Skip to main content

Hydrolases from Microorganisms used for Degradation of Plant Cell Wall and Bioenergy

  • Chapter
  • First Online:
Routes to Cellulosic Ethanol

Abstract

The first consideration one should be aware of regarding biomass is what it exactly means. The definition of biomass has received different meanings during the course of the years, since it was first used in the 1930s. Currently, it differs according to the purpose of its use. Biologically and etymologically, biomass encompasses everything which is alive on Earth. A broader definition would include the three domains of life – Archaea, Eukarya, and Bacteria – they being alive or dead, along with their wastes. However, some other definitions exclude water, considering biomass as being the dry weight of living beings and their wastes; others claim biomass means the biodegradable fraction of products, waste and residues from agriculture (including vegetal and animal substances), aquaculture, forestry and related industries, the biodegradable fraction of industrial and municipal waste as well as waste water sludge. Lastly, biomass can also be defined as mass provided by living and/or dead plants only. From an energetic approach, biomass is every renewable resource from organic matter which can be used to produce energy. Consequently, all these different ways to define biomass can lead to multi-interpretations of single information. Additionally, we could incur in the mistake of calculating the total biomass of a unit or place without any life in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Athanasopoulos, V. I., Niranjan, K., and Rastall, R. A. 2005. The production, purification and characterization of two novel α-D-mannosidases from Aspergillus phoenicis. Carbohydr. Res. 340(4):609–617.

    Article  CAS  PubMed  Google Scholar 

  • Betini, J. H. A., Michelin, M., Peixoto-Nogueira, S. C., Jorge, J. A., Terenzi, H. F., and Polizeli, M. L. T. M. 2009. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosystems Engineering 32:819-824.

    Article  CAS  PubMed  Google Scholar 

  • Bhat, K. M., and Maheshari, R. 1987. Sporotrichum thermophile growth, cellulose degradation, and cellulase activity. Appl. Environ. Microbiol. 53:2175–2182.

    CAS  PubMed  Google Scholar 

  • Camassola, M., and Dillon, A. J. 2007. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J. Appl. Microbiol. 103(6):2196–204.

    Article  CAS  PubMed  Google Scholar 

  • Collins, T., Gerday, C., and Feller, G. 2005. Xylanases, xylanases families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3–23.

    Article  CAS  PubMed  Google Scholar 

  • Cooney, D. G., and Emerson, R. 1964. In Thermophilic fungi. Freeman, WH, San Francisco, pp.189.

    Google Scholar 

  • Cregg, J. M. 1999. Expression in methylotrophic yeast Pichia pastoris. In Gene Expression Systems, ed. J. M. Fernandez, and J. P. Hoeffler, pp 157–191. Academic Press, New York.

    Google Scholar 

  • Das, R. C., and Shultz, J. L. 1987. Secretion of heterologous proteins from Saccharomyces cerevisiae. Biotechnol. Prog. 3:43–48.

    Article  CAS  Google Scholar 

  • Dedavid e Silva, L. A., Lopes, F. C., Silveira, S. T., and Brandelli, A. 2009. Production of cellulolytic enzymes by Aspergillus phoenicis in grape waste using response surface methodology. Appl. Biochem. Biotechnol. 152(2):295–305.

    Google Scholar 

  • de Graaff, L. H., van den Broeck, H. C., and Ooijen, A. J. J. 1994. Regulation of the xylanase-encoding xlnA gene of Aspergillus tubigensis. Mol. Microbiol. 12:479–490.

    Article  PubMed  Google Scholar 

  • De Groot, P. W., Basten, D. E., Sonnenberg, A., Van Griensven, L. J., Visser, J., and Schaap, P. J. 1998. An endo-1,4-beta-xylanase-encoding gene from Agaricus bisporus is regulated by compost-specific factors. J. Mol. Biol. 277(2):273–284.

    Article  PubMed  Google Scholar 

  • de Vries, R. P., Visser, J., and de Graaff, L. H. 1999. CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res. Microbiol. 150:281–285.

    Article  PubMed  Google Scholar 

  • Deng, W., Deng, W., Jiang, Z. Q., Li, L. T., Wei, Y., Shi, B., and Kusakabe, I. 2005. Variation of xylanosomal subunit composition of Streptomyces olivaceoviridis by nitrogen sources. Biotechnol. Lett. 27(6):429–433.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S., Ge, W., and Buswell, J. A. 2006. Cloning of multiple cellulose cDNAs from Volvariella volcacea and their differential expression during substrate colonization and fruiting. FEMS Microbiol. Lett. 263(2):207–213.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos, E., Piovan, T., Roberto, I. C., and Milagres, A. M. 2003. Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase. Biotechnol. Lett. 25(1):13–16.

    Article  PubMed  Google Scholar 

  • Ebanks, R., Dupont, M., Shareck, F., Morosoli, R., Kluepfel, D., and Dupont, C. 2000. Development of an Escherichia coli expression system and thermostability screening assay for libraries of mutant xylanase. J. Ind. Microbiol. Biotechnol. 25:310–314.

    Article  CAS  PubMed  Google Scholar 

  • Gaur, R., Lata, S., and Khare, S. K. 2005. Immobilization of xylan-degrading enzymes from Scytalidium thermophilum on Eudragit L-100. World J. Microbiol. Biotechnol. 21:1123–1128.

    Article  CAS  Google Scholar 

  • Henrissat, B., and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293:781–788.

    CAS  PubMed  Google Scholar 

  • Henrissat, B., Claeyssens, M., Tomme, P., Lemesle, L., and Mornon, J. P. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  • Hermoso, J. A., Sanz-Aparicio, J., Molina, R., Juge, N., Gonzalez, R., and Faulds, C. B. 2004. The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J. Mol. Biol. 338:495–506.

    Article  CAS  PubMed  Google Scholar 

  • Igarashi, K., Ishida, T., Hori, C., and Samejima, M. 2008. Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 74(18):5628–5634.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z. Q., Deng, W., Li, L. T., Ding, C. H., Kusakabe, I., and Tan, S. S. 2004. A novel, ultra-large xylanolytic complex (xylanosome) secreted by Streptomyces olivaceoviridis. Biotechnol. Lett. 26(5):431–436.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z., Dang, W., Yan, Q., Zhai, Q., Li, L., and Kusakabe, I. 2006. Subunit composition of a large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86. J. Biotechnol. 126(3):304–312.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson, E. N., Dahlberg, L., Torto, N., Gorton, L., and Holst, O. 1998. Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase xyn1 from Rhodothermus marinus. J. Biotechnol. 60:23–35.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, T., Suzuki, H., Furuhashi, H., Aburatani, T., Morimoto, K., Sakka, K., and Ohmiya, K. 2002. Molecular cloning, characterization and expression analysis of the xynF3 gene from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 66:285–292

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, N., Lakshmikumaran, M., and Rao, M. 1999a. Xylanase II from an alkaliphilic ­thermophilic Bacillus with distinctly different structure from other xylanases, evolutionary relationship to alkaliphilic xylanases. Biochem. Biophys. Res. Commun. 263:640–645.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni, N., Shendye, A., and Rao, M. 1999b. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23:411–456.

    Article  CAS  PubMed  Google Scholar 

  • Kurakabe, M., Shinjii, O., and Komaki, T. 1997. Transxylosilation of β-xylosidase from Aspergillus awamori K4. Biosci. Biotech. Biochem. 6112:2010–2014.

    Article  Google Scholar 

  • Lahjouji, K., Storms, R., Xiao, Z., Joung, K.B., Zheng, Y., Powlowski, J., Tsang, A., and Varin, L. 2007. Biochemical and molecular characterization of a cellobiohydrolase from Trametes versicolor. Appl. Microbiol. Biotechnol. 75(2):337–346.

    Article  CAS  PubMed  Google Scholar 

  • Latif, F., Rajoka, M. I., and Malik, K. A. 1995. Production of cellulases by thermophilic fungi grown on Leptochloa fusca straw. World J. Microbiol. Biotechnol. 11:347–348.

    Article  CAS  Google Scholar 

  • Levasseur, A., Asther, M., and Record, E. 2005. Overproduction and characterization of xylanase B of Aspergillus niger. Can. J. Microbiol. 51:177–183.

    Article  CAS  PubMed  Google Scholar 

  • Li, X. L., Skory, C. D., Cotta, M. A., Puchart, V., and Biely, P. 2008. Novel family of carbohydrate esterases based on identification of the Hypocrea jecorina acetyl esterase gene. Appl. Environ. Microbiol. 74(24):7482–7489.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Lu, Y., and Ma, G. 1999. Induction and glucose repression of endo-β-xylanase in the yeast Trichosporon cutaneum SL409. Process Biochem 34:67–72.

    Article  Google Scholar 

  • Luo, H., Wang, Y., Wang, H., Yang, J., Yang, Y., Huang, H., Yang, P., Bai, Y., Shi, P., Fan, Y., and Yao, B. 2009. A novel highly acidid beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl. Microbiol. Biotechnol. 82(3):453–461.

    Article  CAS  PubMed  Google Scholar 

  • Madigan, M. T., Martinko, J. M., and Parker, J. 2000. Brock Biology Microorganisms. 9th ed., pp. 153–154. Prentice-Hall, New Jersey.

    Google Scholar 

  • Magalhães, P. O., Ferraz, A., and Milagres, A. F. 2006. Enzymatic Properties of two beta-glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. J. Appl. Microbiol. 101(2):480–486.

    Article  PubMed  Google Scholar 

  • Mantyla, A., Paloheimo, M., Hakola, S., Lindberg, E., Leskinen, S., Kallio, J., Vehmaanpera, J., Lantoo, R. and Suominen, P. 2007. Production in Trichoderma reesei of three xylanases from Chaetomium thermophile: a recombinant thermoxylanase for bleaching of kraft pulp. Appl. Microbiol. Biotechnol. 76:377–386.

    Article  PubMed  Google Scholar 

  • Martin, C., Klinke, H. B., Marcet, M., García, L., Hernández, E., and Thomsen, A. B. 2007. Study of the phenolic compounds formed during pretreatment of sugarcane bagasse by wet oxidation and steam explosion. Holzforschung 61(5):483–487.

    Article  CAS  Google Scholar 

  • Marui, J., Tanaka, A., Mimura, S., de Graaff, L. H., Visser, J., Kitamoto, N., Kato, M., Kobayashi, T., and Tsukagoshi, N. 2002. A transcriptional activator, AoXlnR, controls the expression of genes encoding xylanolytic enzymes in Aspergillus oryzae. Fungal Genet. Biol. 35:157–169.

    Article  CAS  PubMed  Google Scholar 

  • Morosoli, R., Durand, S. and Letendre, E. 1987. Induction of xylanase by β-methylxyloside in Cryptococcus albidus. FEMS Microbiol. Lett. 48:261–266.

    CAS  Google Scholar 

  • Nel, W.P. and Cooper, C.J. 2009. Implications of fossil fuel constraints on economic growth and global warming. Energy Policy 37:166–180.

    Article  Google Scholar 

  • Nozaki, K., Seki, T., Matsui, K., Mizuno, M., Kanda, T. and Amano, Y. 2007. Structure and ­characteristics of an endo-beta-1,4-glucanase, isolated from Trametes hirsuta with high degradation to crystalline cellulose. Biosci. Biotechnol. Biochem. 71(10):2375–2382.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Gonzalez, J. A., van Peij, N. N. M. E., Bezoen, A., MacCabe, A. P., Ramon, D., and Graff, L. H. D. 1998. Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding a β-xylosidase. Appl. Environ. Microb. 64:1412–1419.

    CAS  Google Scholar 

  • Polizeli, M. L. T. M. 2009. Properties and commercial applications of xylanases from fungi. In Advances in Fungal Biotechnology, ed. M. Rai, pp. 82–108. I.K. International, New Delhi.

    Google Scholar 

  • Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, F. H., Jorge, J. A., and Amorim, D. S. 2005. Xylanases from fungi: properties and industrial applications. Review. Appl. Microbiol. Biotechnol. 67:577–591.

    Article  CAS  Google Scholar 

  • Prathumpai, W., McIntyre, M., and Nielsen, J. 2004. The effect of CreA in glucose and catabolism in Aspergillus nidulans. Appl. Microbiol. Biotechnol. 63:748–753.

    Article  CAS  PubMed  Google Scholar 

  • Rahi, D. K., Rahi, S., Pandey, A. K. and Rajak, R. C. 2009. Enzymes from mushrooms and their industrial applications. In Advances in Fungal Biotechnlogy, ed. M. Rai, pp. 136–184. I.K. International, New Delhi.

    Google Scholar 

  • Rahman, A. K. M. S., Sugitani, N., Hatsu, M., and Takamizawa, K. 2003. A role of xylanase, alpha-L-arabinofuranosidase, and xylosidase in xylan degradation. Can. J. Microbiol. 49:58–64.

    Article  CAS  PubMed  Google Scholar 

  • Ramage, J., and Scurlock, J. 1996. Biomass. In Renewable Energy: Power For A Sustainable Future, chapter 4, ed. Boyle, G. pp. 137–182. Oxford University Press, Oxford.

    Google Scholar 

  • Reese, E. T. and Mandels, M., 1963. Enzymatic hydrolysis of cellulose and its derivatives. Meth. Carb. Chem. 3:139–143.

    CAS  Google Scholar 

  • Rizzatti, A. C. S., Jorge, J. A., Terenzi, H. F., Rechia, C. G. V., and Polizeli, M. L. T. M. 2001. Purification and properties of a termostable extracellular β-xylosidase produced by a thermotolerant Aspergillus phoenicis. J. Ind. Microbiol. Biotechnol. 26:156–160.

    Article  CAS  PubMed  Google Scholar 

  • Rizzatti, A. C. S., Sandrim, V. C., Jorge, J. A., Terenzi, H. F., and Polizeli, M. L. T. M. 2004. Influence of temperature on the properties of the xylanolytic enzymes of the thermotolerant fungus Aspergillus phoenicis. J. Ind. Microbiol. Biotechnol. 31:88–93.

    Article  CAS  PubMed  Google Scholar 

  • Rizzatti, A. C. S., Freitas, F. Z., Bertolini, M. C., Peixoto-Nogueira, S. C., Jorge, J. A., Terenzi, H. F., and Polizeli, M. L. T. M. 2008. Regulation of xylanase in Aspergillus phoenicis: a physiological and molecular approach. J. Ind. Microbiol. Biotechnol. 35:237–244.

    Article  CAS  PubMed  Google Scholar 

  • Romanos, M. A., Scorer, C. A., and Clare, J. J. 1992. Foreign gene expression in yeast: a review. Yeast 8:423–488.

    Article  CAS  PubMed  Google Scholar 

  • Ruijter, G. J. G., and Visser, J. 1997. Carbon repression in Aspergilli. FEMS Microbiol. Lett. 151:103–114.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., Ihara, H., Kozaki, S. and Kawasaki, H. 2003. A cold-adapted endo-arabinase from Penicilium chrysogenum. Biochim. Biophys. Acta. 1624(1–3):70–75.

    CAS  PubMed  Google Scholar 

  • Sandrim, V. C., Rizzatti, A. C. S., Terenzi, H. F., Jorge, J. A., Milagres, A. M. F., and Polizeli, M. L. T. M. 2005. Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for the bleaching of kraft pulp. Process Biochem. 40 (5):1823–1828.

    Article  CAS  Google Scholar 

  • Sapag, A., Wouters, J., Lambert, C., de Ioannes, P., Eyzaguirre, J., and Depiereux, E. 2002. The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. J. Biotechnol. 95:109–131.

    Article  CAS  PubMed  Google Scholar 

  • Sa-Pereira, P., Paveia, H., Costa-Ferreira, M., and Aires-Barros, M. R. 2003. A new look at xylanases: An overview of purification strategies. Mol. Biotechnol. 24:257–281.

    Article  CAS  PubMed  Google Scholar 

  • Schlacher, A., Holzmann, K., Hayn, M., Steiner, W., and Schwab, H. 1996. Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J. Biotechnol. 49:211–218.

    Article  CAS  PubMed  Google Scholar 

  • Schmoll, M., and Kubicek, C. P. 2003. Regulation of Trichoderma cellulose formation: lessons in molecular biology from an industrial fungus. A Review. Acta Microbiol. Immunol. Hung. 50(2–3):125–145.

    Article  CAS  Google Scholar 

  • Setati, M. E., Ademark, P., van Zyl. W. H., Hahn-Hägerdal, B., and Stålbrand, H. 2001. Expression of the Aspergillus aculeatus endo-β-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein. Expr. Purif. 21(1):105–114.

    Article  CAS  PubMed  Google Scholar 

  • Shafiee, S., and Topal, E. 2009. When will fossil fuel reserves be diminished? Energy Policy 37:181–189.

    Article  Google Scholar 

  • Silva, A. M. 2005. Doctor Thesis: Characterization of cell wall of Saccharum officinarum L. (sugarcane) and Brachiaria decumbens Stapf (braquiaria). UNICAMP, SP, Brazil.

    Google Scholar 

  • Simerska, P., Monti, D., Cechova, I., Pelantova, H., Mackova, M., Bezouska, K., Riva, S., and Kren, V. 2007. Induction and characterization of an unusual alpha-D-galactosidase from Talaromyces flavus. J. Biotechnol. 128:61–71.

    Article  CAS  PubMed  Google Scholar 

  • Strauss, J., Mach, R. L., Zeilinger, S., Stoffler, G., Wolschek, M., Hartler, G., and Kubicek, C. P. 1995. Cre I the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 376:103–107.

    Article  CAS  PubMed  Google Scholar 

  • Sunna, A., and Antranikian, G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17(1):39–67.

    Article  CAS  PubMed  Google Scholar 

  • Takao, M., Akiyama, K., and Sakai, T. 2002. Purification and characterization of thermostable endo-1,5-alpha-L-arabinase from a strain of Bacillus thermodenitrificans. Appl. Environ. Microbiol. 68:1639–1646.

    Article  CAS  Google Scholar 

  • Tanaka, M., Umemoto, Y., Okamura, H., Nakano, D., Tamaru, Y., and Araki, T. 2009. Clonning and characterization of a beta-1,4-mannanase 5C prossessing a family 27 carbohydrate-binding module from a marine bacterium Vibrio sp. strain MA-138. Biosci. Biotechnol. Biochem. 73(1):109–116.

    Article  CAS  PubMed  Google Scholar 

  • Tenkanen, M., and Siika-aho, M. 2000. An alpha-glucuronidase of Schizophyllum commune acting on polymeric xylan. J. Biotechnol. 78:149–161.

    Article  CAS  PubMed  Google Scholar 

  • Törrönen, A., and Rouvinen, J. 1997. Structural and functional properties of low molecular weight endo-1,4-β-xylanases. J. Biotechnol. 57:137–149.

    Article  PubMed  Google Scholar 

  • Tsai, C. T. and Huanga, C. T. 2008. Overexpression of the Neocallimastix frontalis xylanase gene in the methylotrophic yeasts Pichia pastoris and Pichia methanolica. Enzyme Microb. Technol. 42:459–465.

    Article  CAS  Google Scholar 

  • van Peij, N. N. M. E., Visser, J. and de Graaff, L. H. 1998. Isolation and analysis of xlnR, encoding transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol. Microbiol. 27:131–142.

    Article  PubMed  Google Scholar 

  • Wood, J. D., and Wood, P. M. 1992. Evidence that cellobiose:quinine oxidoreductase from Phaenerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochem. Biophys. Acta. 1119(1):90–96.

    Article  CAS  PubMed  Google Scholar 

  • Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F., and Jorge, J. A. 2004a. ß-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143.

    Article  CAS  PubMed  Google Scholar 

  • Zanoelo, F. F., Polizeli, M. L. T. M., Terenzi, H. F., and Jorge, J. A. 2004b. Purification and ­biochemical characterization of a thermostable xylose-tolerant ß-xylosidase from Scytalidium thermophilum. J. Ind. Microbiol. Biotechnol. 31:170–176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. T. M. Polizeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Polizeli, M.L.T.M., Corrêa, E.C.P., Polizeli, A.M., Jorge, J.A. (2011). Hydrolases from Microorganisms used for Degradation of Plant Cell Wall and Bioenergy. In: Buckeridge, M., Goldman, G. (eds) Routes to Cellulosic Ethanol. Springer, New York, NY. https://doi.org/10.1007/978-0-387-92740-4_8

Download citation

Publish with us

Policies and ethics