Skip to main content

Embryogenesis in Ornamental Monocots: Plant Growth Regulators as Signalling Element

  • Chapter
  • First Online:
Somatic Embryogenesis in Ornamentals and Its Applications

Abstract

The process of in vitro embryogenesis has several basic and applied applications especially in fast and mass propagation of elite ornamental germplasm. In this chapter, somatic embryogenesis is described in two important ornamental plants. The select plants Gladiolus and Caladium are the monocot genera, belonging to the family Iridaceae and Araceae in which in vitro embryogenesis were investigated. Indirect somatic embryo formation was noticed in both the plants on tuber/rhizome callus. Although the synthetic auxin 2,4-D is a good signalling element in inducing embryos, the amendment of NAA and BAP improved embryogenesis and embryo numbers. The single use of BAP (0.5–1.0 mg/) was also effective in triggering embryogenesis; the embryo number was, however, low. The signalling and molecular role of auxin, cytokinin, GA3 and ABA in regulating somatic embryogenesis is briefly summarised. The origin, embryo structure and development are very similar, so was the requirement of plant growth regulator (PGR). The embryo structure and development was investigated morphologically, by using scanning electron microscopy (SEM) and is presented. The addition of 0.5 mg/l GA3 was noted to be very efficient in promoting embryo maturity; the influence of ABA in embryo maturation is also discussed. The technique of making synthetic seed in C. bicolor was made and is described briefly. The regenerative medium for obtaining plants from synthetic seeds was identified after storage at low temperatures (0 and 4 °C). The somatic embryos/synthetic seeds germinated into plantlets on 0.5 mg/l BAP-added medium and the regenerated plants are very similar to the mother plants. This and similar in vitro embryogenesis studies may help in building phylogenetic tree of near or distantly related taxonomic plants/plant groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftab F, Alam M, Afrasiab H (2008) In vitro shoot multiplication and callus induction in Gladiolus hybridus Hort. Pak J Bot 40(2):517–522

    CAS  Google Scholar 

  • Ahmed EU, Hayashi T, Zhu Y, Hosokawa M, Yazawa S (2002) Lower incidence of variants in Caladium bicolor Ait. Plants propagated by culture of explants from younger tissue. Sci Hortic 96:187–194

    Article  Google Scholar 

  • Ali A, Munawar A, Naz S (2007) An in vitro study on micropropagation of Caladium bicolor. Int J Agric Biol 9(5):731–735

    CAS  Google Scholar 

  • Babu P, Chawla HS (2000) In vitro regeneration of Agrobacterium mediated transformation in gladiolus. J Hortic Sci Biotechnol 75(4):400–404

    Google Scholar 

  • Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19(5):435–442

    Article  CAS  Google Scholar 

  • Bondrea IO, Pamfil D, Van Heusden S, Van Tuyl J, Meijer-Dekens F, Bondrea M, Sestras R, Rusu AR, Lucaci M, Patrascu BI, Balteanu VA (2007) AFLP as a modern technique for DNA fingerprinting and identification Tulipa cultivars. Bull USAMV-CN 63–64

    Google Scholar 

  • Bown D (1988) Aroids, plants of the arum family. Timber Press, Portland, 256 pp

    Google Scholar 

  • Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends in Plant Sci 13: 624–630

    Google Scholar 

  • Cangahuala-Inocente GC, Dal Vesco LL, Steinmacher D, Torrees AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Biuret): induction, conversion and synthetic seeds. Sci Hortic 111:228–234

    Article  CAS  Google Scholar 

  • Cao Z, Deng Z (2014) Interspecific genome size and chromosome number variation shed new light on species classification and evolution in Caladium. J Am Soc Hortic Sci 139(4):449–459

    Google Scholar 

  • Castillo B, Smith MAL (1997) Direct somatic embryogenesis from Begonia gracilis explants. Plant Cell Rep 16(6):385–388

    CAS  Google Scholar 

  • Chen WS, Su SC (2006) The difference and occurrence of somatic embryogenesis in early varieties of walnut. Sci Tech Inf 16:176–177

    Google Scholar 

  • Chen LP, Wang BL, Chen MF (1999) Studies on somatic embryogenesis of Euphorbia pulcherrima in vitro culture. Plant Physiol Commun 35(6):463–465

    CAS  Google Scholar 

  • Covington MF, Harmer SL (2007) The circadian clock regulates auxin signalling and responses in Arabidopsis. PLoS Biol 5(8), e227

    Article  CAS  Google Scholar 

  • Da KD, Zhang S, Li YZ, Qi ZJ (1996) Direct somatic embryogenesis from in vitro leaves of apple. Acta Hortic Sin 23(3):241–245

    Google Scholar 

  • Danso KE, Ford-Lloyd BV (2003) Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Rep 21:718–725

    PubMed  CAS  Google Scholar 

  • Dantu PK, Bhojwani SS (1995) In vitro corm formation and field evaluation of corm-derived plants of Gladiolus. Sci Hortic 61:115–129

    Article  Google Scholar 

  • Elena R-T, Barna B, Ana-Maria S (2012) In vitro culture and medium-term conservation of the rare wild species Gladiolus imbricatus. Afr J Biotechnol 11(81):14703–14712

    Google Scholar 

  • Emek Y, Erdag B (2007) In vitro propagation of Gladiolus anatolicus (Boiss.) Stapf. Pak J Bot 39(1):23–30

    Google Scholar 

  • Feher A (2015) Somatic embryogenesis – stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849(4):385–402

    Article  PubMed  CAS  Google Scholar 

  • Fereol L, Chovelon V, Causse S (2002) Evidence of a somatic embryogenesis process for plant regeneration in Garlic (Allium sativum L.). Plant Cell Rep 21(3):197–203

    Article  CAS  Google Scholar 

  • Francis D, Sorrell DA (2001) The interface between the cell cycle and plant growth regulators: a mini review. J Plant Growth Regul 33:1–12

    Article  CAS  Google Scholar 

  • Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. J Plant Growth Regul 43:27–47

    Article  CAS  Google Scholar 

  • Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS One 8, e69261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldblatt P, Manning JC (1998) Gladiolus in Southern Africa: systematics, biology, and evolution. Fernwood Press, Cape Town

    Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534

    Article  PubMed  PubMed Central  Google Scholar 

  • Gow WP, Chen JT, Chang WC (2009) Effects of genotype, light regime, explant position and orientation on direct somatic embryogenesis from leaf explants of Alaenopsis Orchid. Acta Physiol Plant 31(2):263–269

    Article  Google Scholar 

  • Graeme KA (2011) Toxic plant ingestions. In: Auerbach PS (ed) Wilderness medicine, 6th edn. Elsevier, Philadelphia, pp 862–870

    Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hostetler MA, Schneider SM (2004) Poisonous plants. In: Tintinalli JE, Kelen GD, Stapczynski JS, Ma OJ, Cline DM (eds) Emergency medicine: a comprehensive study guide, 6th edn. McGraw-Hill, New York, chap 205

    Google Scholar 

  • Iantcheva A, Barbulova A, Vlahova M, Kondorosi E, Elliott M, Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18:904–910

    Article  CAS  Google Scholar 

  • Jiang XW, Zhang QX (2007) Studies on transgenic acceptor system of groundcover Chrysanthemum via indirect somatic embryogenesis. For Res 20(3):328–333

    Google Scholar 

  • Jiang XW, Chen FJ, Lu M, Cai M, Zhang QX (2008) Direct somatic embryogenesis in Ground-cover Chrysanthemum. J Beijing For Univ 30(2):65–70

    Google Scholar 

  • Jiménez VM, Thomas C (2006) Participation of plant hormones in determination and progression of somatic embryogenesis. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Springer, Heidelberg, pp 103–118

    Chapter  Google Scholar 

  • Junaid A, Mujib A, Bhat MA, Sharma MP (2007) Somatic embryogenesis and plant regeneration in Catharanthus roseus. Biol Plant 51:641–646

    Article  CAS  Google Scholar 

  • Kamo K, Joung YH (2007) Gladiolus. In: Pua EC, Davey MR (eds) Biotechnology in mass agriculture and forestry: transgenic crops VI, vol 61. Springer, Berlin/Heidelberg, pp 289–298

    Google Scholar 

  • Kamo K, Joung YH, Green K (2009) GUS expression in Gladiolus plants controlled by two Gladiolus ubiquitin promoters. Floricult Ornam Biotechnol 3(1):10–14

    Google Scholar 

  • Karami O, Deljao A, Pour AM (2007) Repetitive somatic embryogenesis in carnation in picloram supplemented media. J Plant Growth Regul 51:33–39

    Article  CAS  Google Scholar 

  • Kaviani B (2010) Cryopreservation by encapsulation dehydration for long-term storage of some important germplasm: seed of lily [Lilium ledebourii (Baker) Bioss.], embryonic axe of Persian lilac (Melia azedarach L.), and tea (Camellia sinensis L.). Plant Omics J 3:177–182

    Google Scholar 

  • Krahulcová A (2003) Chromosome numbers in selected monocotyledons (Czech Republic, Hungary and Slovakia). Preslia Praha 75:97–113

    Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszeska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Org Cult 92:31–45

    Article  Google Scholar 

  • Li WA, Zhang YH, Wang YQ (1981) Studies on tissue culture of various cultivars of caladium. Acta Phytophysiol Sin 17(3):245–250

    Google Scholar 

  • Li XQ, Krasnyanski SF, Korban SS (2002) Optimization of the UidA gene transfer into somatic embryos of Rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40(5):453–459

    Article  CAS  Google Scholar 

  • Li SJ, Deng XM, Mao HZ, Hong Y (2005) Enhanced anthocyanins synthesis in foliage plant Caladium bicolor. Plant Cell Rep 23:716–720

    Article  PubMed  CAS  Google Scholar 

  • Lipaska H, Konradova H (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol Plant 40:23–30

    Article  CAS  Google Scholar 

  • Liu XM, Zhou PH, Qu SC, Lu XY, Luo ZM (1997) In vitro induction of indefinite bubs and somatic embryos from scale leave of tetraploid ‘Longya Lily. Acta Hortic Sin 24(4):353

    Google Scholar 

  • Ma GH, Liu N (2003) Direct somatic embryogenesis and shoot formation from cultured young leaf of Kalanchoe blossfeldiana. Plant Physiol Commun 39(6):625

    Google Scholar 

  • Mandal AKA, Datta SK (2005) Direct somatic embryogenesis and plant regeneration from ray florets of Chrysanthemum. Biol Plant 49(1):29–33

    Article  Google Scholar 

  • Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang X-D, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruyama E, Yoshihisa H, Katsuaki I (2007) Somatic embryogenesis and plant regeneration in yakutanegoyou, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. In Vitro Cell Dev Biol Plant 43:28–34

    Article  CAS  Google Scholar 

  • Massey LM (1928) Dry rot of gladiolus corms. Phytopathology 18(6):519–529

    Google Scholar 

  • Memon N (2012) In vitro propagation of Gladiolus plantlets and cormels. J Hortic Sci Ornam Plants 4(3):280–291

    Google Scholar 

  • Mujib A, Samaj J (2006) Somatic embryogenesis. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Mujib A, Bandyopadhyay S, Jana BK (1991) In vitro propagation of Caladium bicolor cv ‘Bleeding Heart’. Exp Genet 7:68–71

    Google Scholar 

  • Mujib A, Maity I, Jana BK (1996) Rapid in vitro multiplication of Caladium sagitifolium. Adv Plant Sci 9:47–50

    Google Scholar 

  • Mujib A, Banerjee S, Ghosh PD (2006) Origin, development and structure of somatic embryo in selected bulbous ornamentals: BAP as inducer. In: Mujib A, Samaj J (eds) Somatic embryogenesis, vol 2, Plant cell monograph. Springer, Berlin, pp 15–24

    Chapter  Google Scholar 

  • Mujib A, Banerjee S, Ghosh PD (2007) Callus induction, somatic embryogenesis and chromosomal instability in tissue culture-raised Hippeastrum (Hippeastrum hybridum cv. United Nations). Prop Ornam Plant 7(4):169–174

    Google Scholar 

  • Mujib A, Banerjee S, Fatima S, Ghosh PD (2008) Regenerated plant populations from rhizome-calli showed morphological and chromosomal changes in Caladium bicolor (Ait.) Vent. cv. ‘Bleeding Heart’. Prop Ornam Plant 8(3):138–143

    Google Scholar 

  • Nagaraju V, Parthasarthy VA (1995) Effect of growth regulators on in vitro shoots of Gladiolus. Folia Hortic 7:93–100

    Google Scholar 

  • Nasir IA, Jamal A, Tabassum B, Husnain T (2013) Regeneration response of old cell suspensions of Gladiolus. Exp Agric Hortic 2(2):1–11

    Google Scholar 

  • Nawy T, Lukowitz W, Bayer M (2008) Talk global, act local – patterning the Arabidopsis embryo. Curr Opin Plant Biol 11:28–33

    Article  PubMed  CAS  Google Scholar 

  • Nhut DT, Teixeira da Silva JA, Huyen PX, Paek KY (2004) The importance of explant source on regeneration and micropropagation of Gladiolus by liquid shake culture. Sci Hortic 102:407–414

    Article  Google Scholar 

  • Ogaki M, Furuichi Y, Kuroda K, Chin DP, Ogawa Y, Mii M (2008) Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium x formolongi. Plant Cell Rep 27:699–705

    Article  PubMed  CAS  Google Scholar 

  • Ohri D, Khoshoo TN (1986) Plant DNA contents and systematics. In: Dutta SK (ed) DNA systematics. Vol II: Plants. CRC Press, Baton Rouge, pp 2–19

    Google Scholar 

  • Podwyszynska M, Niedoba K, Korbin M, Marasek A (2006) Somaclonal variation in micropropagated tulips determined by phenotype and DNA markers. Acta Hortic 714:211–220

    Article  Google Scholar 

  • Podwyszynska M, Kuras A, Korbin M (2010) Somaclonal variation in micropropagated tulips as a source of novel genotypes. Acta Hortic 855:225–232

    Article  Google Scholar 

  • Racosy-Tican E, Bors B, Szatmari A-M (2012) In vitro culture and medium term conservation of the rare wild species Gladiolus imbricatus. Afr J Biotechnol 11(81):14703–14712

    Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants-a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Remotti PC (1995) Primary and secondary embryogenesis from cell suspension cultures of Gladiolus. Plant Sci 107:205–214

    Article  CAS  Google Scholar 

  • Robichaud RL, LesserVC MSA (2004) Treatments affecting maturation and germination of American chestnut somatic embryos. J Plant Physiol 161:957–969

    Article  PubMed  CAS  Google Scholar 

  • Sakpere AMA, Adebona AC (2007) Tissue culture derived plantlet variation in Caladium humboldtii Schott. J Sci Technol 27(1):28–34

    Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S (2010) Indian floriculture industry: the way forward. Floriculture Today pp 40–44

    Google Scholar 

  • Sarmah DK, Borthakur M, Borua PK (2010) Artificial seed production from encapsulated PLBs regenerated from leaf base of Vanda coerulea Grifft. ex. Lindl. an endangered orchid. Curr Sci 98:686–690

    CAS  Google Scholar 

  • Sen J, Sen S (1995) Two-step bud culture technique for a high frequency regeneration of Gladiolus corms. Sci Hortic 64:133–138

    Article  Google Scholar 

  • Singh HP (2009) Floriculture industry in India: the bright future ahead. Indian Hortic 54(1):3–8

    Google Scholar 

  • Singh HP (2011) Paradigm in marketing of horticultural produce. Indian Hortic 56(3):3–8

    Google Scholar 

  • Sinha P, Roy SK (2002) Plant regeneration through in vitro cormel formation from callus culture of Gladiolus primulinus Baker. Plant Tiss Cult 12(2):139–145

    Google Scholar 

  • Song Y (2013) Insight into the mode of action of 2,4-Dichlorophenoxyacetic acid (2,4-D) as an herbicide. J Integr Plant Biol 56:106–113

    Article  CAS  Google Scholar 

  • Stefaniak B (1994) Somatic embryogenesis and plant regeneration of Gladiolus (Gladiolus hort.). Plant Cell Rep 13:386–389

    Google Scholar 

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su YH, Su YX, Liu YG, Zhang XS (2012) Abscisic acid is required for somatic embryo initiation through mediating spatial auxin response in Arabidopsis. J Plant Growth Regul 69:167–176

    Article  CAS  Google Scholar 

  • Takejiro T, Ikuo M, Eisuke M (1995) Somatic embryogenesis of Cyclamen Persicum Mill. ‘Anneke’ from aseptic seedlings. Plant Cell Rep 15(1–2):22–25

    Google Scholar 

  • Tognetti VB, Mühlenbock P, Van Breusegem F (2012) Stress homeostasis-the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  PubMed  CAS  Google Scholar 

  • Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tiss Org Cult 100(1):73–81

    Article  Google Scholar 

  • Vieitez A (1994) Somatic embryogenesis in Camellia spp. In: Jain SM, Gupta PK, Newton R. (eds.), Somatic embryogenesis in Woody Plants, Kluwer Academic Publishers: The Netherlands, pp 235–276

    Google Scholar 

  • Wilfret GJ (1986) Inheritance of leaf shape and color patterns in Caladium (Araceae). HortSci 21:750 (abstract)

    Google Scholar 

  • Wilfret GJ (1993) Caladium. In: de Hertogh A, le Nard M (eds) The physiology of flower bulbs. Elsevier, New York, pp 239–247

    Google Scholar 

  • Wu J, Liu C, Seng S, Khan MA, Sui J, Gong B, Liu C, Wu C, Zhong X, He J, Yi M (2015) Somatic embryogenesis and Agrobacterium-mediated transformation of Gladiolus hybridus cv. ‘Advance Red’. Plant Cell Tiss Org Cult 120:717–728

    Article  CAS  Google Scholar 

  • Xin WJ, Xu B, Wang GD, Guo WM, Wen FD, Jin JP (2006) Somatic embryogenesis and plant regeneration of Anthurium andraeanum. Acta Hortic Sin 33(6):1281–1286

    CAS  Google Scholar 

  • Xu Z, Hao J, He X, Yi M (2009) Callus induction and plant regeneration of Gladiolus hybridus Hort. Plant Physiol Commun 45(5):473–478

    Google Scholar 

  • Zhao J, Li Z, Cui J, Henny R, Gray D, Xie J, Chen J (2013) Efficient somatic embryogenesis and Agrobacterium-mediated transformation of pothos (Epipremnum aureum) ‘Jade’. Plant Cell Tiss Org Cult 114(2):237–247

    Article  CAS  Google Scholar 

  • Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–594

    Article  PubMed  CAS  Google Scholar 

  • Zhu GF, Lu FB, Chen ML, Wang BQ (2004) Somatic embryogenesis and plantlet regeneration of Euphorbia pulcherrima. Subtrop Plant Sci 33(4):37–38

    Google Scholar 

Download references

Acknowledgement

The first author is thankful to the Department of Botany, Hamdard University (Jamia Hamdard), for getting various facilities. The first author acknowledges present and past research students’ help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mujib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mujib, A., Ali, M., Tonk, D., Isah, T., Zafar, N. (2016). Embryogenesis in Ornamental Monocots: Plant Growth Regulators as Signalling Element. In: Mujib, A. (eds) Somatic Embryogenesis in Ornamentals and Its Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2683-3_12

Download citation

Publish with us

Policies and ethics