Skip to main content
Log in

Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Heavy metal pollution affects environment adversely and leads to severe implications for both flora and fauna. In the present work, bacterial strain JS-1 was isolated with tolerance for different metals such as mercury (Hg), lead (Pb), cadmium (Cd), nickel (Ni), arsenic (As), tin (Sn), selenium (Se), zinc (Zn), chromium (Cr) and copper (Cu). JS-1 showed a significant tolerance for mercuric chloride (up to 5,000 μg/g) along with an efficient metal uptake and transformation. Growth of JS-1 was marginally affected on exposure to high mercury concentration due to acclimatization of the culture towards mercury. No mercury was found in cell-free supernatant after 96 h of incubation with 500 μg/g and 1,000 μg/g of mercury as an active ingredient. Almost all the mercury was found associated with cell biomass as determined by hydride generation atomic absorption spectroscopy. Only 60 % of mercury was sequestered in bacterial biomass on exposure to 2,000 and 5,000 μg/g mercury. As a detoxification mechanism, nearly 5 % of sequestered mercury was volatilized by the selected isolate (JS-1). Further X-ray diffraction analysis of deposited silvery grey biomass confirmed biotransformation of sequestered mercuric ions into monovalent mercury (Hg2Cl2), a non-bioavailable form of mercury. Culture was characterized morphologically, physiologically and biochemically. 16S rRNA gene sequence of JS-1 revealed its phylogenetic relationship and 98 % homology with Alcaligenes faecalis, a Gram-negative rod-shaped bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–40

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipmann DJ, Ostell J, Wheeler DL (2006) Gen-Bank. Nucl Acid Res 34(Database issue), D16–D20

  • Brierley CL (1990) Bioremediation of metal contaminated surface and ground waters. Geomicrobiol J 8:210–223

    Article  Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper (II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B Biointerfaces 46:101–107

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing my RDP space and quality controlled public data. Nucl Acid Res 35:D169–D172

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  Google Scholar 

  • Dzairi FZ, Zeroual Y, Moutaouakkil A, Taoufik J, Talbi M, Loutfi M, Lee K, Blaghen M (2004) Bacterial volatilization of mercury by immobilized bacteria in fixed and fluidized bed bioreactor. Ann Microbiol 54:353–364

    CAS  Google Scholar 

  • Filgueiras AV, Lavilla I, Bendicho C (2002) Chemical sequential extraction for metal partitioning in environmental solid samples. J Environ Monit 4:823–857

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine Biogeochemical cycling of mercury. Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  • Frischmuth A, Weppen P, Deckwer WD (1993) Microbial transformation of mercury(II): i. Isolation of microbes and characterization of their transformation capabilities. J Biotechnol 29:39–55

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and Bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4:1–36

    Google Scholar 

  • Glendinning KJ, Macaskie LE, Brown NL (2005) Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnol Lett 27:1657–1662

    Article  CAS  Google Scholar 

  • Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Anton Van Leewanhoek 103:1113–1123

  • Gupta S, Prakash R, Tejoprakash N, Pearce C, Pattrick R, Hery M, Lloyd J (2010) Selenium Mobilization of Pseudomonas aeruginosa (SNT-SG1) isolated from seleniferous soils from India. Geomicrobiol J 27:35–42

    Article  CAS  Google Scholar 

  • Gupta S, Goyal R, Nirwan J, Cameotra SS, Prakash NT (2012) Biosequestration, transformation and volatilization of Mercury by Lysinibacillus fusiformis isolated from Industrial effluent. J Microbiol Biotechnol 22:684–689

    Article  CAS  Google Scholar 

  • Havighurst RJ (1926) Parameters in crystal structure. The mercurous halides. J Am Chem Soc 48:2113–2125

    Article  CAS  Google Scholar 

  • Ilhan S, Cabuk A, Filik C, Calikan F (2004) Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trakya Univ J Sci 5:11–17

    Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing. China Environ Pollut 152:686–692

    Article  CAS  Google Scholar 

  • Krieg NR, Holt JG (1984) In: Murray RGE, Brenner DJ, Bryant MP et al. (eds) Bergey’s manual of systematic bacteriology, vol-I. Williams and Wilkins, Baltimore, MD

  • Kumar A, Gupta S, Cameotra S (2012) Screening and characterization of potential cadmium biosorbent Alcaligenes strain from Industrial effluent. J Basic Microbiol 52:160–166

    Article  CAS  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiology 29:67–69

    Google Scholar 

  • Mohamed RM, Abo-Amer AE (2012) Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol 52:53–65

    Article  CAS  Google Scholar 

  • Nakamura K, Hagimine M, Sakai M, Furukawa K (1999) Removal of mercury from mercury contaminated sediments using a combined method of chemical leaching and volatilization of mercury by bacteria. Biodegradation 10:443–447

    Article  CAS  Google Scholar 

  • Nongbri BB, Syiem MB (2012) Analysis of heavy metal accumulation in water and fish (Cyprinus carpio) meat from Umiam lake in Meghalaya, India. Int Multidis Res J 2:73–76

    Google Scholar 

  • Pathak A, Dastidar MG, Sreekrishnan TR (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manage 90:2343–2353

    Article  CAS  Google Scholar 

  • Perry E (2011) Beware ongoing mercury pollution in air, water. Pocono record

  • Qu J, Yan X, Wang X, Shao P, Cong Q (2012) Distribution of heavy metals, chemical fractions and ecological risks around a molybdenum mine in Liaoning Province, China. Vitam Trace Elem 1:104

    Article  Google Scholar 

  • Rakhshaee R, Giahi M, Pourahmad A (2009) Studying effect of cell wall’s carboxyl-carboxylate ratio change of Lemna minor to remove heavy metals from aqueous solution. J Hazard Mater 163:165–173

    Article  CAS  Google Scholar 

  • Ramaiah N, De J (2003) Un-usual rise in mercury-resistant bacteria in coastal environments. Microbial Ecol 45:444–454

    Article  CAS  Google Scholar 

  • Rojas LA, Yanez C, Myriam Gonzalez M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS ONE 6:e17555

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Selvin J, Shanmugha PS, Seghal KG, Thangavelu T, Sapna BN (2009) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363

    Article  CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene relation of plasmid and chromosome determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Takeuchi F, Iwahori K, Kamimura K, Negishi A, Maeda T, Sugio T (2001) Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacillus ferrooxidans SUG2-2. Biosci Biotechnol Biochem 65:1981–1986

    Article  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  • Thomson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Wiatrowski HA, Barkay T (2005) Monitoring of microbial metal transformations in the environment. Curr Opin Biotechnol 16:261–268

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry risks and best available strategies for remediation, vol 2011. Article ID 402647, 20 pages. International Scholarly Research Network (ISRN) Ecology

  • You K, Sha M, Fu J, Tang Y, Wang X (2010) Removal of Heavy Metals from Urban Sewage Sludge by Bioleaching. E-Product E-Service and E-Entertainment (ICEEE), International Conference 7–9, 2010

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plan 41:820–831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author sincerely thanks Shiromani Gurdwara Parbandhak Committee (SGPC), Sri Amritsar Sahib and Dr. Jatinder Singh Sidhu, Director-Principal, Mata Gujri College, Fatehgarh Sahib for providing space and other research facilities in the department for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Nirwan, J. Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. Int. J. Environ. Sci. Technol. 12, 995–1002 (2015). https://doi.org/10.1007/s13762-013-0484-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0484-9

Keywords

Navigation