Skip to main content

Bioremediation Techniques for E-waste Management

  • Chapter
  • First Online:
Waste Bioremediation

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Bioremediation or microbial cooperation can improve the e-waste management process in a greener way. Every management strategy is concentrated upon the organic and inorganic portion of the e-waste. Organic part consists of variety of thermo and thermosetting plastic with the presence of halogenated material. Microbes are involved in the process of dehalogenation in many ways. Microbes can manage the leaching of inorganic portion of e-waste which consists of both metallic and nonmetallic components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

WEEE:

Waste of electrical and electronic equipment

E-waste:

Electronic waste

DNA:

Deoxyribose nucleic acid

CRT:

Cathode ray tube

PCBs:

Polychlorinated biphenyls

NADH:

Nicotinamide adenine dinucleotide

HXRF:

Handheld X-ray fluorescence analysis

IC:

Ion Chromatography

ICP:

Inductively coupled plasma mass spectrometry

OES:

Optical Emission Spectroscopy, Mt: Million Ton

References

  • Akcil A, Erust C, Gahan CS, Ozgun M, Sahin M, Tuncuk A (2015) Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants–a review. Waste Manag 45:258–271

    Google Scholar 

  • Alaee M et al. (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29 (6):683–689

    Google Scholar 

  • Appia-Ayme C, Guiliani N, Ratouchniak J, Bonnefoy V (1999) Characterization of an Operon Encoding Two c-Type Cytochromes, an aa3-Type Cytochrome Oxidase, and Rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol 65(11):4781–4787

    Google Scholar 

  • Arief YY, Madgwick JC (1992) The effect of biocides on microaerobic bacterial biodegradation of manganese oxide. Biorecovery 2(2):95–106

    Google Scholar 

  • Arwidsson Z, Allard B (2010) Remediation of metal-contaminated soil by organic metabolites from fungi II—metal redistribution. Water Air Soil Pollut 207(1–4):5–18

    Google Scholar 

  • Auernik KS, Kelly RM (2008) Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 74(24):7723–7732

    Google Scholar 

  • Bacelar-Nicolau P, Johnson DB (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65(2):585–590

    Google Scholar 

  • Ballester A, Gonzalez F, Blazquez ML, Mier JL (1990) The influence of various ions in the bioleaching of metal sulphides. Hydrometallurgy 23(2–3):221–235

    Google Scholar 

  • Bandeiras TM, Refojo PN, Todorovic S, Murgida DH, Hildebrandt P, Bauer C, Pereira MM, Kletzin A, Teixeira M (2009) The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens. is an analog of bc 1 complexes. Biochim et Biophys Acta (BBA)-Bioenerg 1787(1):37–45

    Google Scholar 

  • Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solution, vol 6. CRC press

    Google Scholar 

  • Barrett J (1993) Metal extraction by bacterial oxidation of minerals. Horwood

    Google Scholar 

  • Bientinesi M, Petarca L (2009) Comparative environmental analysis of waste brominated plastic thermal treatments. Waste Manag 29(3):1095–1102

    Google Scholar 

  • Bosecker K (1993) Bioleaching of silicate manganese ores. Geomicrobiol J 11(3–4):195–203

    Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20(3–4):591–604

    Google Scholar 

  • Bosshard PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30(10):3066–3070

    Google Scholar 

  • Brandl H (2008) Microbial leaching of metals. Biotechnol Set, Second Ed, pp 191–224

    Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94(1–4):14–17

    Google Scholar 

  • Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59(2):319–326

    Google Scholar 

  • Brasseur G, Levicán G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D (2004) Apparent redundancy of electron transfer pathways via bc 1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim et Biophys Acta (BBA)-Bioenerg, 1656(2), 114–126

    Google Scholar 

  • Brierley CL (1982) Microbiological mining. Sci Am 247:44–53

    Google Scholar 

  • Bruscella P, Appia-Ayme C, Levican G, Ratouchniak J, Jedlicki E, Holmes DS, Bonnefoy V (2007) Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiol 153(1):102–110

    Google Scholar 

  • Caballero BM, De Marco I, Adrados A, López-Urionabarrenechea A, Solar J, Gastelu N (2016) Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants. Waste Manag 57:226–234

    Google Scholar 

  • Cheikh M, Magnin JP, Gondrexon N, Willison J, Hassen A (2010) Zinc and lead leaching from contaminated industrial waste sludges using coupled processes. Environ Technol 31(14):1577–1585

    Google Scholar 

  • Chen L, Guan G, Wang B, Peng S, Zhou W (2008) Apparatus and method fordehalogenation regeneration of waste and old electric plastics, Patent Publication No.CN101220173 (A)

    Google Scholar 

  • Chu CK, Breuer PL, Jeffrey MI (2003) The impact of thiosulfate oxidation products on the oxidation of gold in ammonia thiosulfate solutions. Miner Eng 16(3):265–271

    Google Scholar 

  • Dimitrakakis E, Janz A, Bilitewski B, Gidarakos E (2009) Determination of heavy metals and halogens in plastics from electric and electronic waste. Waste Manag 29(10):2700–2706

    Google Scholar 

  • Dobbin PS, Powell AK, McEwan AG, Richardson DJ (1995) The influence of chelating agents upon the dissimilatory reduction of Fe (III) by Shewanella putrefaciens. Biometals 8(2):163–173

    Google Scholar 

  • Dorin R, Woods R (1991) Determination of leaching rates of precious metals by electrochemical techniques. J Appl Electrochem 21(5):419–424

    Google Scholar 

  • Elliott HA, Shastri NL (1999) Extractive decontamination of metal-polluted soils using oxalate. Water Air Soil Pollut 110(3):335–346

    Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113(1):321–326

    Google Scholar 

  • Glombitza F, Iske U, Bullmann M (1988) Mikrobielle laugung von seltenen erdelementen und spurenelementen. BioEngineering 4:37–43

    Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Eng Life Sci 7(4):299–306

    Google Scholar 

  • Holmes DS, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Biomining. Springer Berlin, Heidelberg, pp 281–307

    Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75(1):57–73

    Google Scholar 

  • Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472

    Google Scholar 

  • Hornung A et al. (2006) Method for treating waste materials containing halogen. U.S. Patent No. 7,060,242. 13 Jun. 2006

    Google Scholar 

  • Huber H, Stetter KO (1989) Thiobacillus prosperus sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Microbiol 151(6):479–485

    Google Scholar 

  • Huber H, Stetter KO (1990) Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal-mobilizing bacterium. Appl Environ Microbiol 56(2):315–322

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and Micro-organisms

    Google Scholar 

  • Ilyas S, Ruan C, Bhatti HN, Ghauri MA, Anwar MA (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101(3):135–140

    Google Scholar 

  • Ilyas S, Lee JC (2015) Hybrid leaching: an emerging trend in bioprocessing of secondary resources. In: Microbiology for minerals, metals, materials and the environment, CRC Press, pp 359–382

    Google Scholar 

  • Jain DK, Tyagi RD (1992) Leaching of heavy metals from anaerobic sewage sludge by sulfur-oxidizing bacteria. Enzyme and microbial technology 14(5):376–383

    Google Scholar 

  • Jing-ying L, Xiu-Li X, Wen-quan L (2012) Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Manag 32(6):1209–1212

    Google Scholar 

  • Konishi Y, Kubo H, Asai S (1992) Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans. Biotechnol Bioeng 39(1):66–74

    Google Scholar 

  • Kozubal MA, Dlakić M, Macur RE, Inskeep WP (2011) Terminal oxidase diversity and function in “Metallosphaera yellowstonensis”: gene expression and protein modeling suggest mechanisms of Fe (II)-oxidation in the Sulfolobales. Appl Environ Microbiol

    Google Scholar 

  • Krebs W, Bosshard PP, Brandl H, Bachofen R (1996) March. From waste to resource: metal recovery from solid waste incineration residues by microorganisms. In: Spring Meeting of the Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM), Bayreuth. Biospektrum Suppl (p 98)

    Google Scholar 

  • Leduc LG, Ferroni GD, Trevors JT (1997) Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J Microbiol Biotechnol 13(4):453–455

    Google Scholar 

  • Lee JC, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction–a review. Waste Manag 32(1):3–18

    Google Scholar 

  • Levicán G, Bruscella P, Guacunano M, Inostroza C, Bonnefoy V, Holmes DS, Jedlicki E (2002) Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol 184(5):1498–1501

    Google Scholar 

  • Liang G, Mo Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzym Microb Technol 47(7):322–326

    Google Scholar 

  • Maier RM, Pepper I, Gerba C (2000) Bacterial growth. Environ microbiol, pp 43–59

    Google Scholar 

  • Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH (2008) Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage 28(2):333–338

    Google Scholar 

  • Mishra D, Rhee YH (2010) Current research trends of microbiological leaching for metal recovery from industrial wastes. Curr Res Technol Educ Topics Appl Microbiol Microb Biotechnol 2:1289–1292

    Google Scholar 

  • Mohammed A, Oyeleke SB, Ndamitso MM, Achife CE, Badeggi UM (2013) The Impact of Electronic Waste Disposal and Possible Microbial and Plant Control. Int J Eng Sci 2(10):35–42

    Google Scholar 

  • Morin D, Lips A, Pinches T, Huisman J, Frias C, Norberg A, Forssberg E (2006) BioMinE–Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy 83(1):69–76

    Google Scholar 

  • Müller B, Burgstaller W, Strasser H, Zanella A, Schinner F (1995) Leaching of zinc from an industrial filter dust with Penicillium, Pseudomonas and Corynebacterium: Citric acid is the leaching agent rather than amino acids. J Ind Microbiol Biotechnol 14(3):208–212

    Google Scholar 

  • Mulligan CN, Kamali M (2003) Bioleaching of copper and other metals from low-grade oxidized mining ores by Aspergillus niger. J Chem Technol Biotechnol 78(5):497–503

    Google Scholar 

  • Olson GJ (1994) Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiol Lett 119(1–2):1–6

    Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manag 32(5):979–990

    Google Scholar 

  • Peters RW (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66(1):151–210

    Google Scholar 

  • Pham VA, Ting YP (2009) Gold bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation. In: Advanced materials research, vol 71. Trans Tech Publications, pp 661–664

    Google Scholar 

  • Pronk JT, Meijer WM, Hazeu W, Van Dijken JP, Bos P, Kuenen JG (1991) Growth of Thiobacillus ferrooxidans on formic acid. Appl Environ Microbiol 57(7):2057–2062

    Google Scholar 

  • Ren WX, Li PJ, Geng Y, Li XJ (2009) Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. J Hazard Mater 167(1):164–169

    Google Scholar 

  • Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191

    Google Scholar 

  • Rossi G (1990) Biohydrometallurgy. McGraw-Hill

    Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (1999) Direct versus indirect bioleaching. Process Metall 9:27–49

    Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59(2):159–175

    Google Scholar 

  • Sand W, Gerke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in) direct attack mechanism—a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43(6):961–966

    Google Scholar 

  • Satroutdinov AD, Dedyukhina EG, Chistyakova TYI, Witschel M, Minkevich IG, Eroshin VK, Egli T (2000) Degradation of metal—EDTA complexes by resting cells of the bacterial strain DSM 9103. Environ Sci Technol 34(9):1715–1720

    Google Scholar 

  • Sayer JA, Raggett SL, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99(8):987–993

    Google Scholar 

  • Schinner F, Burgstaller W (1989) Extraction of zinc from industrial waste by a Penicillium sp. Appl Environ Microbiol 55(5):1153–1156

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321

    Google Scholar 

  • Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments, and soils. Geol Soc America Spec Pap 379:49–62

    Google Scholar 

  • Schippers A, Jozsa P, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62(9):3424–3431

    Google Scholar 

  • Sheng PP, Etsell TH (2007) Recovery of gold from computer circuit board scrap using aqua regia. Waste Manage Res 25(4):380–383

    Google Scholar 

  • Sohnle PG, Hahn BL, Karmarkar R (2001) Effect of metals on Candida albicans growth in the presence of chemical chelators and human abscess fluid. J Lab Clin Med 137(4):284–289

    Google Scholar 

  • Solisio C, Lodi A (2002) Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans. Waste Manag 22(6):667–675

    Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High-yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiol Lett 119(3):365–370

    Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genom 9(1):597

    Google Scholar 

  • Wasay SA, Barrington SF, Tokunaga S (1998) Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ Technol 19(4):369–379

    Google Scholar 

  • Wheaton G, Counts J, Mukherjee A, Kruh J, Kelly R (2015) The confluence of heavy metal biooxidation and heavy metal resistance: implications for bioleaching by extreme thermoacidophiles. Minerals 5(3):397–451

    Google Scholar 

  • Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184(1):812–818

    Google Scholar 

  • Yang H, Liu J, Yang J (2011) Leaching copper from shredded particles of waste printed circuit boards. J Hazard Mater 187(1):393–400

    Google Scholar 

  • Yarzabal A, Appia-Ayme C, Ratouchniak J, Bonnefoy V (2004) Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiol 150(7):2113–2123

    Google Scholar 

  • Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D, DeMoss JA, Bonnefoy V (2002) The high-molecular-weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein. J Bacteriol 184(1):313–317

    Google Scholar 

  • Zwicker N, Theobald U, Zähner H, Fiedler HP (1997) Optimization of fermentation conditions for the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis. J Ind Microbiol Biotechnol 19(4):280–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Pant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, D., Giri, A., Dhiman, V. (2018). Bioremediation Techniques for E-waste Management. In: Varjani, S., Gnansounou, E., Gurunathan, B., Pant, D., Zakaria, Z. (eds) Waste Bioremediation. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7413-4_5

Download citation

Publish with us

Policies and ethics