Skip to main content

Biotechnological Applications of Trichoderma Species for Environmental and Food Security

  • Chapter
  • First Online:
Plant Biotechnology: Recent Advancements and Developments

Abstract

This chapter reviews diverse biotechnological applications of Trichoderma species as a biofungicide for plant disease control, biofertilizer for plant growth promotory effects resulting in a high yield and productivity ensuring food security, along with environmental security by reducing the use of hazardous agrochemicals, production of industrially important chemicals, and having a potential for bioremediation for environmental cleanup activities. Use of chemical pesticide is one of the best strategies applied in intensive conventional agriculture for the control of pest and achieving high yields. However, pesticides are widely known for their adverse impacts on human health, and environmental challenges related to pesticides are a broad spectrum of toxicity affecting the biodiversity, persistence issues affecting food chain, residues in food chain, biomagnification, and acute and chronic effects on humans. Among beneficial microorganisms, Trichoderma species have attracted the attention because of their multipronged beneficial actions for plants in agriculture for their biocontrol potential, for plant growth promotion, for biostimulation of defense compounds in various crops, as well as for the production of important enzymes and drugs in industrial sector. Trichoderma species as a successful biocontrol agent employ complex mechanisms, i.e., competition, mycoparasitism, antibiosis, and induced systemic resistance against various phytopathogenic organisms. Several Trichoderma-based formulations are commercially available across the globe. Apart from the successful use of Trichoderma species as biocontrol agents (BCA) in agriculture, it also has ample potential for various industrial applications such as in paper and pulp industry, pharmaceutical industry, aromatic industry, and food and beverage industry. Intensive research is needed to develop Trichoderma-based formulations having prolonged shelf life, which is a constraint in the current scenario. Diverse biotechnological applications of Trichoderma species ensure food as well as environmental security direly needed for supporting life on this planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Tripathi V, Edrisi SA et al (2016) Sustainability of crop production from polluted lands. Energy Ecol Environ. doi:10.1007/s40974-016-0007-x

    Google Scholar 

  • Abo-state MA, Ragab AME, El-gendy N, Farahat LA, Madian HR (2014) Bioethanol production from rice straw enzymatically saccharified by fungal isolates Trichoderma viride F-94 and Aspergillus F-98. Soft 3:19–29. doi:10.4236/soft.2014.32003

    Article  Google Scholar 

  • Adam P, De-leij FAAM, Lynch JM (2007) T. harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) sapling in both clean and metal contaminated soil. Microb Ecol 54:306–313. doi:10.1007/s00248-006-9203-0

    Article  Google Scholar 

  • Adejumo TO, Ikotun T, Florini D (1999) Biological control of Protomycopsis phaseoli the causal agent of leaf smut of Cowpea. J Phytopathol 147:371–375

    Article  Google Scholar 

  • Ahmad JS, Baker R (1987) Rhizosphere competence of T. harzianum. Phytopathology 77:182–189

    Article  Google Scholar 

  • Akladious AS, Abbas SA (2014) Application of Trichoderma harzianum T22 as a biofertilizer potential in maize growth. J Plant Nutr 37:30–49

    Article  CAS  Google Scholar 

  • Akter Z, Weinmann M, Neumann G, Romheld V (2013) An in vitro screening methods to study the activity potential of biofertilizers based on Trichoderma and Bacillus species. J Plant Nutr 36:1439–1452

    Article  CAS  Google Scholar 

  • Al-Naemi FA, Ahmed TA, Nishad R, Radwan O (2016) Antagonistic effects of Trichoderma harzianum isolates against Ceratocystis radicicola pioneering a biocontrol strategy against black scorch disease in date palm trees. J Phytopathol 164:464–475. doi:10.1111/jph.12472

    Article  CAS  Google Scholar 

  • Al-taweil HI, Osman MB, Aidil AH, Yussof WMW (2009) Optimizing of Trichoderma viride cultivation in submerged state fermentation. Am J Appl Sci 6(7):1277–1281

    Article  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubulization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by T. viride. Bioresour Technol 97(8):1018–1025

    Article  CAS  PubMed  Google Scholar 

  • Andrews M, Cripps MG, Edwards GR (2012) The potential of beneficial microorganisms in agricultural systems. Ann Appl Biol 160:1–5. doi:10.1111/j.1744-7348.2011.00519.x

    Article  Google Scholar 

  • Anita S, Ponmurugan P (2011) In vitro evaluation of Trichoderma atroviride against Phomopsis theae a causal agent of collar canker disease in tea plants. Int J Agric Res 6(8):620–631. doi:10.3923/ijar.2011.620.631

    Article  CAS  Google Scholar 

  • Anjaiah V, Thakur RP, Koedam N (2006) Evaluation of bacteria and Trichoderma for biocontrol of preharvest seed infection by Aspergillus flavus in groundnut. Biocontrol Sci Tech 16(4):431–436. doi:10.1080/09583150500532337

    Article  Google Scholar 

  • Arbeli V, Fuentes Cilia L (2007) Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Prot 26:1733–1746. doi:10.1016/j.cropro.2007.03.009

    Article  CAS  Google Scholar 

  • Arjun KM (2013) Indian agriculture, status, importance and role in Indian economy. Int J Agric Food Sci Technol 4(4):343–346

    Google Scholar 

  • Azarmi R, Hajieghrari B, Giglou A (2011) Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. Afr J Biotechnol 10(31):5850–5855

    CAS  Google Scholar 

  • Aziz NH, El-foulyKhalaf LA (1997) Influence of bean seedling root exudates on the rhizosphere colonization by T. lignorum for the control of R. solani. Bot Bull Acad Sin 38:33–37

    Google Scholar 

  • Baker R (1989) Improved Trichoderma species for promoting crop productivity. Trends Biotechnol 7:34–38

    Article  Google Scholar 

  • Bayitse R, Hou X, Laryea G, Bjerre AB (2015) Protein enrichment of cassava residue using Trichoderma pseudokoningii (ATCC 26801). AMB Express 5:80. doi:10.1186/s13568-015-0166-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanism of Trichoderma strains. Int Microbiol 7:249–260

    CAS  PubMed  Google Scholar 

  • Bernal-Vicente A, Pascual JA, Tittarelli F, Hernández JA, Diaz-Vivancos P (2015) Trichoderma harzianum T-78 supplementation of compost stimulates the antioxidant defence system in melon plants. J Sci Food Agric 95:2208–2214. doi:10.1002/jsfa.6936

    Article  CAS  PubMed  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulase and beyond: the first 70 years of the enzyme producer Trichoderma reesii. Microb Cell Factories 15:106. doi:10.1186/s12934-016-0507-6

    Article  CAS  Google Scholar 

  • Bjorkman T (2004) Effect of Trichoderma colonization of auxin mediated regulation of root elongation. Plant Growth Regul 43:89–92

    Article  Google Scholar 

  • BÅ‚aszczyk L, Siwulski M, Sobieralski K, Lisiecka J, JÄ™dryczka M (2014) Trichoderma spp. – application and prospects for use in organic farming and industry. J Plant Protect Res 54(4):309–317

    Google Scholar 

  • Bokhari FM (2009) Efficacy of some Trichoderma species in the control of Rotylen chulusreniformis and Meloidogyne javanica. Arch Phytopathol Plant Protect 42(4):361–369

    Article  CAS  Google Scholar 

  • Bourguignon E (2008) Ecology and diversity of indigenous Trichoderma species in vegetable cropping Systems. Ph.D. Thesis, National Centre for Advanced Bio-Protection Technologies, Lincoln University, Canterbury, New Zealand

    Google Scholar 

  • Cai F, Guanghui Y, Ping W, Zhong W, Lin F, Qirong S, Wei C (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113

    Article  CAS  PubMed  Google Scholar 

  • Cardoza RE, Malmierca MG, Gutierrez S (2014) Overexpression of erg1 gene in Trichoderma harzianum CECT 2413: effect on the induction of tomato defence-related genes. J Appl Microbiol 117:812–823. doi:10.1111/jam.12574

    Article  CAS  PubMed  Google Scholar 

  • Chad MH (1999) T. virens inoculated composted chicken manure for biological weed control. Biol Control 16:217–222

    Article  Google Scholar 

  • Chen L, Huang X, Zhang F et al (2012) Application of Trichoderma harzianum SQR-T037 bio-organic fertilizer significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber. J Sci Food Agric 92:2465–2470

    Article  CAS  PubMed  Google Scholar 

  • Chet I (1987) Trichoderma: application, mode of action and potential as biocontrol agent of soil borne plant pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  • Chew SY, Ting ASY (2016) Biosorption behaviour of alginate-immobilized Trichoderma asperellum, a common microfungus in single and multi-metal systems. Sep Sci Technol 51(5):743–748. doi:10.1080/01496395.2015.1130059

    Article  CAS  Google Scholar 

  • Christopher MSM (2000) Increased plant growth induced by Trichoderma apps (Ecoderma) in paddy. Pestology 24:40–41

    Google Scholar 

  • Chuang YC, Li WC, Chen C, Hsu PW, Tung S et al (2015) Trichoderma reesei meiosis generates segmentally aneuploid progeny with higher xylanase producing capability. Biotechnol Biofuels 8:30. doi:10.1186/s13068-015-0202-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  • Coradi GV, Visitaçao VL, DeLima EA et al (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann Microbiol 63:533–540. doi:10.1007/s13213-012-0500-1

    Article  CAS  Google Scholar 

  • Corley DG, Miller-Wideman M, Durley RC (1994) Isolation and structure of harzianum a: a new trichothecene from Trichoderma harzianum. J Nat Prod 57(3):422–425

    Article  CAS  PubMed  Google Scholar 

  • Crozier J, Arroyo C, Morales H, Melnick RL, Strem MD et al (2015) The influence of formulation on Trichoderma biological activity and frosty pod rot management in Theobroma cacao. Plant Pathol 64:1385–1395

    Article  CAS  Google Scholar 

  • Cumagun CJR, Hockenhull J, Lubeck M (2000) Characterization of Trichoderma isolates from Philippines rice fields by UP-PCR and rDNA –ITS1 analysis: identification of UP-PCR markers. J Phytopathol 148:109–115

    Article  CAS  Google Scholar 

  • Cutler HG, Jacyno GM (1991) Biological activity of (−) Harziano pyridone isolated from T. Harzianum. Agric Biol Chem 55:2629–2631

    Google Scholar 

  • Damisa D, Sule EI, Moneme S (2012) Cellulase production from waste paper using Trichoderma species isolated from rhizospheric soil. Afr J Biotechnol 11(97):16342–16346. doi:10.5897/ AJB12. 2555

    CAS  Google Scholar 

  • Daryaei A, Jones EE, Ghazalibiglar H, Glare TR, Falloon RE (2016) Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride. J Appl Microbiol 120:999–1009. doi:10.1111/jam.13076

    Article  CAS  PubMed  Google Scholar 

  • DaSilva M, Passarini MRZ, Bonugli RC, Settle LD (2008) Cnidarian derived filamentous fungi from Brazil: isolation, characterization and RBBR decolourisation screening. Environ Technol 29:1331–1339

    Article  CAS  Google Scholar 

  • Dawidziuk A, Popiel D, Kaczmarek J, Strakowska J, Jedryczka M (2016) Optimal Trichoderma strains for control of stem canker of brassicas: molecular basis of biocontrol properties and azole resistance. Biol Control. doi:10.1007/s10526-016-9743-2

    Google Scholar 

  • De Marco JL, Lima LH, Sousa MV, Felix CR (2000) A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches’ broom disease of cocoa. World J Microbiol Biotechnol 16:383–386

    Article  Google Scholar 

  • Degenkolb T, Nielsen KF, Dieckmann R, Branco-Rocha F et al (2015) Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex. Chem Biodivers 12:662–668

    Article  CAS  PubMed  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Weist A, Kenerley CM (2007) Aproteinaceous elicitor Sm1 from the beneficial fungus T. virens is required for systemic resistance in maize. Plant Physiol 145:875–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohroo NP (2001) Study of population dynamics of naturally occurring T. harzianum Rifai and its antagonistic potential against rhizome rot of ginger. Indian J Plant Pathol 19:39–43

    Google Scholar 

  • Doni F, Isahak A, Zain CRCM, Yusoff WMW (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druzhinina IS, Kopchinskiy AG, Kubicek CP (2006) The first 100 Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    Article  CAS  Google Scholar 

  • Dubey SC, Bhavani R, Singh B (2011) Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctoniasolani. Pest Manag Sci 67:1163–1168

    CAS  PubMed  Google Scholar 

  • Elad Y, Chet I, Henis Y (1981) A selective medium for improving quantitative isolation of Trichodermaspp from soil. Phytoparasitica 9(1):59–67

    Article  Google Scholar 

  • El-Hasan A, Walker F, Schone J, Buchenauer H (2009) Detection of viridofungin A and other antifungal metabolites secreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124:457–470

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Mohamed SA, Asiri AM et al (2015) Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. BMC Biotechnol 15:37. doi:10.1186/s12896-015-0158-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ezzi MI, Lynch JM (2002) Cyanide catabolizing enzymes in Trichoderma spp. Enzym Microb Technol 31:1042–1047

    Article  CAS  Google Scholar 

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzym Microb Technol 36:849–854

    Article  CAS  Google Scholar 

  • Fadel HHM, Mahmoud MG, Asker MMS, Lofty SN (2015) Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron J Biotechnol 18(1):5–9

    Google Scholar 

  • Ferigo D, Raiola A, Piccolo E, Scopel C, Causin R (2014) Trichoderma harzianum T22 induces in maize systemic resistance against Fusarium verticillioides. J Plant Pathol 96(1):133–142

    Google Scholar 

  • Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B (2013) Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system – a review. Curr Res Microbiol Biotechnol 1(4):133–142

    Google Scholar 

  • Galante Y, De Conti A, Monteverdi (1998a) Application of Trichoderma enzymes in the textile industry. In: Harman G, Kubicek C (eds) Trichoderma and Gliocladium, enzymes, biological control and commercial applications, vol 2, pp 311–326

    Google Scholar 

  • Galante Y, De Conti A, Monteverdi (1998b) Application of Trichoderma enzymes in the food and feed industry. In: Harman G, Kubicek C (eds) Trichoderma and Gliocladium, enzymes, biological control and commercial applications, vol 2, pp 327–342

    Google Scholar 

  • Garnica-vergara A, Barrera-ortiz S, Munoz-Parra E et al (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive functioning. New Phytol 209:1496–1512

    Article  CAS  PubMed  Google Scholar 

  • Gasso A, Prosperi A (2001) Growth promotion with Trichoderma spp. formulation in four crops during early stages. Argentenian Plant Pathol 21:56

    Google Scholar 

  • Gil SV, Pastor S, March GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res 164:196–205

    Article  CAS  Google Scholar 

  • Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health B 43:237–240

    Article  CAS  PubMed  Google Scholar 

  • Govindappa M, Rai VR, Lokesh S (2011) In vitro and in vivo responses of different treating agents against wilt disease of safflower. J Cereals Oilseeds 2(1):16–25

    Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425

    Article  CAS  PubMed  Google Scholar 

  • Hajji EM, Rebuffat S, Lecommandeur D, Bodo B (1987) Isolation and determination of trichorzianines an antifungal peptide from T.harzianum. Int J Pept Protein Res 29:207–215

    Article  PubMed  Google Scholar 

  • Harman GE (2006) Overview of mechanism and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species- opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harris GH, Turner ET, Meinz MS et al (1993) Isolation and structure elucidation of virido fungins A, B and C. Tetrahedron Lett 34(33):5235–5238

    Article  CAS  Google Scholar 

  • Hasan MM, Ismail IA, Sorour AA (2014) Phylogeny and antagonistic activity of some protoplast fusants in Trichoderma and Hypocrea. Int J Appl Sci Biotechnol 2(2):146–151

    Google Scholar 

  • Hasanloo T, Kowsari M, Naraghi MS, Bagheri O (2010) Study of different Trichoderma strains on growth characteristics and silymarin accumulation of milk thistle plant. J Plant Interact 5(1):45–49

    Article  CAS  Google Scholar 

  • Heidrum A, Josaine Kinn Karlerik B, Olov S (1991) Production of siderophores by strains of genus Trichoderma. Biometals 4:176–180

    Google Scholar 

  • Hermosa MR, Grondona I, Iturriaga EA (2000) Molecular charachterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 166:1890–1898

    Article  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp. interaction between the host, the pathogen, the biocontrol agent and the soil organic matter quality. Phytopathology 96(2):186–189

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanism employed by Trichoderma spp. in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87(1):4–10

    Article  Google Scholar 

  • Hutchinson CM (1999) Trichoderma virens-inoculated composted chicken manure for biological weed control. Biol Control 16:217–222

    Article  Google Scholar 

  • Inbar J, Menedez A, Chet I (1996) Hyphal interaction between T. harzianum and S. sclerotiorum and its role in biological control. Soil Biol Biochem 28(6):757–763

    Article  CAS  Google Scholar 

  • Inch S, Walker DJ, Gilbert J et al (2011) The development of a model to predict the potential efficacy of Trichoderma harzianum isolates on perithecial production of Gibberella zeae based on secondary metabolite production. Can J Plant Pathol 33(3):337–346

    Article  CAS  Google Scholar 

  • Iqbal SM, Bakhsh A, Hussain S, Malik BA (1995) Microbiological antagonism against S. rolfsii the cause of collar rot of Lentil. Lens News Lett 22(1):48–49

    Google Scholar 

  • Iqbal HMN, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156

    Article  CAS  Google Scholar 

  • Irshad M, Anwar Z, Mahmood Z, Aqil T, Mehmmod S, Nawaz H (2014) Bio-processing of agro-industrial waste orange peel for induced production of pectinase by Trichoderma viride; its purification and characterization. Turk J Biochem 39(1):9–18

    Article  CAS  Google Scholar 

  • Islam MN, Shamsuddula AM, Ahmed HP (2007) Comparative effectiveness of Trichoderma colonized organic waste in controlling foot and root rot (Sclerotium rolfsii) disease of wheat. Afr Crop Sci Conf Proc 8:2079–2082

    Google Scholar 

  • Islam MM, Hossain DM, Rahman MME, Suzuki K et al (2016) Native Trichoderma strains isolated from Bangladesh with broad spectrum antifungal action against fungal phytopathogens. Arch Phytopathol Plant Protect 49(1–4):75–93

    Article  CAS  Google Scholar 

  • Jash S, Pan S (2007) Variability in antagonistic activity and root colonizing behaviour of Trichoderma isolates. J Trop Agric 45(1–2):29–35

    Google Scholar 

  • Javaid A, Ali S (2011) Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat Prod Res 25(7):730–740

    Article  CAS  PubMed  Google Scholar 

  • Jayalakshmi SK, Raju S, Usha R et al (2009) Trichoderma harzianum L1 as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum) against wilt disease caused by Fusarium oxysporum f. sp. ciceri. Aust J Crop Sci 3(1):44–52

    CAS  Google Scholar 

  • Jebakumar RS, Anandraj M, Sharma YR (2000) Compatability of phorate and chloropyriphos with T. harzianum (rifai.) applied for integrated disease management in black pepper (Piper nigrum L.) J Spices Aromatic Crops 9(2):111–115

    Google Scholar 

  • John RP, Tyagi RD, Prévost D, Brar Satinder K et al (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29:1452–1459

    Article  Google Scholar 

  • Jones EE, Bienkowski DA, Stewart A (2016) The importance of water potential range tolerance as a limiting factor on Trichoderma spp. bio control of Sclerotinia sclerotiorum. Ann Appl Biol 168:41–51

    Article  CAS  Google Scholar 

  • Joshi BB, Bhatt RP, Bahukhandi D (2010) Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. J Environ Biol 31(6):921–928

    CAS  PubMed  Google Scholar 

  • Kalia A, Gosal SK (2011) Effect of pesticide application on soil microorganisms. Arch Agron Soil Sci 57(6):569–596

    Article  CAS  Google Scholar 

  • Kawai T, Nakazawa HI, da N Okada H, Ogasawara W et al (2013) A comprehensive analysis of the effects of the main component enzymes of cellulase derived from Trichoderma reesei on biomass saccharification. J Ind Microbiol Biotechnol 40:805–810

    Article  CAS  PubMed  Google Scholar 

  • Kexiang G, Xiaoguang L, Yonghong L, Tiantro Z, Shuliang W (2002) Potential of T. harzianum and T. atroviride to control B. berengeriana f. sp. piricola the cause of apple ring rot. J Phytopathol 150:271–276

    Article  Google Scholar 

  • Khan MR, Gupta J (1998) Antagonistic efficacy of Trichoderma species against M. phaseolina on eggplant. J Plant Disease Protect 105(4):387–393

    Google Scholar 

  • Khan MR, Haque Z (2011) Soil application of Pseudomonas flourescens and Trichoderma harzianum reduces root-knot nematode Meloidogyne incognita on tobacco. Phytopathol Mediterr 50:257–266

    CAS  Google Scholar 

  • Khan MO, Shahzad S (2007) Screening of Trichoderma species for tolerance to fungicides. Pak J Bot 39:945–951

    Google Scholar 

  • Khan J, Ooka J, Miller S, Madden A, Hoitink HA (2004) Systemic resistance induced by T. hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88:280–286

    Article  Google Scholar 

  • Khan AA, Sinha AP, Rathi YPS (2005) Plant growth promoting activity of Trichoderma harzianum in rice seed germination and seedling vigour. Indian J Agric Res 39(4):256–262

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M et al (2010) Plant growth promotion by phosphate solubilizing fungi – current perspective. Arch Agron Soil Sci 56(1):73–98

    Article  CAS  Google Scholar 

  • Khan MO, Shah N, Shahzad S, Khan MN (2013) Induce tolerance in Trichoderma species against fungicide. PJLS 1:35–42

    Google Scholar 

  • Khater HF (2012) Prospects of botanical biopesticides in insect pest management. J Appl Pharm Sci 2(05):244–259

    Google Scholar 

  • Khoo GM, Clausen MR, Pedersen HL, Larsen E (2012) Bioactivity and chemical composition of black currant (Ribes nigrum) cultivars with and without pesticide treatment. Food Chem 132:1214–1220

    Article  CAS  Google Scholar 

  • Kidwai MK (2007) Selection, characterization and application of Trichoderma for control of soil borne plant pathogens. Ph.D. Thesis, University of Lucknow, Lucknow

    Google Scholar 

  • Kidwai MK, Vikas SS, Singh HB (2006) Compatibility of T. harzianum to selected fungicides. J Ecofriendly Agric 1(2):156–161

    Google Scholar 

  • Kidwai MK, Vikas SS, Srivastava SC, Singh HB (2007) Compatibility of T. harzianum to selected insecticides. J Ecofriendly Agric 2(2):170–174

    Google Scholar 

  • Kim CS, Shirouzu T, Nakagiri A, Sotome K, Maekawa N (2013) Trichoderma eijii and T. pseudolacteum, two new species from Japan. Mycol Prog 12:739–753

    Article  Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Nagy E (2001) Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Lett Appl Microbiol 33:112–116

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Manczinger L, Antal Z, Penzes Z et al (2004) In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96:491–498

    Article  CAS  PubMed  Google Scholar 

  • Kredics L, Láday M, Körmöczi P, Manczinger L et al (2012) Genetic and biochemical diversity among Trichoderma isolates in soil samples from winter wheat fields of the great hungarian plain. Acta Biologica Szegediensis 56(2):141–149

    Google Scholar 

  • Krishnamoorthy AS, Baskaran R (1990) Biological control of damping off disease of tomato caused by Pythium indicum. J Biol Control 4:52–54

    Google Scholar 

  • Kumar M, Sharma P (2011) Molecular and morphological characters: an appurtenance for antagonism in Trichoderma spp. Afr J Biotechnol 10(22):4532–4543

    Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: mass production, formulation, quality control delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9(53):3838–3852

    Google Scholar 

  • Kumar A, Gautam A, Dutt D (2016) Biotechnological transformation of lignocellulosic biomass into industrial products: an overview. Adv Biosci Biotechnol 7:149–168

    Article  CAS  Google Scholar 

  • Lane SD, Bowen NJ (2005) Revisiting the use of Iprodione and Trichoderma in the integrated management of onion white rot. Arch Phytopathol Plant Protect 38(2):133–138

    Article  Google Scholar 

  • Leifeld J, Fuhrer J (2010) Organic farming and soil carbon sequestration: what do we really know about the benefits. Ambio 39:585–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leobardo S, Carreon VJ, Antonio R, Estrada M, Enrique G (2006) Shake flask to stirred fermenters: scale up of an extractive fermentation process for 6 pentyl-α-pyrone production by Trichoderma harzianum using volumetric power input. Process Biochem 41:1347–1352

    Article  CAS  Google Scholar 

  • Levillian J, Cattan P, Colin F, Voltz M, Cabidoche (2012) Analysis of environmental and farming factors of soil contamination by POP chlordecone in a banana production area of French west indies. Agric Ecosyst Environ 159:123–132

    Article  Google Scholar 

  • Levy NO, Harell YM, Haile ZM et al (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374

    Article  CAS  Google Scholar 

  • Lewis JA, Larkin RP (1997) Extruded granular formulation with biomass of biocontrol Gliocladium virens and Trichoderma spp. to reduce damping-off of eggplant caused by Rhizoctonia solani and saprophytic growth of the pathogen in soil-less mix. Biocontrol Sci Tech 7:49–60

    Article  Google Scholar 

  • Li J, Wang P, He J, Huang J, Tang J (2013) Efficient biocatalytic synthesis of (R)-[3, 5-bis (trifluoromethyl) phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. Appl Microbiol Biotechnol 97:6685–6692

    Article  CAS  PubMed  Google Scholar 

  • Linke R, Thallinger GG, Haarmann T, Eidner J et al (2015) Restoration of female fertility in Trichoderma reesei QM6a provides the basis for inbreeding in this industrial cellulose producing fungus. Biotechnol Biofuels 8:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lo CT, Lin CY (2002) Screening strains of Trichoderma species for plant growth enhancement in Taiwan. Plant Pathol Bull 11:215–220

    Google Scholar 

  • Lopez EE, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    Article  Google Scholar 

  • Malmierca MG, Mccormick SP, Cardoza RE et al (2015) Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ Microbiol 17(8):2628–2646

    Article  CAS  PubMed  Google Scholar 

  • Manjula K, Kishore GK, Girish AG, Singh SD (2004) Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathol J 20(1):75–80

    Article  Google Scholar 

  • Marin-Guirao JI, Rodrıguez-Romera P, Rodrıguez Lupion B et al (2016) Effect of Trichoderma on horticultural seedlings growth promotion depending on inoculum and substrate type. J Appl Microbiol 1:1–8

    Google Scholar 

  • Martin K, Saurborn J (2013) Origin and development of agriculture. Agroecology 2:9–48

    Article  Google Scholar 

  • Martínez FD, Santos M, Carretero F, Marín F (2016) Trichoderma saturnisporum, a new biological control agent. J Sci Food Agric 96:1934–1944

    Article  CAS  Google Scholar 

  • Mathivanan N, Srinivasan K, Chelliah S (2000) Biological control of soil-borne diseases of cotton, eggplant, okra and sunflower with Trichoderma viride. J Plant Dis Protect 107:235–244

    Google Scholar 

  • Mathivanan N, Prabhavathy VR, Vijayanandraj VR (2005) Application of talc formulations of Pseudomonas fluorescens migula and Trichoderma viride Pers. ex S.F. Gray decrease the sheath blight disease and enhance the plant growth and yield in rice. J Phytopathol 153:697–701

    Article  Google Scholar 

  • Mbazia A, Youssef NOB, Kharrat M (2016) Tunisian isolates of Trichoderma spp. and Bacillus subtilis can control Botrytis fabae on faba bean. Biocontrol Sci Tech 26(7):915927

    Article  Google Scholar 

  • Mckenzie AJ, Starman T (1995) Enhanced root and shoot growth of chrysanthemum cutting propogated with T. harzianum. Hortic Sci 30(3):496–498

    Google Scholar 

  • Mclean KL, Saminathan JC, Hunt F, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of T. atroviride C52. Plant Pathol 54:212–218

    Article  Google Scholar 

  • Meki S, Ahmed S, Sakhuja PK (2011) Control of chickpea wilt (Fusarium oxysporum f. sp. ciceris) using Trichoderma spp. in Ethiopia. Arch Phytopathol Plant Protect 44(5):432–440

    Article  Google Scholar 

  • Melo IS (1991) Antagonism of Trichoderma species against S. sclerotiorum and S. minor in vitro. Rev Microbiol 22(2):147–150

    Google Scholar 

  • Menedez AB, Godeas A (1998) Biological control of S. sclerotiorum attacking soybean plants degradation of cell wall by T.harzianum (BAFC-742). Mycopathologia 142:153–160

    Article  Google Scholar 

  • Michel M, Gnusowski B, Buszewski B (2006) Comparison of various extraction techniques to determine fungicide residue in wheat grain. J Liq Chromatogr Relat Technol 29:247–261

    Article  CAS  Google Scholar 

  • Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel-spiked soil amended with Trichoderma reesei using sole-carbon-source utilization profiles. World J Microbiol Biotechnol 25:1175–1180

    Article  CAS  Google Scholar 

  • Mishra BK, Mishra RK, Mishra RC, Tiwari AK et al (2011) Biocontrol efficacy of Trichoderma viride isolates against fungal plant pathogens causing disease in Vigna radiate L. Arch Appl Sci Res 3(2):361–369

    CAS  Google Scholar 

  • Moosa A, Sahi ST, Haq IU, Farzand A, Khan SA, Javaid K (2016) Antagonistic potential of Trichoderma isolates and manures against fusarium wilt of tomato. Int J Vegetable Sci:1–12. doi:10.1080/19315260.2016.1232329

  • Morris J, Burgess PJ (2012) Modern agriculture and implication of land use and management. Environ Impacts Modern Agric 34:1–34

    Article  Google Scholar 

  • Motlagh MRS, Samimi Z (2013) Evaluation of Trichoderma spp. as biocontrol agents in some of plant pathogens. Ann Biol Res 4(3):173–179

    Google Scholar 

  • Mukherjee M, Mukherjee PK, Horwitz BA et al (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhaya AN (1994) Biocontrol of soilborne fungal pathogens current status, future prospects and potential limitation. Ind Phytopathol 47(1):1–8

    Google Scholar 

  • Mukhopadhaya AN, Kaur NP (1990) Biological control of soil borne funal plant pathogens current status, future prospects and potential limitations. Indian Phytopath 42(2):119–126

    Google Scholar 

  • Mulaw TB, Kubicek CP, Druzhinina IS (2010) The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity 2:527–549

    Article  CAS  Google Scholar 

  • Mutawila C, Vinale F, Haleen F, Lorito M, Mostert L (2016) Isolation, production and in vitro effect of major secondary metabolite produced by Trichoderma species used for control of grapevine trunk diseases. Plant Pathol 65:104–113

    Article  CAS  Google Scholar 

  • Naher L, Yusuf UK, Siddiquee S, Ferdous J, Aminur Rahman M (2012) Effect of media on growth and antagonistic activity of selected Trichoderma strains against Ganoderma. Afr J Microbiol Res 6(48):7449–7453

    Article  Google Scholar 

  • Nemcovik M, Jakubikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    Article  CAS  Google Scholar 

  • Niewiadomska A (2004) Effect of carbendazim, imazeptapir, and thiram on nitrogenase activity, number of microorganism in soil and the yield of red clover (Trifolium pretense L.) Pol J Environ Stud 13(4):403–410

    CAS  Google Scholar 

  • Niranjana SR, Lalitha S, Hariprasad P (2009) Mass multiplication and formulations of biocontrol agents for use against Fusarium wilt of pigeonpea through seed treatment. Int J Pest Manag 55(4):317–324

    Article  Google Scholar 

  • Nosir WS (2016) Trichoderma harzianum as growth promoter and biocontrol agent against Fusarium oxysporum f. sp. tuberosi. Adv Crop Sci Technol 4:217

    Article  Google Scholar 

  • Nzanza B, Marais D, Soundy P (2012) Response of tomato (Solanum lycopersicum L.) to nursery inoculation with Trichoderma harzianum and arbuscularmycorrhizal fungi under field conditions. Acta Agric Scandinavica Sect B Soil Plant Sci 62:209–215

    Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12:421–444

    Article  CAS  Google Scholar 

  • Ommati F, Zaker M (2012) In vitro and greenhouse evaluations of Trichoderma isolates for biological control of potato wilt disease (Fusarium solani). Arch Phytopathol Plant Protect 45(14):1715–1723

    Article  Google Scholar 

  • Onilude AA, Tayo BCA, Odeniyi AO et al (2013) Comparative mycelia and spore yield by Trichoderma viride in batch and fed-batch cultures. Ann Microbiol 63:547–553

    Article  CAS  Google Scholar 

  • Oros G, Naar Z, Cserhati T (2011) Growth response of Trichoderma species to organic solvents. Mol Inf 30:276–285

    Article  CAS  Google Scholar 

  • Otadoh JA, Okoth SA, Ochanda J, Kahindi J (2011) Assessment of Trichoderma isolates for virulence efficacy on Fusarium oxysporum f. sp. phaseoli. Tropical Subtropical Agroecosyst 13:99–107

    Google Scholar 

  • Ozbay N, Newman SE (2004) Biological control with Trichoderma spp. with emphasis on T. harzianum. Pak J Biol Sci 7(4):478–484

    Article  Google Scholar 

  • Pandey J, Singh A (2012) Opportunities and constraints in organic farming: an Indian perspective. J Sci Res 56:47–72

    Google Scholar 

  • Pandey S, Srivastava M, Shahid M, Kumar V, Singh A, Trivedi S, Srivastava YK (2015) Trichoderma species cellulase produced by solid state fermentation. J Data Mining Genomic Proteonomic 6:2. dx/doi.org/10.4172/2153-0602.1000170

    Google Scholar 

  • Pandya JR, Sabalpara AN, Chawda SK (2011) Trichoderma: a particular weapon for biological control of phytopathogens. J Agric Technol 7(5):1187–1191

    Google Scholar 

  • Papavizas GC (1982) Survival of Trichoderma harzianum in soil and pea and bean rhizospheres. Ecol Epidemiol 72(1):121–125

    Google Scholar 

  • Papavizas GC, Lewis JA (1983) Physiological and biological characterization of stable mutants of T. viride resistant to MBC fungicides. Phytopathology 73:407–411

    Article  CAS  Google Scholar 

  • Parmar HJ, Hasan MM, Bodar NP et al (2015) In vitro antagonism between phytopathogenic fungi Sclerotium rolfsii and Trichoderma strains. Int J Appl Sci Biotechnol 3(1):16–19

    Article  Google Scholar 

  • Petit AN, Fontane F, Vasta P, Clement C, Gaveau NV (2012) Fungicide impact on photosynthesis in crop plants. Photosynth Res 44(3):224–230

    Google Scholar 

  • Prakash MG, Gopal KV, Anandraja M, Sarma YR (1999) Evaluation of substrates for mass multiplication of fungal biocontrol agents T. harzianum and T. virens. J Spices Aromatic Crops 8(2):207–210

    Google Scholar 

  • Prasad ASA, Varatharaju G, Anushri C, Dhivyasree S (2013) Biosorption of lead by Pleurotus florida and Trichoderma viride. British Biotechnol J 3(1):66–78

    Article  CAS  Google Scholar 

  • Prasada RD, Rangeshwarana R, Hegdeb SV, Anuroop CP (2002) Effect of soil and seed application of T. harzianum on pigeon pea wilt caused by F. indicum under field conditions. Crop Prot 26:782–787

    Google Scholar 

  • Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Zhao L (2012) Study of the siderophore producing T. asperellum Q1 on cucumber growth promotion under salt stress. J Basic Microbiol 52:1–10

    Article  Google Scholar 

  • Qingxiang Y, Jing Z, Kanfang Z, Hao Z (2009) Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizospheric soil. J Environ Sci 21:954–959

    Article  CAS  Google Scholar 

  • Qureshi SA, Hira SV, Ara J, Haque SE (2011) Cytotoxic potential of fungi associated with rhizosphere and rhizoplane of wild and cultivated plants. Pak J Bot 43(6):3025–3028

    Google Scholar 

  • Rabeendran N, Moot DJ, Jones EE, Steward A (2005) Evaluation of fungal isolates for the control of S. sclerotiorum using cabbage pot bioassays. N Z Plant Protect 58:251–255

    Google Scholar 

  • Rad MH, Jagannath S (2011) Effect of herbicide imazethapyr on chickpea seed germination. Arch Phytopathol Plant Protect 44(3):224–230

    Article  CAS  Google Scholar 

  • Ramada MHS, Steindorff AS, Block C Jr, Ulhoa CJ (2016) Secretome analysis of the myco parasitic fungus Trichoderma harzianum ALL42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics 16:477–490

    Article  CAS  PubMed  Google Scholar 

  • Ratnakumari RY, Nagamani A, Bhramaramba S et al (2011) Nonvolatile and volatile metabolites of antagonistic Trichoderma against collar rot pathogen of Mentha arvensis. Adv Nat Appl Sci 5(1):55–57

    Google Scholar 

  • Reczey K, Szengyel Z, Eklund R, Zachhi G (1996) Cellulase production by T. reesei. Bioresour Technol 57:25–30

    Article  CAS  Google Scholar 

  • Reddy K, Krishnamma Narayana P (2009) Efficacy of T. viride against Colletotrichum falcatum in sugarcane. Indian J Plant Protect 37:111–115

    Google Scholar 

  • Rigot J, Matsumura F (2002) Assessment of the rhizosphere competency and pentachlorophenol metabolizing ability of a pesticide degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings. J Environ Sci Health 37(3):201–210

    Article  Google Scholar 

  • Rinu K, Sati P, Pandey A (2013) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting and antagonistic fungal strain. J Basic Microbiol 1:1–10

    Google Scholar 

  • Roca MF, Cristani C, Vanacii G (1996) Senstivity of Trichoderma isolates and selected mutants to DMI fungicides. Crop Prot 15(7):615–620

    Article  Google Scholar 

  • Rocco A, Perez LM (2001) In vitro biocontrol activity of T. harzianum on A. alternata in the presence of growth regulators. Electron J Biotechnol 4(2):68–73

    Google Scholar 

  • Rodriguez-Gomez D, Hobley TJ (2013) Is an organic nitrogen source needed for cellulase production by Trichodermareesei Rut-C30. World J Microbiol Biotechnol 29:2157–2165

    Article  CAS  PubMed  Google Scholar 

  • Rojo FG, Reynoso Maria M, Marcela F, Chulze SN, Torres AM (2007) Biological control by Trichoderma species of F. solani causing peanut brown root rot under field condition. Crop Prot 26:549–555

    Article  Google Scholar 

  • Roy AK (1977) Parasitic activity of T. viride on the sheath blight fungus of rice Corticum sasaki. J Plant Disease Protect 84(11):675–683

    Google Scholar 

  • Rybczynska K, Kornillowicz-kowalska (2015) Evaluation of dye compounds decolourization capacity of selected H. haematococca and T. harzianum strains by principal component analysis (PCA). Water Air Soil Pollut:226–228. doi:10.1007/s11270-015-2473-8

  • Sain SK, Pandey AK (2016) Biological spectrum of Trichoderma harzianum Rifai isolates to control fungal diseases of tomato (Solanum lycopersicon L.) Arch Phytopathol Plant Protect. doi:10.1080/03235408.2016.1242393

    Google Scholar 

  • Sallam NMA, Abo-Elyousr, Hasan MAE (2008) Evaluation of Trichoderma species as biocontrol agents of damping off and wilt disease of Phaseolus vulgaris L. and efficacy of suggested formula. Egypt J Phytopathol 36(1–2):81–93

    Google Scholar 

  • Samuels G (2006) Trichoderma: systematics, the sexual stage and ecology. Phytopathology 96(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Santos CA, Zanphorlin LM, Crucello A, Tonoli CCC et al (2016) Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnol Biofuels 9:71. doi:10.1186/s13068-016-0487-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarwankumar K, Vivek R, Boopathy NS, Yaqian L, Kathiresan K, Chen J (2015) Anticancer potential of bioactive 1 6 methylheptadecanoic acid methyl ester derived from marine Trichoderma. J Appl Biomed 13(3):199–212

    Article  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2014) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 55:195–206

    Article  PubMed  CAS  Google Scholar 

  • Scharf DH, Brakhage AA, Mukherjee PK (2016) Gliotoxin- bane or boon. Environ Microbiol 18(4):1096–1109

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster A, Bruno KS, Collett JR, Baker SE et al (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939

    Article  CAS  PubMed  Google Scholar 

  • Shafique S, Bajwa R, Shafique S (2009) Cellulase biosynthesis by selected Trichoderma species. Pak J Bot 41(2):907–916

    CAS  Google Scholar 

  • Shahid M, Singh A, Srivastava M, Srivastava DK (2014) Molecular characterization of Trichoderma viride isolated from rhizospheric soils of Uttar Pradesh based on rDNA markers and analysis of their PCR-ISSR profiles. J Mol Biomark Diagn 5:169. doi:10.4172/2155-9929.1000169

    Article  CAS  Google Scholar 

  • Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52:324–331

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Mishra AK, Mishra RS (2009) Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. J Phytopathol 157:51–56

    Article  CAS  Google Scholar 

  • Sharma R, Joshi A, Dhaker RC (2012) A brief review on mechanism of Trichoderma fungus use as biological control agent. Int J Innovations BioSci 2(4):200–210

    Google Scholar 

  • Shida Y, Furukawa T, Ogasawara W (2016) Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Biosci Biotechnol Biochem 80(9):1712–1729

    Article  CAS  PubMed  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2015) Seed biopriming with drought tolerant isolates of T. harzianum promote growth and drought tolerance in Triticum aestivum. Ann Appl Biol 166:171–182

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Azad SA, Naher L et al (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microbial Biochem Technol 7(6):384–393

    Article  Google Scholar 

  • Siddiqui IA, Zareen A, Zaki MJ, Shaukat SS (2001) Use of Trichoderma species in the control of Meloidogyne javanica root knot nematode in okra and mungbean. Pak J Biol Sci 4(7):846–848

    Article  Google Scholar 

  • Singh PC, Nautiyal CS (2012) A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application. J Appl Microbiol 113:1442–1450

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raja RB (2011) Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum. Asian J Exp Biol Sci 2(4):600–605

    CAS  Google Scholar 

  • Singh A, Srivastava S, Singh HB (2007) Effect of substrate on growth and shelf life of Trichoderma harzianum and its use in biocontrol of diseases. Bioresour Technol 98:470–473

    Article  CAS  PubMed  Google Scholar 

  • Singh HB, Singh BN, Singh SP, Sarma BK (2012) Exploring different avenues of Trichoderma as a potent biofungicidal and plant growth promoting candidate—an overview. Rev Plant Pathol 5:315–426

    Google Scholar 

  • Singh BN, Singh A, Singh BR, Singh HB (2013) Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani. J Appl Microbiol:1–13. doi:10.1111/jam.12387

  • Sivan A, Chet I (1987) Biological control of Fusarium crown rot of tomato by T. harzianum under field conditions. Plant Dis 71:589–592

    Article  Google Scholar 

  • Sivan A, Chet I (1989) Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. J Gen Microbiol 135:675–682

    CAS  Google Scholar 

  • Skoneczny D, Oskiera M, Szczech M, Bartoszewski G (2015) Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity. Folia Microbiol 60:297–307

    Article  CAS  Google Scholar 

  • Soetan KO (2011) The role of biotechnology towards attainment of a sustainable and safe global agriculture and environment. Biotechnol Mol Biol Rev 6(5):109–117

    Google Scholar 

  • Soglio FK, Bertagnolli BL, Sinclair JB, Yu GY, Eastburn DM (1998) Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in presence of T. harzianum and R. solani. Biol Control 12:111–117

    Article  Google Scholar 

  • Soresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathways in systemic resistance induced in cucumber by T. asperellum T-203. Phytopathology 95:76–84

    Article  CAS  Google Scholar 

  • Srivastava M, Kumar V, Shahid M, Pandey S, Singh A (2016) Trichoderma- a potential and effective bio fungicide and alternative source against notable phytopathogens: a review. Afr J Agric Res 11(5):310–316

    Article  Google Scholar 

  • Strakowska J, BÅ‚aszczyk L, CheÅ‚kowski J (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J Basic Microbiol 54(1):12–13

    Google Scholar 

  • Suarez B, Rey M, Castillo P, Monte E, Llobell A (2004) Isolation and characterization of PRA1, a trypsin like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl Microbiol Biotechnol 65(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Syed JH, Alamdar A, Mohammad A, Ahad K, Shabir Z et al (2014) Pesticide residues in fruits and vegetables from Pakistan: a review of the occurrence and associated human health risks. Environ Sci Pollut Res 21:13367–13393

    Article  CAS  Google Scholar 

  • Tiyagi SA, Ajaz S, Azam MF (2004) Effect of some pesticides on plant growth, root nodulation and chlorophyll content of chickpea. Arch Agron Soil Sci 50:529–533

    Article  CAS  Google Scholar 

  • Topolovec-pintaric S, Zutic E, Dermic E (2013) Enhanced growth of cabbage and red beet by Trichoderma viride. Acta Agric Slovenica 101(1):87–92

    Google Scholar 

  • Trikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168. doi:10.1111/j.1744-7348.2011.00489.x

    Article  CAS  Google Scholar 

  • Trillas M, Isabel CE, Aviles M et al (2006) Compost from agriculture waste and T. asperellum strain T-34 suppress R. solani in cucumber seedlings. Biol Control 39:32–38

    Article  Google Scholar 

  • Triveni S, Prasanna R, Shukla L, Saxena AK (2013) Evaluating the biochemical traits of novel Trichoderma- based biofilms for use as plant growth-promoting inoculants. Ann Microbiol 63:1147–1156

    Article  CAS  Google Scholar 

  • Trutmann P, Keane PJ (1990) T. koningii as a biocontrol agent for S. sclerotiorum in southern Australia. Soil Biol Biochem 22:43–50

    Article  Google Scholar 

  • Tweddell RJ, Valerie G, Hani A (2007) Growth stimulation and fruit yield of greenhouse tomato plants by inoculation with P. putida and T. atroviride: possible role of indole acetic acid (IAA). Soilbiol Biochem 39:968–977

    Google Scholar 

  • Upadhyay JP, Mukhopadhyay AN (1986) Biological control of S. rolfsii by T. harzianum in sugarbeet. Trop Pest Manag 32:215–220

    Article  Google Scholar 

  • Varshney S, Chaube HS (2001) Mycorrhizal, rhizobacterial and fungal antagonists: interactions in microbes and plants. In: Sinha A (ed). Campus Books International, New Delhi, pp 226–238

    Google Scholar 

  • Velikanov LL, Cukhonosenko E, Yu-Nikolaeva SI, Zevelishko IA (1994) Comparasion of hyperparasitic and antibiotic activity of genus Trichoderma Pers. Fr. And Gliocladium virens towards the pathogens causing root rot of pea. Mikologia I Fitopatol 28(6):52–56

    Google Scholar 

  • Verdin A, Loune A, Sanaroua H et al (2005) Polyclyclic aromatic hydrocarbon storage by F. solani in intracellular lipid vesiciles. Environ Pollut 133:283–291

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Dohroo NP (2005) Biocontrol of Fusarium wilt of autumn pea caused by F. oxysporum f. sp. pisi. Indian J Plant Pathol 23(1&2):58–62

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Industrial wastewaters and dewatered sludge: rich nutrient source for production and formulation of biocontrol agent, Trichoderma viride. World J Microbiol Biotechnol 23:1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Biotechnol 13:429–466

    Article  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghibsalberti EL et al (2006) Major secondry metabolites produced by two commercial Trichoderma strains active against different phytopathogen. Lett Appl Microbiol 43:143–148

    Article  CAS  PubMed  Google Scholar 

  • Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R et al (2016) Cremenolide, a new antifungal, 10-member lactone from Trichoderma cremeum with plant growth promotion activity. Nat Prod Res 30(22):2575–2581

    Article  CAS  Google Scholar 

  • Vitale A, Cirvilleri G, Castello I et al (2012) Evaluation of Trichoderma harzianum strain T22 as biological control agent of Calonectriapauci ramosa. Biol Control 57:687–696

    Google Scholar 

  • Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48

    Article  CAS  PubMed  Google Scholar 

  • Vos CMF, Cremer KD, Cammue PA, Coninck BD (2015) The tool box of Trichoderma spp. in the biocontrol of Botrytis cineria disease. Mol Plant Pathol 16(4):400–412

    Article  PubMed  Google Scholar 

  • Weaver MA, Kenerley CM (2008) Competitiveness of a genetically engineered strain of Trichoderma virens. Mycopathologia 166(1):51–59

    Article  PubMed  Google Scholar 

  • Weindling R (1932) Trichoderma harzianum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in parasitic action T. lignorum on R. solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Wilson PS, Ahvenniemi PM, Lehtonen MJ et al (2008) Biological and chemical control and their combined use to control different stages of the Rhizoctonia disease complex on potato through the growing season. Ann Appl Biol 153:307–320

    Article  Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth induced by Trichoderma species. Phytopathology 6:518–521

    Article  Google Scholar 

  • Yamada T, Mizutani Y, Umebayashi Y et al (2014) Tandyukisin, a novel ketoaldehyde decalin derivative, produced by marine sponge- derived Trichoderma harzianum. Tetrahedron Lett 55(3):662–664

    Article  CAS  Google Scholar 

  • Yang Q, Liu P (2005) Identification of genes with a biocontrol function in T. harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Cong H, Song J, Zhang J (2013) Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris. World J Microbiol Biotechnol 29:2087–2094

    Article  CAS  PubMed  Google Scholar 

  • Yazdani M, Yap CK, Abdullah F (2010) Adsorption and absorption of cu in Trichoderma atroviride. Pertanika J Trop Agric Sci 33(1):71–77

    Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent T. harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR protein activity during early stages of root colonization by the mycoparasitic T. harzianum strain T-20. Plant Physiol Biochem 38:863–873

    Article  CAS  Google Scholar 

  • Yedidia I, Srivastava AK, Kapulnik Y, Chet I (2001) Effect of T. harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • You J, Dai H, Chen Z, Liu G, He Z et al (2010) Trichoderone, a novel cytotoxic cyclopentenone and cholesta-7,22-diene-3β,5α,6β-triol, with new activities from the marine-derived fungus Trichoderma sp. J Ind Microbiol Biotechnol 37:245–252

    Article  CAS  PubMed  Google Scholar 

  • Zafra G, Cortes-Espinosa DV (2015) Biodegradation of polycyclic aromatic hydrocarbons by Trichoderma species: a mini review. Environ Sci Pollut Res 22(24):19426–19433

    Article  CAS  Google Scholar 

  • Zeilinger S, Gruber S, Mukherjee PK (2016) Secondary metabolism in Trichoderma chemistry meets genomics. Fungal Biol Revi 30(2):74–90

    Article  Google Scholar 

  • Zhang J, Akcapinar BG, Atanasova L et al (2016) The neutral metallopeptidase NMP1 of Trichoderma guizhouenseis required for mycotrophy and self-defence. Environ Microbiol 18(2):580–597

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Shetty K (2000) Enhancement in pea (Pisum sativum) seedling vigour and associated phenolic content by extract of apple pomace fermented with Trichoderma spp. Process Biochem 36:79–84

    Article  CAS  Google Scholar 

  • Zhou X, Xu S, lexing L, Chen J (2007) Degradation of cyanide by Tichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour Technol 98(15):2958–2962

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Kashif Kidwai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kidwai, M.K., Nehra, M. (2017). Biotechnological Applications of Trichoderma Species for Environmental and Food Security. In: Gahlawat, S., Salar, R., Siwach, P., Duhan, J., Kumar, S., Kaur, P. (eds) Plant Biotechnology: Recent Advancements and Developments. Springer, Singapore. https://doi.org/10.1007/978-981-10-4732-9_7

Download citation

Publish with us

Policies and ethics