  Google Scholar 

  • Ozden TY, Carlo AD, Gumusel F, Pigmattelli S, Lambardi M (2008) Development of encapsulation techniques for the production and conservation of synthetic seeds in ornamental plants. Prop Ornam Plant 8:17–22

    Google Scholar 

  • Palanyandy SR, Gantait S, Suranthran P, Sinniah UR, Subramaiam S, Aziz MA, Sarifa SRSA, Roowi SH (2015) Storage of encapsulated oil palm polyembryoids: influence of temperature and duration. In Vitro Cell Dev Biol Plant 5:118–124

    Article  Google Scholar 

  • Pandey A, Chand S (2005) Efficient plant regeneration from encapsulated somatic embryos of Hyoscyamus muticus L. Indian J Biotechnol 4:546–550

    CAS  Google Scholar 

  • Piccioni E, Standardi A (1995) Encapsulation of micropropagated buds of six woody species. Plant Cell Tissue Organ Cult 42:221–226

    Article  Google Scholar 

  • Rady MR, Hanafy MS (2004) Synthetic seed technology for encapsulation and regrowth of in vitro-derived Gypsophila paniculata L. shoot tips. Arab J Biotechnol 7:251–264

    Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants-a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Ramesh M, Marx R, Mathan G, Pandian SK (2009) Effect of bavistin on in vitro plant conversion from encapsulated uninodal microcuttings of micropropagated Bacopa monnieri (L)—an Ayurvedic herb. J Environ Biol 30:441–444

    Google Scholar 

  • Ray A, Bhattacharya S (2008) Storage and plant regeneration from encapsulated shoot tips of Rauvolfia serpentina—an effective way of conservation and mass propagation. S Afr J Bot 74:776–779

    Article  CAS  Google Scholar 

  • Reddy MC, Murthy KSR, Pullaiah T (2012) Synthetic seeds: a review in agriculture and forestry. Afr J Biotechnol 11:14254–14275

    Google Scholar 

  • Redenbaugh K (1983) Synthetic seeds. Application of synthetic seeds to crop improvement. CRC Press, Boca Raton, FL, p 481

    Google Scholar 

  • Redenbaugh K, Nichol J, Kossler ME, Paasch B (1984) Encapsulation of somatic embryos for artificial seed production. In Vitro Cell Dev Biol Plant 20:256–257

    Google Scholar 

  • Redenbaugh K, Fujii JA, Slade D (1988) Encapsulated plant embryos. In: Mizrahi A (ed) Advances in biotechnological processes. Alan R. Liss Inc., New York, NY, USA, pp 225–248

    Google Scholar 

  • Refouvelet E, Nours SL, Tallon C, Daguin F (1998) A new method for in vitro propagation of lilac (Syringa vulgaris L.): regrowth and storage conditions for axillary buds encapsulated in alginate beads, development of a pre-acclimatisation stage. Sci Hortic 74:233–241

    Article  Google Scholar 

  • Reinert J (1958) Morphogenese und ihre kontrolle an gewebekulturen ausc arotten. Naturwissenschaften 45:344–345

    Article  CAS  Google Scholar 

  • Rihan HZ, Al-Issawi M, Al-Swedi F, Fuller MP (2012) The effect of using PPM (plant preservative mixture) on the development of cauliflower microshoots and the quality of artificial seed produced. Sci Hortic 141:47–52

    Article  CAS  Google Scholar 

  • Ruby YS, Amutha T, Priya K, Fathima MB, Manimekalai V (2015) In vitro seed germination, somatic embryogenesis and protocorm based micropropagation of a terrestrial ornamental orchid—Spathoglottis plicata blume. Eur J Biotechnol Biosci 3:20–23

    Google Scholar 

  • Ruffoni B, Massabo F, Giovannini A (1994) Artificial seed technology in ornamental plants, Lasianthus and Genista. Acta Hortic 362:297–304

    Article  Google Scholar 

  • Sarmah DK, Borthakur M, Borua PK (2010) Artificial seed production from encapsulated PLBs regenerated from leaf base of Vanda coerulea Grifft. Ex Lindl. An endangered orchid. Curr Sci 98:686–690

    CAS  Google Scholar 

  • Senaratna T (1992) Artificial seeds. Biotechnol Adv 10:379–392

    Article  CAS  PubMed  Google Scholar 

  • Sicurani M, Piccioni E, Standardi A (2001) Micropropagation and preparation of synthetic seed in M. 26 apple stock I: attempts towards saving labour in the production of adventitious shoot tips suitable for encapsulation. Plant Cell Tissue Org Cult 66:207–216

    Article  CAS  Google Scholar 

  • Singh AK, Varshney R, Sharma M, Agarwal SS (2006) Bansai KC (2006) regeneration of plants from alginate encapsulated shoot tips of Withania somnifera (L.) Dunal.—a medicinally important plant species. J Plant Physiol 163:220–223

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Sharma S, Rani G (2007) In vitro response of encapsulated and non-encapsulated somatic embryos of Kinnow mandarin (Citrus nobilis Lour x C. deliciosa Tenora). Plant Biotechnol Rep 1:101–107

    Article  Google Scholar 

  • Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritime following six months of storage. Plant Cell Tissue Org Cult 99:193–198

    Article  CAS  Google Scholar 

  • Standardi A, Micheli M, Piccioni E (1995) Incapsulamento in alginato di espianti micropropagati. Italus Hortus 2:46–52

    Google Scholar 

  • Stephen R, Jayabalan N (2000) Artificial seed production in coriander (Coriandrum sativum L.). Plant Tissue Culture 10:45–49

    Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. II Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125:761–766

    Article  CAS  Google Scholar 

  • Tabassum B, Nasil IA, Farooq AM, Latif Z, Husmain T (2010) Viability assessment of in vitro produced synthetic seeds of cucumber. Afr J Biotechnol 9:7026–7032

    CAS  Google Scholar 

  • Verma SK, Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) In vitro plantlets from alginate-encapsulated shoot tips of Solanum nigrum L. Sci Hortic 124:517–521

    Article  CAS  Google Scholar 

  • Zhang M, Peng S, Yang X, Xu L (2009) Preparation technique of Cremastra appendiculata synthetic seed. Zhongguo Zhong Yao Za Zhi 34(15):1894–1897

    PubMed  Google Scholar 

  • Zych M, Furmanowa M, Krajewska-Patan A, Lowicka A, Dreger M, Mendlewska S (2005) Micropropagation of Rhodiola kirilowa plants using encapsulated axillary buds and callus. Acta Biol Cracov Ser Bot 47:83–87

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Department of Botany, Jamia Hamdard, New Delhi for receiving various supports.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maqsood, M., Khusrau, M., Mujib, A., Kaloo, Z.A. (2021). Synthetic Seed Technology in Some Ornamental and Medicinal Plants: An Overview. In: Siddique, I. (eds) Propagation and Genetic Manipulation of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-15-7736-9_2

Download citation

Publish with us

Policies and ethics