Skip to main content

Electronic Waste Management: Challenges and Opportunities

  • Chapter
  • First Online:
Environmental Microbiology and Biotechnology

Abstract

Managing waste generated from electrical and electronic equipment is recognized as one of the major environmental challenges for the twenty-first century around the world. Every year e-waste is growing at a rate of 3–5% and is estimated to reach 52.2 million tons by the year 2021. Most of the research technologies developed for the recycling of e-waste in pilot or laboratory scale require validation in terms of design, operation, and cost. Proper management can not only protect the environment from pollution but also provide alternate secondary sources for these metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar MS, Chali B, Azam T (2013) Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Res Plant Sci 1(3):68–73

    Google Scholar 

  • Ala-Kurikka S (2015) Electronic goods’ life spans shrinking, study indicates. http://www.endseurope.com/article/39711/electronic-goods-life-spans-shrinking-study-indicates. Retrieved 6 May 2016

  • Arab B, Hassanpour F, Arshadi M, Yaghmaei S, Hamedi J (2020) Optimized bioleaching of copper by indigenous cyanogenic bacteria isolated from the landfill of e-waste. J Environ Manag 261:110–124

    Article  CAS  Google Scholar 

  • Arshadi M, Mousavi SM (2014a) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242

    Article  CAS  PubMed  Google Scholar 

  • Arshadi M, Mousavi SM (2014b) Simultaneous recovery of Ni and Cu from computer-printed circuit boards using bioleaching: statistical evaluation and optimization. Bioresour Technol 174:233–242

    Article  CAS  PubMed  Google Scholar 

  • Arshadi M, Mousavi SM (2015) Multi-objective optimization of heavy metals bioleaching from discarded mobile phone PCBs: simultaneous Cu and Ni recovery using Acidithiobacillus ferrooxidans. Sep Purif Technol 147:210–219

    Article  CAS  Google Scholar 

  • Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  PubMed  Google Scholar 

  • Bahaloo-Horeh N, Mousavi SM (2017) Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger. Waste Manag 60:666–679

    Article  CAS  PubMed  Google Scholar 

  • Bahaloo-Horeh N, Mousavi SM, Baniasadi M (2018) Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J Clean Prod 197:1546–1557

    Article  CAS  Google Scholar 

  • Bai J, Weihua G, Changzhong L, Wenyi Y, Chenglong Z, Jingwei W, Bin D, Kaimin S (2019) Bioleaching for extracting heavy metals from electronic waste sludge. In: Industrial and municipal sludge. Butterworth-Heinemann, Oxford, pp 525–551

    Chapter  Google Scholar 

  • Balde CP, Kuehr R, Blumenthal K, Fondeur Gill S, Kern M, Micheli P, Magpantay E, Huisman J (2015) E-waste statistics-guidelines on classification, reporting and indicators. United Nations University, IAS-SCYCLE, Bonn, p 51

    Google Scholar 

  • Baniasadi M, Vakilchap F, Bahaloo-Horeh N, Mousavi SM, Farnaud S (2019) Advances in bioleaching as a sustainable method for metal recovery from e-waste: a review. J Ind Eng Chem 76:75–90

    Article  CAS  Google Scholar 

  • Barik SP, Prabaharan G, Kumar L (2017) Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J Clean Prod 147:37–43

    Article  CAS  Google Scholar 

  • Barquilha CER, Cossich ES, Tavares CRG, Silva EA (2019) Biosorption of nickel (II) and copper (II) ions by Sargassum sp. in nature and alginate extraction products. Biores Technol Rep 5:43–50

    Google Scholar 

  • Bazargan A, Lam KF, McKay G (2012) Challenges and opportunities of e-waste management. Nova Science, New York

    Google Scholar 

  • Bindschedler S, Bouquet TQTV, Job D, Joseph E, Junier P (2017) Fungal biorecovery of gold from e-waste. In: Advances in applied microbiology, vol 99. Academic, New York, pp 53–81

    Google Scholar 

  • Brady D, Duncan JR (1994) Bioaccumulation of metal cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41(1):149–154

    Article  CAS  Google Scholar 

  • Byrne AR, Tušek-Žnidarič M, Puri BK, Irgolic KJ (1991) Studies of the uptake and binding of trace metals in fungi. Part II. Arsenic compounds in Laccaria amethystina. Appl Organomet Chem 5(1):25–31

    Article  CAS  Google Scholar 

  • Chancerel P, Meskers CE, Hagelüken C, Rotter VS (2009) Assessment of precious metal flows during preprocessing of waste electrical and electronic equipment. J Ind Ecol 13(5):791–810

    Article  CAS  Google Scholar 

  • Chatterjee S, Mitra A, Datta S, Veer V (2013) Phytoremediation protocols: an overview. In: Plant-based remediation processes. Springer, Berlin, pp 1–18

    Google Scholar 

  • Chen SJ, Tian M, Zheng J, Zhu ZC, Luo Y, Luo XJ, Mai BX (2014) Elevated levels of polychlorinated biphenyls in plants, air, and soils at an e-waste site in Southern China and enantioselective biotransformation of chiral PCBs in plants. Environ Sci Technol 48(7):3847–3855

    Article  CAS  PubMed  Google Scholar 

  • Chi TD, Lee JC, Pandey BD, Yoo K, Jeong J (2011) Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 24(11):1219–1222

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36(3):299–307

    Article  CAS  PubMed  Google Scholar 

  • Cucchiella F, D’Adamo I, Koh SL, Rosa P (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sust Energ Rev 51:263–272

    Article  Google Scholar 

  • Cui J, Forssberg E (2003) Mechanical recycling of waste electric and electronic equipment: a review. J Hazard Mater 99(3):243–263

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158(2-3):228–256

    Article  CAS  PubMed  Google Scholar 

  • Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: a review. Bioresour Technol 102(16):7381–7387

    Article  CAS  PubMed  Google Scholar 

  • Das S, Deshavath NN, Goud VV, Dasu VV (2019) Bioleaching of Al from spent fluid catalytic cracking catalyst using Aspergillus species. Biotechnol Rep 23:e00349

    Article  Google Scholar 

  • Directive, EC (2012) Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment, WEEE. Off J Eur Union 197:38–71

    Google Scholar 

  • do Nascimento JM, de Oliveira JD, Rizzo AC, Leite SG (2019) Biosorption Cu (II) by the yeast Saccharomyces cerevisiae. Biotechnol Rep 21:e00315

    Article  Google Scholar 

  • Faraji F, Golmohammadzadeh R, Rashchi F, Alimardani N (2018) Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. J Environ Manag 217:775–787

    Article  CAS  Google Scholar 

  • Francis AJ (1998) Biotransformation of uranium and other actinides in radioactive wastes. J Alloys Compd 271:78–84

    Article  Google Scholar 

  • Ganesh R, Robinson KG, Reed GD, Sayler GS (1997) Reduction of hexavalent uranium from organic complexes by sulfate-and iron-reducing bacteria. Appl Environ Microbiol 63(11):4385–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge W, Zamri D, Mineyama H, Valix M (2011) Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption 17(5):901

    Article  CAS  Google Scholar 

  • Giesy JP, Paine D (1977) Effects of naturally occurring aquatic organic fractions on 241Am uptake by Scenedesmus obliquus (Chlorophyceae) and Aeromonas hydrophila (Pseudomonadaceae). Appl Environ Microbiol 33(1):89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gönen F, Aksu Z (2007) Copper (II) bioaccumulation properties of the yeast C. tropicalis: Effect of copper (II) on growth kinetics. J Biotechnol 2(131):S165–S166

    Article  Google Scholar 

  • Gupta S, Nirwan J (2015) Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. Int J Environ Sci Technol 12(3):995–1002

    Article  CAS  Google Scholar 

  • Gurung M, Adhikari BB, Kawakita H, Ohto K, Inoue K, Alam S (2013) Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy 133:84–93

    Article  CAS  Google Scholar 

  • Hischier R, Wäger P, Gauglhofer J (2005) Does WEEE recycling make sense from an environmental perspective?: The environmental impacts of the Swiss take-back and recycling systems for waste electrical and electronic equipment (WEEE). Environ Impact Assess Rev 25(5):525–539

    Article  Google Scholar 

  • Horeh NB, Mousavi SM, Shojaosadati SA (2016) Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J Power Sources 320:257–266

    Article  CAS  Google Scholar 

  • Huisman J (2003) The QWERTY/EE concept, quantifying recyclability and eco-efficiency for end-of-life treatment of consumer electronic products. Delft University of Technology, Delft

    Google Scholar 

  • Işıldar A, Rene ER, van Hullebusch ED, Lens PN (2018) Electronic waste as a secondary source of critical metals: management and recovery technologies. Resour Conserv Recycl 135:296–312

    Article  Google Scholar 

  • Jacob JM, Karthik C, Saratale RG, Kumar SS, Desika P, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manag 217:56–70

    Article  CAS  Google Scholar 

  • Johnson DB (2018) The evolution, current status, and future prospects of using biotechnologies in the mineral extraction and metal recovery sectors. Minerals 8(8):343

    Article  CAS  Google Scholar 

  • Kathi S, Padmavathy A (2019) E-waste: global scenario, constituents, and biological strategies for remediation. In: Electronic waste pollution. Springer, Cham, pp 75–96

    Chapter  Google Scholar 

  • Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag 57:64–90

    Article  CAS  PubMed  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2017) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Khan MA, Ullah N, Khan T, Jamal M, Shah NA, Ali H (2019) Phytoremediation of electronic waste: a mechanistic overview and role of plant secondary metabolites. In: Electronic waste pollution. Springer, Cham, pp 233–252

    Chapter  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Bee DJ, Shirodkar PS, Tumkor S, Bettig BP, Sutherland JW (2005) Towards sustainable “product and material flow” cycles: identifying barriers to achieving product multi-use and zero waste. In: ASME 2005 international mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection, New York, pp 433–442

    Google Scholar 

  • Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Article  Google Scholar 

  • Kumar A, Saini HS, Kumar S (2018a) Bioleaching of gold and silver from waste printed circuit boards by Pseudomonas balearica SAE1 isolated from an e-waste recycling facility. Curr Microbiol 75(2):194–201

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Saini HS, Kumar S (2018b) Enhancement of gold and silver recovery from discarded computer printed circuit boards by Pseudomonas balearica SAE1 using response surface methodology (RSM). Biotech 8(2):100

    CAS  Google Scholar 

  • Lam EJ, Gálvez ME, Cánovas M, Montofré IL, Rivero D, Faz A (2016) Evaluation of metal mobility from copper mine tailings in northern Chile. Environ Sci Pollut Res 23(12):11901–11915

    Article  CAS  Google Scholar 

  • Li J, Duan H, Yuan W (2009) Case study of a Suzhou pilot project on the suitable treatment technology for scrap computers in China. In: 2009 IEEE international symposium on sustainable systems and technology. IEEE, Piscataway, pp 1–5

    Google Scholar 

  • Li L, Hu Q, Zeng J, Qi H, Zhuang G (2011) Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. J Environ Sci 23(1):108–111

    Article  CAS  Google Scholar 

  • Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J, Liu N (2014) Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism. J Environ Radioact 135:6–12

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Sun S, Zhou S, Ye M, Liang J, Huang J, Guan Z, Li S (2019) A new strategy on biomining of low grade base-metal sulfide tailings. Bioresour Technol 294:122187

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu J, Liu X, Dai C, Zhang Z, Song W, Chu Y (2019) Kinetic and equilibrium of U (VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. J Environ Radioact 203:117–124

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Luo X, Zeng Y, Deng M, Tu W, Wu Y, Mai B (2020) Bioaccumulation and biomagnification of hexabromocyclododecane (HBCDD) in insect-dominated food webs from a former e-waste recycling site in South China. Chemosphere 240:124813

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8(3):285–289

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Li J, Ye H, Du D, Li J, Sun P, Ma M, Wen J (2019) Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria. J Clean Prod 228:901–909

    Article  CAS  Google Scholar 

  • Maass D, de Medeiros Machado M, Rovaris BC, Bernardin AM, de Oliveira D, Hotza D (2019) Biomining of iron-containing nanoparticles from coal tailings. Appl Microbiol Biotechnol 103(17):7231–7240

    Article  CAS  PubMed  Google Scholar 

  • Mohd S, Kushwaha AS, Shukla J, Mandrah K, Shankar J, Arjaria N, Saxena PN, Khare P, Narayan R, Dixit S, Siddiqui MH (2019) Fungal mediated biotransformation reduces toxicity of arsenic to soil dwelling microorganism and plant. Ecotoxicol Environ Saf 176:108–118

    Article  CAS  PubMed  Google Scholar 

  • Monika JK (2010) E-waste management: as a challenge to public health in India. Indian J Community Med 35(3):382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1–4):193–207

    Article  Google Scholar 

  • Naja GM, Murphy V, Volesky B (2009) Biosorption, metals. In: Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 1–29

    Google Scholar 

  • Naseri T, Bahaloo-Horeh N, Mousavi SM (2019) Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries. J Clean Prod 220:483–492

    Article  CAS  Google Scholar 

  • Nayaka GP (2018) Review on e-waste management and recycling. Open Access J Waste Manag Xenobiotics 1(2):1–5

    Google Scholar 

  • Nnorom IC, Osibanjo O (2008) Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl 52(6):843–858

    Article  Google Scholar 

  • Osibanjo O, Nnorom IC (2008) Material flows of mobile phones and accessories in Nigeria: Environmental implications and sound end-of-life management options. Environ Impact Assess Rev 28(2-3):198–213

    Article  Google Scholar 

  • Özdemir S, Kilinc E, Poli A, Nicolaus B, Güven K (2012) Cd, Cu, Ni, Mn and Zn resistance and bioaccumulation by thermophilic bacteria, Geobacillus toebii subsp. decanicus and Geobacillus thermoleovorans subsp. stromboliensis. World J Microbiol Biotechnol 28(1):155–163

    Article  PubMed  CAS  Google Scholar 

  • Özdemir S, Kilinc E, Nicolaus B, Poli A (2013) Resistance and bioaccumulation of Cd 2+, Cu 2+, Co 2+ and Mn 2+ by thermophilic bacteria, Geobacillus thermantarcticus and Anoxybacillus amylolyticus. Ann Microbiol 63(4):1379–1385

    Article  CAS  Google Scholar 

  • Pant D, Giri A, Dhiman V (2018) Bioremediation techniques for e-waste management. In: Waste bioremediation. Springer, Singapore, pp 105–125

    Chapter  Google Scholar 

  • Patel S, Kasture A (2014) E (electronic) waste management using biological systems-overview. Int J Curr Microbiol App Sci 3(7):495–504

    Google Scholar 

  • Pathak P, Srivastava RR (2019) Environmental management of e-waste. In: Electronic waste management and treatment technology. Butterworth-Heinemann, Oxford, pp 103–132

    Chapter  Google Scholar 

  • Pérez-López P, González-García S, Jeffryes C, Agathos SN, McHugh E, Walsh D, Murray P, Moane S, Feijoo G, Moreira MT (2014) Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J Clean Prod 64:332–344

    Article  CAS  Google Scholar 

  • Podder MS, Majumder CB (2018) Optimization of environmental conditions for the growth and bioaccumulation of As (III) and As (V) ions by growing Corynebacterium glutamicum MTCC 2745: inhibition kinetic study. Sust Water Resour Manage 4(1):23–44

    Article  Google Scholar 

  • Pradhan D, Sukla LB, Mishra BB, Devi N (2019) Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J Clean Prod 209:617–629

    Article  CAS  Google Scholar 

  • Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res 24(8):6989–7008

    Article  CAS  Google Scholar 

  • Realff MJ, Raymond M, Ammons JC (2004) E-waste: an opportunity. Mater Today 7(1):40–45

    CAS  Google Scholar 

  • Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod 14(2):124–133

    Article  Google Scholar 

  • Rizki IN, Tanaka Y, Okibe N (2019) Thiourea bioleaching for gold recycling from e-waste. Waste Manag 84:158–165

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191

    Article  CAS  PubMed  Google Scholar 

  • Robrock KR, Coelhan M, Sedlak DL, Alvarez-Cohen L (2009) Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates. Environ Sci Technol 43(15):5705–5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozas EE, Mendes MA, Nascimento CA, Espinosa DC, Oliveira R, Oliveira G, Custodio MR (2017) Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J Hazard Mater 329:120–130

    Article  CAS  PubMed  Google Scholar 

  • Sahin M, Akcil A, Erust C, Altynbek S, Gahan CS, Tuncuk A (2015) A potential alternative for precious metal recovery from e-waste: iodine leaching. Sep Sci Technol 50(16):2587–2595

    CAS  Google Scholar 

  • Salam MMA, Kaipiainen E, Mohsin M, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Mehtätalo L, Pappinen A (2016) Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii EL Wolf) and the potential for phytoremediation of heavy metals. J Environ Manag 183:467

    Article  CAS  Google Scholar 

  • Salam MMA, Mohsin M, Pulkkinen P, Pelkonen P, Pappinen A (2019) Effects of soil amendments on the growth response and phytoextraction capability of a willow variety (S. viminalis× S. schwerinii× S. dasyclados) grown in contaminated soils. Ecotoxicol Environ Saf 171:753–770

    Article  CAS  PubMed  Google Scholar 

  • Savitha J, Sahana N, Praveen VK (2010) Metal biosorption by Helminthosporium solani-a simple microbiological technique to remove metal from e-waste. Curr Sci 98(7):903–904

    CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluep M, Hagelüken C, Meskers C, Magalini F, Wang F, Müller E, Kuehr R, Maurer C, Sonnemann G (2009) Market potential of innovative e-waste recycling technologies in developing countries. R’09 World Congress, Davos, Switzerland

    Google Scholar 

  • Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  PubMed  CAS  Google Scholar 

  • Shang H, Wang P, Wang T, Wang Y, Zhang H, Fu J, Ren D, Chen W, Zhang Q, Jiang G (2013) Bioaccumulation of PCDD/Fs, PCBs and PBDEs by earthworms in field soils of an E-waste dismantling area in China. Environ Int 54:50–58

    Article  CAS  PubMed  Google Scholar 

  • Sheel A, Pant D (2018) Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique. Bioresour Technol 247:1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Li J, Zeng X (2016) Global responses for recycling waste CRTs in e-waste. Waste Manag 57:187–197

    Article  PubMed  Google Scholar 

  • Sinha-Khetriwal D, Kraeuchi P, Schwaninger M (2005) A comparison of electronic waste recycling in Switzerland and in India. Environ Impact Assess Rev 25(5):492–504

    Article  Google Scholar 

  • Sow AY, Ismail A, Zulkifli SZ (2013) An assessment of heavy metal bioaccumulation in Asian swamp eel, Monopterus albus, during plowing stages of a paddy cycle. Bull Environ Contam Toxicol 91(1):6–12

    Article  CAS  PubMed  Google Scholar 

  • Sthiannopkao S, Wong MH (2013) Handling e-waste in developed and developing countries: initiatives, practices, and consequences. Sci Total Environ 463:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Ueki T (2016) Bioaccumulation of vanadium by vanadium-resistant bacteria isolated from the intestine of Ascidia sydneiensis samea. Mar Biotechnol 18(3):359–371

    Article  CAS  Google Scholar 

  • Veit HM, Diehl TR, Salami AP, Rodrigues JDS, Bernardes AM, Tenório JAS (2005) Utilization of magnetic and electrostatic separation in the recycling of printed circuit boards scrap. Waste Manag 25(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Vishan I, Saha B, Sivaprakasam S, Kalamdhad A (2019) Evaluation of Cd (II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: biosorption kinetics, thermodynamics and mechanism. Environ Technol Innov 14:100323

    Article  Google Scholar 

  • Vogel M, Fischer S, Maffert A, Hübner R, Scheinost AC, Franzen C, Steudtner R (2018) Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. J Hazard Mater 344:749–757

    Article  CAS  PubMed  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25(5):436–458

    Article  Google Scholar 

  • Willner J, Fornalczyk A, Saternus M (2015) Selective recovery of copper from solutions after bioleaching electronic waste. Nova Biotechnologica et Chimica 14(1):32–37

    Article  CAS  Google Scholar 

  • Wu JP, Chen XY, Wu SK, Tao L, She YZ, Luo XJ, Mai BX (2019) Polychlorinated biphenyls in apple snails from an abandoned e-waste recycling site, 2010–2016: A temporal snapshot after the regulatory efforts and the bioaccumulation characteristics. Sci Total Environ 650:779–785

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20

    Google Scholar 

  • Xu J, Thomas HR, Francis RW, Lum KR, Wang J, Liang B (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177(2):512–527

    Article  CAS  Google Scholar 

  • Yamane LH, de Moraes VT, Espinosa DCR, Tenório JAS (2011) Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers. Waste Manag 31(12):2553–2558

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ge Y, Tu P, Zeng H, Zhou X, Zou D, Wang K, Zeng Q (2019) Phytoextraction of Cd from a contaminated soil by tobacco and safe use of its metal-enriched biomass. J Hazard Mater 363:385–393

    Article  CAS  PubMed  Google Scholar 

  • Yilmazer P, Saracoglu N (2009) Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stipitis yeast. J Chem Technol Biotechnol 84(4):604–610

    Article  CAS  Google Scholar 

  • Yu J, Williams E, Ju M, Yang Y (2010) Forecasting global generation of obsolete personal computers. Environ Sci Technol 9:3232–3237

    Article  CAS  Google Scholar 

  • Zhang Y, Liu S, Xie H, Zeng X, Li J (2012) Current status on leaching precious metals from waste printed circuit boards. Procedia Environ Sci 16:560–568

    Article  CAS  Google Scholar 

  • Zhang K, Wu Y, Wang W, Li B, Zhang Y, Zuo T (2015) Recycling indium from waste LCDs: a review. Resour Conserv Recycl 104:276–290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, D., Dolker, T., Bajar, S., Singh, A. (2020). Electronic Waste Management: Challenges and Opportunities. In: Singh, A., Srivastava, S., Rathore, D., Pant, D. (eds) Environmental Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6021-7_5

Download citation

Publish with us

Policies and ethics