Skip to main content

Bioconversion of Agro-industrial Residues to Second-Generation Bioethanol

  • Chapter
  • First Online:
Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals

Abstract

Bioenergy is the term used for energy produced from lignocellulosic biomass. Most of the residues produced from agricultural and industrial activities present high levels of lignocellulose. They are mostly formed by rigid structures mainly containing hemicellulose and cellulose intermixed by lignin. These macromolecules are linked by covalent and hydrogen bonds, thus forming a complex architecture, which give a great resistance to their hydrolysis. This hampers the subsequent production of fermentable sugars and their fermentation to produce second-generation bioethanol. The technologies to obtain second-generation bioethanol, independent of the plant source, involve the hydrolysis of polysaccharides from the biomass in order to generate sugars that can be fermented by yeasts. This chapter addresses the importance of biomass for the production of green fuels. In this chapter, the potential of different lignocellulosic biomasses, especially the agricultural crop residues, is described. The composition of the main molecules forming the cell wall of different plants is provided. The enzymes that are involved in the deconstruction of plant cell walls as well as the release of fermentable sugars are discussed. The pretreatment and fermentation of biomass for the second-generation ethanol production by yeasts are described. Some challenges concerning the technologies are considered, but, on the other hand, some alternatives are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlawat S, Dhiman SS, Battan B, Mandhan RP, Sharma J (2009) Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochem 44:521–526

    Article  CAS  Google Scholar 

  • Al-Abdulkader AM, Al-Namazi AA, AlTurki TA, Al-Khuraish MM, Al-Dakhil AI (2018) Optimizing coffee cultivation and its impact on economic growth and export earnings of the producing countries: The case of Saudi Arabia. Saudi J Biol Sci 25:776–782

    Article  PubMed  Google Scholar 

  • Amin F, Bhatti HN, Bilal M, Asgher M (2017) Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int J Biol Macromol 95:974–984

    Article  CAS  PubMed  Google Scholar 

  • Andríc P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28:308–324

    Article  CAS  PubMed  Google Scholar 

  • Artzi L, Bayer EA, Moraïs S (2017) Cellulosomes: Bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15:83–95

    Article  CAS  PubMed  Google Scholar 

  • Ayres RU (2014) Economic growth. In: Bubble Economy: Is Sustainable Growth Possible? MIT Press, Cambridge, Massachusetts; London, England, pp 277–306

    Book  Google Scholar 

  • Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109:31–44

    Article  CAS  PubMed  Google Scholar 

  • Balkovič J, Velde van der M, Skalský R, Xiong W, Folberth C, Khabarov N, Smirnov A, Mueller ND, Obersteiner M (2014) Global wheat production potentials and management flexibility under the representative concentration pathways. Glob Planet Chang 122:107–121

    Article  Google Scholar 

  • Bertini L, Lambrughi M, Fantucci P, De Gioia L, Borsari M, Sola M, Bortolotti CA, Bruschi M (2018) Catalytic mechanism of fungal lytic polysaccharide monooxygenases investigated by first-principles calculations. Inorg Chem 57:86–97

    Article  CAS  PubMed  Google Scholar 

  • Bhatia L, Paliwal S (2011) Ethanol production potential of Pachysolen tannophilus from sugarcane bagasse. Int J Biotechnol Bioeng Res 2:271–276

    Google Scholar 

  • Borges DG, Baraldo Junior A, Farinas CS, de Lima Camargo Giordano R, Tardioli PW (2014) Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase. Bioresour Technol 167:206–213

    Article  CAS  PubMed  Google Scholar 

  • Boyce A, Walsh G (2015) Characterisation of a novel thermostable endoglucanase from Alicyclobacillus vulcanalis of potential application in bioethanol production. Appl Microbiol Biotechnol 99:7515–7525

    Article  CAS  PubMed  Google Scholar 

  • Buckeridge MS, De Souza AP (2014) Breaking the “glycomic code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. BioEnergy Res 7:1065–1073

    Article  CAS  Google Scholar 

  • Buckeridge MS, Grandis A, Tavares EQP (2019) Disassembling the glycomic code of sugarcane cell walls to improve second-generation bioethanol production. In: Ray R, Ramachandran R (eds) Bioethanol production from food crops. Elsevier, Amsterdam, pp 31–43

    Chapter  Google Scholar 

  • Burlacu A, Cornea CP, Israel-roming F (2016) Microbial xylanase: a review. Sci Bull XX:335–342

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  CAS  Google Scholar 

  • CONAB (2018) Companhia Nacional de Abastecimento—National Supply Company, 2018. http://www.conab.gov.br.

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cotrim CA, Soares JSM, Kobe B, Menossi M (2018) Crystal structure and insights into the oligomeric state of UDP-glucose pyrophosphorylase from sugarcane. PLoS One 13:1–13

    Article  CAS  Google Scholar 

  • Cruz AF (2013) Mannan-degrading enzyme system. In: Fungal enzymes. CRC Press, Boca Raton, pp 233–257

    Google Scholar 

  • Daisy M, Rajendran K, Amanullah MM (2018) Effect on microbial population, quality parameters and green fodder yield of leguminous crops under Bt cotton intercropping system. Int J Curr Microbiol App Sci 7:332–337

    Article  CAS  Google Scholar 

  • De Giuseppe PO, Souza TDACB, Souza FHM, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, Furriel RDPM, Murakami MT (2014) Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallogr Sect D Biol Crystallogr 70:1631–1639

    Article  CAS  Google Scholar 

  • De Marco JCI, De Souza Neto GP, Castro CFS, Michelin M, Polizeli MLTM, Ferreira Filho EX (2015) Partial purification and characterization of a thermostable β-mannanase from Aspergillus foetidus. Appl Sci 5:881–893

    Article  CAS  Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  CAS  Google Scholar 

  • Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV, Benoit-Gelber I, Hildén KS, De Vries RP (2016) Diversity of fungal feruloyl esterases: Updated phylogenetic classification, properties, and industrial applications. Biotechnol Biofuel 9:231

    Article  CAS  Google Scholar 

  • EPOA (2018) European Palm Oil Alliance. https://www.palmoilandfood.eu/en/palm-oil-production

  • FAO (2015) Soybeans, Production/Crops/World. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC

  • FAO (2017) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#rankings/countries_by_commodity

  • FAO (2018) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC

  • FAO (2019) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#search/potato

  • FAS (2018a) Foreign Agricultural Service—Department of Agriculture of the United States. https://apps.fas.usda.gov/psdonline/circulars/coffee.pdf.

  • FAS (2018b) Foreign Agricultural Service—Department of Agriculture of the United States. https://www.fas.usda.gov/data/china-cotton-and-products-annual-2

  • Giese EC, Pierozzi M, Dussán KJ, Chandel AK, Da Silva SS (2012) Enzymatic saccharification of acid-alkali pretreated sugarcane bagasse using commercial enzyme preparations. J Chem Technol Biotechnol 88:1266–1272

    Article  CAS  Google Scholar 

  • Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttilä M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503

    Article  CAS  PubMed  Google Scholar 

  • Haitjema CH, Gilmore SP, Henske JK, Solomon KV, De Groot R, Kuo A, Mondo SJ, Salamov AA, Labutti K, Zhao Z, Chiniquy J, Barry K, Brewer HM, Purvine SO, Wright AT, Hainaut M, Boxma B, van Alen T, Hackstein JHP, Henrissat B, Baker SE, Grigoriev IV, O’Malley MA (2017) A parts list for fungal cellulosomes revealed by comparative genomics. Nat Microbiol 2:1–8

    Article  CAS  Google Scholar 

  • Heck JX, Hertz PF, Ayub MAZ (2002) Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Braz J Microbiol 33:213–218

    Article  CAS  Google Scholar 

  • Heinen PR, Bauermeister A, Ribeiro LF, Messias JM, Almeida PZ, Moraes LAB, Vargas-rechia CG, De Oliveira AHC, Ward RJ, Filho EXF, Kadowaki MK, Jorge JA, Polizeli MLTM (2018) GH11 xylanase from Aspergillus tamarii Kita: Purification by one-step chromatography and xylooligosaccharides hydrolysis monitored in real-time by mass spectrometry. Int J Biol Macromol 108:291–299

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Bai Z, Hoefel D, Hu Q, Lv X, Zhuang G, Xu S, Qi H, Zhang H (2012) Effects of cotton straw amendment on soil fertility and microbial communities. Front Environ Sci Eng 6:336–349

    Article  Google Scholar 

  • IRENA (2014) Remap 2030 Global Bioenergy Supply and Demand Projections

    Google Scholar 

  • Iskandar MJ, Baharum A, Anuar FH, Othaman R (2018) Palm oil industry in South East Asia and the effluent treatment technology—a review. Environ Technol Innov 9:169–185

    Article  Google Scholar 

  • Juturu V, Wu JC (2013) Insight into microbial hemicellulases other than xylanases: a review. J Chem Technol Biotechnol 88:353–363

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sustain Energy Rev 33:188–203

    Article  CAS  Google Scholar 

  • Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Nakkeeran E, Umesh-Kumar S (2013) Potential application of pectinase in developing functional foods. Annu Rev Food Sci Technol 4:21–34

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Lee HJ, Choi I-G, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98:8469–8480

    Article  CAS  PubMed  Google Scholar 

  • Kudanga T, Roes-Hill M (2014) Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol 98:6525–6542

    Article  CAS  PubMed  Google Scholar 

  • Laborte AG, Gutierrez MA, Balanza JG, Saito K, Zwart SJ, Boschetti M, Murty MVR, Villano L, Aunario JK, Reinke R, Koo J, Hijmans RJ, Nelson A (2017) RiceAtlas, a spatial database of global rice calendars and production. Nat Sci Data 4:170074

    Article  Google Scholar 

  • Lenihan P, Orozco A, O’Neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403

    Article  CAS  Google Scholar 

  • Li J, Zhou P, Liu H, Xiong C, Lin J, Xiao W, Gong Y, Liu Z (2014) Synergism of cellulase, xylanase, and pectinase on hydrolyzing sugarcane bagasse resulting from different pretreatment technologies. Bioresour Technol 155:258–265

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Zhang XY, Zhang F, Peng LC, Zhang DB, Kondo A, Bai FW, Zhao XQ (2018) Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnol Biofuels 11:49

    Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49

    Article  Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol 10:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Teixeira JA (2013) Application of lignocellulosic residues in the production of cellulase and hemicellulases from fungi. In: Polizeli MLTM, Rai M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 31–64

    Google Scholar 

  • Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MLTM (2014) Cellulose from lignocellulosic waste. In: Gopal K, Mérillon RJ-M (eds) Polysaccharides. Springer International Publishing, Basel, Switzerland, pp 1–33

    Google Scholar 

  • Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sust Chem Process 1:15

    Article  CAS  Google Scholar 

  • Möllers KB, Mikkelsen H, Simonsen TI, Cannella D, Johansen KS, Bjerrum MJ, Felby C (2017) On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose. Carbohydr Res 448:182–186

    Article  CAS  PubMed  Google Scholar 

  • Moreira LRS, Filho EXF (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  PubMed  Google Scholar 

  • Müller G, Chylenski P, Bissaro B, Eijsink VGH, Horn SJ (2018) Biotechnology for biofuels the impact of hydrogen peroxide supply on LPMO activity and overall saccharification efficiency of a commercial cellulase cocktail. Biotechnol Biofuels 11:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci 1324:7–14

    Article  PubMed  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Bioref 4:157–191

    Article  CAS  Google Scholar 

  • Nanda S, Maley J, Kozinski JA, Dalai AK (2015) Physico-chemical evolution in lignocellulosic feedstocks during hydrothermal pretreatment and delignification. J Biobased Mater Bioenerg 9:295–308

    Article  CAS  Google Scholar 

  • Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98:49–58

    Article  PubMed  Google Scholar 

  • Nguyen QA, Cho EJ, Lee D-S, Bae H-J (2019) Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Bioresour Technol 272:209–216

    Article  CAS  PubMed  Google Scholar 

  • Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16

    Article  Google Scholar 

  • Ojewumi ME, Job AI, Taiwo OS, Obanla OM, Ayoola AA, Ojewumi EO, Oyeniyi EA (2018) Bio-conversion of sweet potato peel waste to bio-ethanol using Saccharomyces cerevisiae. Int J Pharm Phytopharm Res 8:46–54

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: Sugarcane bagasse. Bioresour Technol 74:69–80

    Article  CAS  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT (2015) Fungal Cellulases. Chem Rev 115:1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23

    Article  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Polizeli MLTM, Corrêa ECP, Polizeli AM, Jorge JA (2011) Hydrolases from microorganisms used for degradation of plant cell wall and bioenergy. In: Buckeridge MS, Goldman GH (eds) Routes to Cellulosic Ethanol. Springer, New York, NY, pp 115–134

    Chapter  Google Scholar 

  • Polizeli MLTM, Damásio ARL, Maller A, Cabral H, Polizeli AM, Rai M (2013) Pectinases produced by microorganisms: properties and applications. In: Polizeli MLTM, Rai M (eds) Fungal enzymes. CRC, Boca Raton, pp 327–351

    Google Scholar 

  • Polizeli MLTM, Peralta RM, Bracht A, Michelin M, Somera AF (2015) Enzymes prospection from fungi and biomass pretreatment for biorefinery application. In: Silva RN (ed) Mycology: current and future developments. Bentham Science Publishers, Sharjah, pp 57–81

    Chapter  Google Scholar 

  • Polizeli MLTM, Vici AC, Scarcella ASA, Cereia M, Pereira MG (2016) Enzyme system from Aspergillus in current industrial uses and future applications in the production of second-generation ethanol. In: Gupta VK (ed) New and future developments in microbial biotechnology and bioengineering: Aspergillus system properties and applications. Elsevier, Amsterdam, pp 127–140

    Chapter  Google Scholar 

  • Polizeli MLTM, Somera AF, de Lucas RC, Nozawa MSF, Michelin M (2017) Enzymes involved in the biodegradation of sugarcane biomass: challenges and perspectives. In: Buckeridge MS, De Souza AP (eds) Advances of basic science for second generation bioethanol from sugarcane. Springer International Publishing, New York, NY, pp 55–79

    Chapter  Google Scholar 

  • Ramos LP, da Silva L, Ballem AC, Pitarelo AP, Chiarello LM, Silveira MHL (2015) Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresour Technol 175:195–202

    Article  CAS  PubMed  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossell CEV (2011) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279

    Article  CAS  Google Scholar 

  • Saenger M, Hartge EU, Werther J, Ogada T, Siagi Z (2001) Combustion of coffee husks. Renew Energy 23:103–121

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. Biotech 5:337–353

    Google Scholar 

  • Santos FA, De Queiróz JH, Colodette JL, Fernandes SA, Guimarães VM, Rezende ST (2012) Potencial da palha de cana-de-aucar para produção de etanol. Quim Nova 35:1004–1010

    Article  CAS  Google Scholar 

  • Santos CA, Filho JAF, Donovan AO, Gupta VK, Tuohy MG, Souza AP (2017) Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation. Microb Cell Factories 16:83–93

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  CAS  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60:1537–1553

    Article  CAS  PubMed  Google Scholar 

  • Silanikove N, Danai O, Levanon D (1988) Composted cotton straw silage as a substrate for Pleurotus sp. cultivation. Biol Wastes 25:219–226

    Article  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    Article  CAS  PubMed  Google Scholar 

  • Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J (2011) The laccase engineering database: a classification and analysis system for laccases and related multicopper oxidases. Database 2011:1–7

    Article  Google Scholar 

  • Soeriaatmadja W, Leong T (2018) European ban on palm oil in biofuels upsets Jakarta, KL. Straitstimes. 2018 Available at https://www.straitstimes.com/asia/se-asia/european-ban-on-palm-oil-in-biofuels-upsets-jakarta-kl. Accessed 20 Aug 2010

  • Souza AL, Garcia R, Pereira OG, Cecon PR, de C Valadares-Filho S, Paulino MF (2001) Composição químico - bromatológica da casca de café tratada com amônia anidra e sulfeto de sódio. Rev Bras Zootec 30:983–991

    Article  Google Scholar 

  • Srinorakutara T, Suttikul S, Boonvitthya N (2013) Effect of different pretreatment methods on enzymatic saccharification and ethanol production from sugarcane shoots and leaves. J Food Sci Eng 3:309–316

    CAS  Google Scholar 

  • Sudiyani Y, Styarini D, Triwahyuni E, Sudiyarmanto, Sembiring KC, Aristiawan Y, Abimanyu H, Han MH (2013) Utilization of biomass waste empty fruit bunch fiber of palm oil for bioethanol production using pilot—Scale unit. Energy Procedia 32:31–38

    Article  CAS  Google Scholar 

  • Tamanini C, Hauly MC (2004) Resíduos agroindustriais para produção biotecnológica de xilitol Agro-industrial residues in biotechnological production of xylitol. Semin Ciências Agrárias 25:315–330

    Article  Google Scholar 

  • Tariq A, Latif Z (2012) Isolation and biochemical characterization of bacterial isolates producing different levels of polygalacturonases from various sources. Afr J Microbiol Res 6:7259–7264

    CAS  Google Scholar 

  • Tenkanen M, Puls J, Poutanen K (1992) Two major xylanases of Trichoderma reesei. Enzym Microb Technol 14:566–574

    Article  CAS  Google Scholar 

  • Tew T, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, Gainesville, FL, pp 249–272

    Google Scholar 

  • van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    Article  CAS  PubMed  Google Scholar 

  • Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. Adv Appl Microbiol 88:103–165

    Article  CAS  PubMed  Google Scholar 

  • Walton PH, Davies GJ (2016) On the catalytic mechanisms of lytic polysaccharide monooxygenases. Curr Opin Chem Biol 31:195–207

    Article  CAS  PubMed  Google Scholar 

  • WAP, World Agricultural Production (2019). http://apps.fas.usda.gov/psdonline/circulars/production.pdf

  • WASDE, World Agricultural Supply and Demand Estimates (2018). https://www.usda.gov/oce/commodity/wasde/Secretary_Briefing.pdf

  • WBA, World Bioenergy Association (2014) Global Bioenergy Statistics. http://toe.worldbioenergy.org/content/wba-gbs

  • Wei L, Mcdonald AG (2016) A review on grafting of biofibers for biocomposites. Materials (Basel) 9:303–325

    Article  CAS  Google Scholar 

  • Wilson DB, Kostylev M (2012) Cellulase processivity. Methods Mol Biol 908:93–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worldatlas & Graphic Maps (2017) The leading barley producing countries in the World. https://www.worldatlas.com/articles/the-leading-barley-producing-countries-in-the-world.html

  • Worldatlas & Graphic Maps (2019) Top wheat producing countries. https://www.worldatlas.com/articles/top-wheat-producing-countries.html

  • Yang M, Kuittinen S, Zhang J, Vepsäläinen J, Keinänen M, Pappinen A (2015) Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone–butanol–ethanol production. Bioresour Technol 179:128–135

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang Y, Li B, Yang X, Dong Y, Qiu D (2018) A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence. Front Plant Sci 9:1–15

    Article  Google Scholar 

  • Zhu SD, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymatic hydrolysis. Process Biochem 40:3082–3086

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Laboratory of Microbiology and Cell Biology of Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil, has been supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2014/50884-5 and 2018/07522-6). Maria de Lourdes Teixeira de Moraes Polizeli is a research fellow of Conselho de Desenvolvimento Científico e Tecnológico (CNPq, 301963/2017-7). Thiago Machado Pasin, Paula Zaghetto de Almeida, Ana Sílvia de Almeida Scarcella, and Juliana da Conceição Infante are recipients of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Finance Code 001) scholarship. We thank Mariana Cereia for the language review of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes de Teixeira de Moraes Polizeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pasin, T.M., de Almeida, P.Z., de Almeida Scarcella, A.S., da Conceição Infante, J., de Teixeira de Moraes Polizeli, M.d.L. (2020). Bioconversion of Agro-industrial Residues to Second-Generation Bioethanol. In: Nanda, S., N. Vo, DV., Sarangi, P. (eds) Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-1804-1_2

Download citation

Publish with us

Policies and ethics