Skip to main content

Potassium-Solubilizing Microbes: Diversity, Distribution, and Role in Plant Growth Promotion

  • Chapter
  • First Online:
Microorganisms for Green Revolution

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 6))

Abstract

Injudicious application of chemical fertilizers in India has a considerable negative impact on economy and environmental sustainability. There is a growing need to turn back to nature or sustainable agents that promote evergreen agriculture. Potassium (K) is an important and well-known constraint to crop production. Very low rates of potash fertilizer application in agricultural production lead to rapid depletion of K in the soil. Depletion of plant-available K in soils results in a variety of negative impacts of the crops yield and soil health. Microorganisms play important role in determining plant productivity. For successful functioning of introduced microbial bioinoculants, exhaustive efforts have been made to explore soil microbial diversity of indigenous community, their distribution, and behavior in soil habitats. Soil microorganisms are directly responsible for recycling of nutrients. K is the third major essential macronutrient for plant growth. The concentrations of soluble potassium in the soil are usually very low, and more than 90% of potassium in the soil exists in the form of insoluble rocks. Use of plant growth-promoting microorganisms (PGPMs) helps in increasing yields in addition to conventional plant protection. The most important PGPMs are Azotobacter, Azospirillum, Acidithiobacillus ferrooxidans, Bacillus circulans, B. edaphicus, B. globisporus, B. mucilaginosus, B. subtilis, Burkholderia cepacia, Enterobacter hormaechei, Paenibacillus kribensis, P. mucilaginosus, and Pseudomonas putida potassium solubilizes; these are eco-friendly and environmentally safe. Therefore, the efficient K-solubilizing microbes (KSM) should be applied for solubilization of a fixed form of K to an available form of K in the soils. This available K can be easily taken up by the plant for growth and development. In this chapter has been discussed isolation, characterization, diversity, and distribution of KSM from diverse stresses such as low and high temperatures, acidity, alkalinity, salinity, drought, and plant-associated applications. These studies elaborate on indigenous K-solubilizing microbes to develop efficient microbial bioinoculant for solubilization of K in different conditions of soil which enhances the plant growth and yield of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Salam MA, Shams AS (2012) Feldspar-K fertilization of potato (Solanum tuberosum L.) augmented by biofertilizer. J Agric Environ Sci 12(6):694–699

    CAS  Google Scholar 

  • Ahmad I, Maathuis FJM (2014) Cellular and tissue distribution of potassium; physiological relevance, mechanisms and regulation. J Plant Physiol 171:708–714

    Article  CAS  PubMed  Google Scholar 

  • Aleksandrov VG, Blagodyr RN, Iiiev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiyol Zh (Kiev) 29:111–114

    CAS  Google Scholar 

  • Alves L, Oliveira VL, Filho GNS (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Braz J Microbio 41:676–684

    Article  CAS  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2012) Screening of potassium solubilizing bacteria (KSB) for plant growth promotional activity. Bioinfolet 9(4):627–630

    Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeo Chem 19:129–147

    Google Scholar 

  • Badar MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agri R 7:4250–4259

    Google Scholar 

  • Barbosa Filho MP, Fageria NK, Santos DF, Couto PA (2006) Aplicação de rochas silicáticas como fontes alternativas de potássio para a cultura do arroz de terras altas. Revista Espaço e Geografia 9(1)

    Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Mineralogist 83(11):1551–1563

    Article  CAS  Google Scholar 

  • Barre P, Montagnier C, Chenu C, Abbadie L, Velde B (2008) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220

    Article  CAS  Google Scholar 

  • Basak B, Biswas D (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant and Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). ISBN 978-3659298424

    Google Scholar 

  • Bisht SC, Mishra PK, Joshi GK (2013) Genetic and functional diversity among root-associated psychrotrophic Pseudomonads isolated from the Himalayan plants. Arch Microbiol 195:605–615

    Article  CAS  PubMed  Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr Cycl Agroecosyst 89(1):15–30

    Article  Google Scholar 

  • Blum DE, Elzenga JTM, Linnemeyer PA, Van Volkenburgh E (1992) Stimulation of growth and ion uptake in bean leaves by red and blue light. Plant Physiol 100:1968–1975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowen H (1966) Of the trace elements. Nuclear activation techniques in the life sciences, p 393

    Google Scholar 

  • Cao Y, Wei X, Cai P, Huang Q, Rong X, Liang W (2011) Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide. Coll Surf B Biointerf 83(1):122–127

    Article  CAS  Google Scholar 

  • Chaerle L, Leinonen I, Jones HG, Van der Straeten D (2007) Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. J Exp Bot 58:773–784

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ 28:1230–1246

    Article  CAS  Google Scholar 

  • Deng S, Bai R, Hu X, Luo Q (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. App Microbiol Biotechnol 60:588–593

    Article  CAS  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives, p 412

    Google Scholar 

  • Epstein E, Bloom A (2005) Inorganic components of plants. Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Inc, Massachusetts, pp 44–45

    Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–203

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick B, Patten C, Holguin G, Penrose D (1999) Overview of plant growth-promoting bacteria. In: Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, pp 1–13

    Chapter  Google Scholar 

  • Godfray H, Pretty J, Thomas S, Warham E, Beddington J (2011) Linking policy on climate and food. Science 331:1013–1014

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Article  Google Scholar 

  • Goldstein, A. H. (1994). Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. Phosphate in microorganisms: cellular and molecular biology. ASM Press, Washington, DC, pp 197–203

    Google Scholar 

  • Gour AC (1990) Physiological functions of phosphate solubilizing micro-organisms. In: Gour AC (ed) Phosphate solubilizing micro-organisms as biofertilizers. Omega Scientific Publishers, New Delhi, pp 16–72

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Grzebisz W, Gransee A, Szczepaniak W, Diatta J (2013) The effects of potassium fertilization on water-use efficiency in crop plants. J Plant Nutr Soil Sci 176:355–374

    Article  CAS  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh, India. Research and reviews. J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Han HS, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Google Scholar 

  • Hassan EA, Hassan EA, Hamad EH (2010) Microbial solubilization of phosphate–potassium rocks and their effect on khella (Ammi visnaga) growth. Ann Agric Sci 55(1):37–53

    Google Scholar 

  • Hogh-Jensen H, Pedersen MB (2003) Morphological plasticity by crop plants and their potassium use efficiency. J Plant Nutr 26:969–984

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    Article  CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990. https://doi.org/10.1007/s11274-006-9144-2

    Article  CAS  Google Scholar 

  • Jackson ML (1964) Chemical composition of soils. In: Bear FE (ed) Chemistry of the soil. Van Nostrand Reinhold, New York, pp 71–141

    Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164:121–129

    Google Scholar 

  • Kafkafi U (1990) The functions of plant K in overcoming environmental stress situations. In: Development of K-fertilizer recommendations: proceedings 22nd Colloquium of the International Potash Institute, pp 81–93

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 67:493–499

    Article  CAS  Google Scholar 

  • Li Q, Li Z, Huang Y (2007) Status of potassium studies and approaches to improving potassium content in tobacco leaves in China. Agric Sci Technol 35:452–455

    Google Scholar 

  • Lin Q, Rao Z, Sun Y, Yao J, Xing L (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Lopes-Assad M L, Avansini SH, Erler G, Rosa MM, de Carvalho JRP, Ceccato-Antonini SR (2010a) Rock powder solubilization by Aspergillus niger as a source of potassium for agroecological systems. 19th World Congress of Soil Science

    Google Scholar 

  • Lopes-Assad A M L, Avansini A S H, Erler A G, Rosa A M M, Porto J R (2010b). Rock powder solubilization by Aspergillus niger as a source of potassium for agroecological systems. In 19th World Congress of Soil Science

    Google Scholar 

  • Maqsood M, Shehzad MA, Wahid A, Butt AA (2013) Improving drought tolerance in maize (Zea mays) with potassium application in furrow irrigation systems. Int J Agr Biol 15:1193–1198

    Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Biomed Res Int 2015

    Google Scholar 

  • Mengel K, Busch R (1982) The importance of the potassium buffer power on the critical potassium level in soils. Soil Sci 133:27–32

    Article  CAS  Google Scholar 

  • Mengel K, Steffens D (1985) Potassium uptake of rye grass (Lolium perenne) and red clover (Trifolium pratense) as related to root parameters. Biol Fertil Soils 1:53–58

    Article  Google Scholar 

  • Meury J, Kohiyama M (1989) ATP is required for K+ active transport in the archaebacterium Haloferax volcanii. Arch Microbiol 151:530–536

    Article  CAS  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193:497–513

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Muralikannan M (1996) Biodissolution of silicate, phosphate and potassium by silicate solubilizing bacteria in rice ecosystem. M. Sc.(Agric) thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Nagendran K, Karthikeyan G, Peeran MF, Raveendran M, Prabakar K, Raguchander T (2013) Management of bacterial leaf blight disease in rice with endophytic bacteria. World App Sci J 28:2229–2241

    Google Scholar 

  • Naidu L, Sidhu G, Sarkar D, Ramamurthy V (2011) Emerging deficiency of potassium in soils and crops of India. Karnat J Agricult Sci 24(1)

    Google Scholar 

  • Nath R, Sharma GD, Barooah M (2015) Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Appl Ecol Environ Res 13:877–891

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. App Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Niimura Y, Koh E, Yanagida F, K4 S, Komagata K, Kozaki M (1990) Amphibaciffus xyfanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301

    Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Mircobiol Mol Biol Rev 63:334–348

    CAS  Google Scholar 

  • Ouellette M, Jackson L, Chimileski S, Papke RT (2015) Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E) XK nuclease family protein HVO_A0006. Front Microbiol 6

    Google Scholar 

  • Pal DK, Srivastava P, Durge SL, Bhattacharyya T (2001) Role of weathering of fine-grained micas in potassium management of Indian soils. Appl Clay Sci 20:39–52

    Article  CAS  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum 133:670–681

    Article  CAS  PubMed  Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech. J Microbiol 1:8–14

    Article  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leaflets 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on Abelmoschus esculentus. Int J Agric Sci 3(1):181–188

    Google Scholar 

  • Ramarethinam S, Chandra K (2005) Studies on the effect of potash solubilizing/mobilizing bacteria Frateuria aurantia on brinjal growth and yield. Pestology 11:35–39

    Google Scholar 

  • Rao C, Rao AS, Rao K, Venkateswarlu B, Singh A (2010) Categorization of districts based on nonexchangeable potassium: implications in efficient K fertility management in Indian agriculture. Ind J Fert 6:40–54

    CAS  Google Scholar 

  • Reitmeir RF (1951) Soil potassium. In: Norman AG (ed) Advances in agronomy II. Academic Press, New York, pp 113–164

    Google Scholar 

  • Requena BN, Jimenez I, Toro M, Barea JM (1997) Interactions between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystem. New Phytologist 136:667–677

    Article  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manes Y, Mather DE (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  CAS  PubMed  Google Scholar 

  • Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180

    Article  CAS  Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast. Torulaspora globosa. Braz Arch Biol Technol 55:577–582

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sahay H, Mahfooz S, Singh AK, Singh S, Kaushik R, Saxena AK, Arora DK (2012) Exploration and characterization of agriculturally and industrially important haloalkaliphilic bacteria from environmental samples of hyper saline Sambhar lake, India. World J Microbiol Biotechnol 28:3207–3217

    Article  CAS  PubMed  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21(2):118–124

    Google Scholar 

  • Sebastiao MJ, Cabral JMS, Aires-Barros MR (1993) Fusarium solani pisi recombinant cutinase partitioning in PEG/potassium phosphate aqueous two-phase systems. Biotechnol Techn 7(9):631–634

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Article  CAS  Google Scholar 

  • Sen Gupta A, Berkowitz GA, Pier PA (1989) Maintenance of photosynthesis at low leaf water potential in wheat role of potassium status and irrigation history. Plant Physiol 89:1358–1365

    Article  Google Scholar 

  • Shaaban EA, El-Shamma IMS, El Shazly S, El-Gazzar A, Abdel-Hak RE (2012) Efficiency of rock-feldspar combined with silicate dissolving bacteria on yield and fruit quality of Valencia orange fruits in reclaimed soils. J Appl Sci Res 8:4504–4510

    Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  Google Scholar 

  • Sheng X (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium-bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39(6):863–871

    Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Simine CDD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated form a forest soil. Biol Fert soils 28:87–94

    Article  Google Scholar 

  • Sindhu SS, Dua S, Verma MK, Khandelwal A (2010) Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Wien, New York, pp 95–235

    Google Scholar 

  • Sindhu SS, Parmar P, Phour M (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiol and biogeochemistry. Springer, pp 175–198

    Google Scholar 

  • Singh B, Goulding KWT (1997) Changes with time in the potassium content and phyllosilicates in the soil of the Broad balk continuous wheat experiment at Rothamsted. Eur J Soil Sci 48:651–659

    Article  CAS  Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33(8):1236–1251

    Article  CAS  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. Madison, WI: American Society of Agronomy, pp 201–276

    Google Scholar 

  • Subhashini DV, Kumar AV (2014) Phosphate solubilizing Streptomyces spp. obtained from the rhizosphere of Ceriops decandra of Corangi mangroves. Indian J Agric Sci 84(5):560–564

    CAS  Google Scholar 

  • Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016a) Develop lications in food safety and therapeutics. ment of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.) Int J Curr Microbiol App Sci 5(3):890–901

    Google Scholar 

  • Suman A, Yadav AN, Verma P (2016b) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi, pp 117–143

    Google Scholar 

  • Supanjani HH, Jung JS, Lee KD (2006) Rock phosphate potassium and rock solubilizing bacteria as alternative sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tsonev T, Velikova V, Yildiz-Aktas L, Gurel A, Edreva A (2011) Effect of water deficit and potassium fertilization on photosynthetic activity in cotton plants. Plant Biosyst 145:841–847

    Article  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Veresoglou SD, Mamolos AP, Thornton B, Voulgari OK, Sen R, Veresoglou S (2011) Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant Soil 344:187–196

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2013) Elucidating the diversity and plant growth promoting attributes of wheat (Triticum aestivum) associated acidotolerant bacteria from southern hills zone of India. Natl J Life Sci 10(2):219–226

    CAS  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3(5):432–447

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015a) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AK, Khanna KS, Kumar S, Saxena AK, Suman A (2015b) Alleviation of cold stress in wheat seedlings by Bacillus amyloliquefaciens IARI-HHS2-30 an endophytic psychrotolerant K-solubilizing bacterium from NW Indian himalayas. Nat J Life Sci 12:105–110

    Google Scholar 

  • Verma P, Yadav AN, Shukla L, Saxena AK, Suman A (2015c) Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkiania mobilis IARI-MB-18 isolated from Manikaran hot springs. International. J Adv Res 3(9):1241–1250

    Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.042

  • Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol 14:169–177

    Article  CAS  PubMed  Google Scholar 

  • White PJ (2013) Improving potassium acquisition and utilisation by crop plants. J Plant Nutr Soil Sci 176:305–316

    Article  CAS  Google Scholar 

  • Wigoda N, Moshelion M, Moran N (2014) Is the leaf bundle sheath a “smart flux valve” for K+ nutrition? J Plant Physiol 171:715–722

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xie JC (1998) Present situation and prospects for the world’s fertilizer use. Plant Nutri Fertil Sci 4:321–330

    Google Scholar 

  • Yadav V, Prappulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: production, purification and characterization. Biotechnol Bioinform Bioeng 1:415–421

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2014) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693. https://doi.org/10.1016/j.jbiosc. 2014.11.006

    Article  CAS  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015a) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31(1):95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R (2015b) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65(2):611–629

    Article  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2015c) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56(3):294–307

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    PubMed  Google Scholar 

  • Yadegari M, Farahani GHN, Mosadeghzad Z (2012) Biofertilizers effects on quantitative and qualitative yield of Thyme (Thymus vulgaris). Afr J Agric Res 7(34):4716–4723

    Article  Google Scholar 

  • Yousefi AA, Khavazi K, Moezi AA, Rejali F, Nadian NH (2011) Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl Sci J 15(9):1310–1318

    CAS  Google Scholar 

  • Youssef GH, Seddik WMA, Osman MA (2010) Efficiency of natural minerals in presence of different nitrogen forms and potassium dissolving bacteria on peanut and sesame yields. J Am Sci 6(11):647–660

    Google Scholar 

  • Zakaria AAB (2009) Growth optimization of potassium solubilizing bacteria isolated from biofertilizer. Malaysia Pahang: Bachelor of Chemical Engeneening (Biotech.), Faculty of Chemical and Natural Resources Engineering. Univ, p 40

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium-solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. App Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang A, Zhao G, Gao T, Wang W, Li J, Zhang S, Zhu BC (2013) Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afr J Microbiol Res 7(1):41–47

    Article  CAS  Google Scholar 

  • Zhao F, Sheng X, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodiv Sci 16:593–600

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, and the Department of Biotechnology (DBT), Ministry of Science and Technology, for providing the facilities and financial support, to undertake the investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, P., Yadav, A.N., Khannam, K.S., Saxena, A.K., Suman, A. (2017). Potassium-Solubilizing Microbes: Diversity, Distribution, and Role in Plant Growth Promotion. In: Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds) Microorganisms for Green Revolution. Microorganisms for Sustainability, vol 6. Springer, Singapore. https://doi.org/10.1007/978-981-10-6241-4_7

Download citation

Publish with us

Policies and ethics