Skip to main content

Advertisement

Log in

Trichoderma as biological control agent: scope and prospects to improve efficacy

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A major current challenge is to increase the food production while preserving natural resources. Agricultural practices that enhance the productivity and progressively improve the soil quality are relevant to face this challenge. Trichoderma species are widely used in agriculture to stimulate the plant growth and to control different pathogens affecting crops, representing useful tools for sustainable food production. This mini-review summarizes applications of Trichoderma strains in agriculture to control fungal pathogens, nematodes and insects, the involved biocontrol mechanisms, efficacy and inoculation forms in greenhouse, field and post-harvest conditions. Aspects of Trichoderma handling that influence on biocontrol efficacy such as preventive treatments, frequency of applications and delivery methods are discussed. Strategies useful to improve the antagonistic performance such as the use of native strains, protoplast fusion, formulation, growth on pathogen cell wall medium and combination with other antagonists in integrated treatments are discussed. This mini-review provides practical knowledge to design safe and optimal biocontrol strategies based on Trichoderma and pose challenges to expand its antagonist performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  Google Scholar 

  • Affokpon A, Coyne DL, Htay CC, Agbèdè RD, Lawouin L, Coosemans J (2011) Biocontrol potential of native Trichoderma isolates against root-knot nematodes in West African vegetable production systems. Soil Biol Biochem 43:600–608

    Article  Google Scholar 

  • Alabouvette C, Cordier C (2011) Risks of microbial biocontrol agents and regulation: are they in balance? In: Ehlers RU (ed) Regulation of biological control agents. Springer, Dordrecht, pp 157–173

    Chapter  Google Scholar 

  • Amira MB, Lopez D, Mohamed AT, Khouaja A, Chaar H, Fumanal B, Gousset-Dupont A, Bonhomme L, Label P, Goupil P (2017) Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biol Control 110:70–78

    Article  Google Scholar 

  • Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Héraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701

    Article  Google Scholar 

  • Anwar W, Subhani MN, Haider MS, Shahid AA, Mushatq H, Rehman MZ, Hameed U, Javed S (2016) First record of Trichoderma longibrachiatum as entomopathogenic fungi against Bemisia tabaci in Pakistan. Pak J Phytopathol 28:287–294

    Google Scholar 

  • Balasubramanian N, Priya VT, Shanmugaiah V, Lalithakumari D (2014) Effect of improved Trichoderma fusants and their parent strains in control of sheath blight of rice and wilt of tomato. J Plant Dis Prot 121:71–78

    Article  Google Scholar 

  • Batool R, Umer MJ, Wang Y, He K, Zhang T, Bai S, Zhi Y, Chen J, Wang Z (2020) Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the Asian Corn Borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response. Int J Mol Sci 21:8215

    Article  Google Scholar 

  • Batta YA (2007) Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biol Technol 43:143–150

    Article  Google Scholar 

  • Battaglia D, Bossi S, Cascone P, Digilio MC, Prieto JD, Fanti P, Guerrieri E, Iodice L, Lingua G, Lorito M (2013) Tomato below ground–above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Mol Plant Microbe Interact 26:1249–1256

    Article  Google Scholar 

  • Beasley DR, Joyce DC, Wearing AH, Coates LM (2004) Bees as biocontrol agent delivery vectors: a preliminary study for Geraldton Waxflower Flowers. Int Symp Harnessing Potential Hortic Asian Pac Reg 694:421–424

    Google Scholar 

  • Begum MF, Rahman M, Alam MF (2010) Biological control of Alternaria fruit rot of chili by Trichoderma species under field conditions. Mycobiology 38:113–117

    Article  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Carillo P, Woo SL, Comite E, El-Nakhel C, Rouphael Y, Fusco GM, Borzacchiello A, Lanzuise S, Vinale F (2020) Application of Trichoderma harzianum, 6-pentyl-α-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants 9:771

    Article  Google Scholar 

  • Chen L, Yang X, Raza W, Luo J, Zhang F, Shen Q (2011) Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour Technol 102:3900–3910

    Article  Google Scholar 

  • Chen J, Zhou L, Din IU, Arafat Y, Li Q, Wang J, Wu T, Wu L, Wu H, Qin X (2021) Antagonistic activity of Trichoderma spp. against Fusarium oxysporum in rhizosphere of Radix pseudostellariae triggers the expression of host defense genes and improves its growth under long-term monoculture system. Front Microbiol 12:422

    Google Scholar 

  • Coppola M, Cascone P, Chiusano ML, Colantuono C, Lorito M, Pennacchio F, Rao R, Woo SL, Guerrieri E, Digilio MC (2017) Trichoderma harzianum enhances tomato indirect defense against aphids. Insect Sci 24:1025–1033

    Article  Google Scholar 

  • Datnoff L, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Article  Google Scholar 

  • De França SKS, Cardoso AF, Lustosa DC, Ramos EMLS, De Filippi MCC, Da Silva GB (2015) Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agron Sustain Dev 35:317–324

    Article  Google Scholar 

  • De Los Santos-Villalobos S, Guzmán-Ortiz DA, Gómez-Lim MA, Délano-Frier JP, De-Folter S, Sánchez-García P, Peña-Cabriales JJ (2013) Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biol Control 64:37–44

    Article  Google Scholar 

  • Díaz-Gutiérrez C, Arroyave C, Llugany M, Poschenrieder C, Martos S, Peláez C (2021) Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol Control 155:

    Article  Google Scholar 

  • Dini I, Graziani G, Fedele FL, Sicari A, Vinale F, Castaldo L, Ritieni A (2020) Effects of Trichoderma biostimulation on the phenolic profile of extra-virgin olive oil and olive oil by-products. Antioxidants 9:284

    Article  Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19:709–714

    Article  Google Scholar 

  • Elazouni I, Abdel-Aziz S, Rabea A (2019) Microbial efficacy as biological agents for potato enrichment as well as bio-controls against wilt disease caused by Ralstonia solanacearum. World J Microbiol Biotechnol 35:30

    Article  Google Scholar 

  • El-Katatny MH, Emam AS (2012) Control of postharvest tomato rot by spore suspension and antifungal metabolites of Trichoderma harzianum. J Microbiol Biotechnol Food Sci 9:1505–1528

    Google Scholar 

  • Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351

    Article  Google Scholar 

  • Ezziyyani M, Requena M, Egea-Gilabert C, Candela M (2007) Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. J Phytopathol 155:342–349

    Article  Google Scholar 

  • Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, Liu X, Duan Y, Chen L (2020) Isolation and effect of Trichoderma citrinoviride Snef 1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol 20:1–11

    Article  Google Scholar 

  • Ferreira FV, Herrmann-Andrade AM, Calabrese CD, Bello F, Vázquez D, Musumeci MA (2020) Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post-harvest oranges (Citrus sinensis L. (Osbeck)). J Appl Microbiol 129:712–727

    Article  Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G (2018) Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743

    Article  Google Scholar 

  • Fraceto LF, Maruyama CR, Guilger M, Mishra S, Keswani C, Singh HB, De Lima R (2018) Trichoderma harzianum-based novel formulations: potential applications for management of Next-Gen agricultural challenges. J Chem Technol Biotechnol 93:2056–2063

    Article  Google Scholar 

  • Freeman S, Minz D, Kolesnik I, Barbul O, Zveibil A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A (2004) Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol 110:361–370

    Article  Google Scholar 

  • Fu J, Xiao Y, Wang Y-F, Liu Z-H, Yang K-J (2019) Trichoderma affects the physiochemical characteristics and bacterial community composition of saline–alkaline maize rhizosphere soils in the cold-region of Heilongjiang Province. Plant Soil 436:211–227

    Article  Google Scholar 

  • Ghosh SK, Pal S (2016) Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ Monit Assess 188:1–37

    Article  Google Scholar 

  • Grinyer J, Hunt S, Mckay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    Article  Google Scholar 

  • Hanada RE, Pomella AW, Soberanis W, Loguercio LL, Pereira JO (2009) Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Control 50:143–149

    Article  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Harman GE (2011) Trichoderma—not just for biocontrol anymore. Phytoparasitica 39:103–108

    Article  Google Scholar 

  • Hjeljord LG, Tronsmo A (2003) Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593–1598

    Article  Google Scholar 

  • Howell C (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Jaiswal AK, Mengiste TD, Myers JR, Egel DS, Hoagland LA (2020) Tomato domestication attenuated responsiveness to a beneficial soil microbe for plant growth promotion and induction of systemic resistance to foliar pathogens. Front Microbiol 11:3309

    Article  Google Scholar 

  • Jindapunnapat K, Chinnasri B, Kwankuae S (2013) Biological control of root-knot nematodes (Meloidogyne enterolobii) in guava by the fungus Trichoderma harzianum. J Dev Sustain Agric 8:110–118

    Google Scholar 

  • Kabdwal BC, Sharma R, Tewari R, Tewari AK, Singh RP, Dandona JK (2019) Field efficacy of different combinations of Trichoderma harzianum, Pseudomonas fluorescens, and arbuscular mycorrhiza fungus against the major diseases of tomato in Uttarakhand (India). Egypt J Biol Pest Control 29:1–10

    Article  Google Scholar 

  • Kaewsalong N, Songkumarn P, Duangmal K, Dethoup T (2019) Synergistic effects of combinations of novel strains of Trichoderma species and Coscinium fenestratum extract in controlling rice dirty panicle. J Plant Pathol 101:367–372

    Article  Google Scholar 

  • Kamala T, Indira S (2011) Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. 3 Biotech 1:217–225

    Article  Google Scholar 

  • Karuppiah V, Sun J, Li T, Vallikkannu M, Chen J (2019) Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front Microbiol 10:1068

    Article  Google Scholar 

  • Kovach J, Petzoldt R, Harman GE (2000) Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biol Control 18:235–242

    Article  Google Scholar 

  • Krauss U, Soberanis W (2002) Effect of fertilization and biocontrol application frequency on cocoa pod diseases. Biol Control 24:82–89

    Article  Google Scholar 

  • Kumar S, Thakur M, Rani A (2014) Trichoderma: mass production, formulation, quality control, delivery and its scope in commercialization in India for the management of plant diseases. Afr J Agric Res 9:3838–3852

    Google Scholar 

  • Lo C-T, Nelson E, Harman G (1997) Improved biocontrol efficacy of Trichoderma harzianum 1295-22 for foliar phases of turf diseases by use of spray applications. Plant Dis 81:1132–1138

    Article  Google Scholar 

  • Lombardi N, Caira S, Troise AD, Scaloni A, Vitaglione P, Vinale F, Marra R, Salzano AM, Lorito M, Woo SL (2020) Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Front Microbiol 11:1364

    Article  Google Scholar 

  • Longa CMO, Savazzini F, Tosi S, Elad Y, Pertot I (2009) Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. J Appl Microbiol 106:1549–1557

    Article  Google Scholar 

  • Marra R, Lombardi N, D’errico G, Troisi J, Scala G, Vinale F, Woo SL, Bonanomi G, Lorito M (2019) Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content. J Agric Food Chem 67:1814–1822

    Article  Google Scholar 

  • Mbarga JB, Ten Hoopen GM, Kuaté J, Adiobo A, Ngonkeu M, Ambang Z, Akoa A, Tondje PR, Begoude B (2012) Trichoderma asperellum: a potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Prot 36:18–22

    Article  Google Scholar 

  • Mbarga J, Begoude B, Ambang Z, Meboma M, Kuaté J, Ewbank W, Ten Hoopen GM (2020) Field testing an oil-based Trichoderma asperellum formulation for the biological control of cacao black pod disease, caused by Phytophthora megakarya. Crop Prot 132:

    Article  Google Scholar 

  • Mclean K, Dodd S, Minchin R, Ohkura M, Bienkowski D, Stewart A (2014) Non-target impacts of the biocontrol agent Trichoderma atroviride on plant health and soil microbial communities in two native ecosystems in New Zealand. Australas Plant Pathol 43:33–45

    Article  Google Scholar 

  • Mommaerts V, Sterk G, Hoffmann L, Smagghe G (2009) A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator Bombus terrestris. Pest Manag Sci 65:949–955

    Article  Google Scholar 

  • Mweetwa AM, Chilombo G, Gondwe BM (2016) Nodulation, nutrient uptake and yield of common bean inoculated with Rhizobia and Trichoderma in an acid soil. J Agric Sci 8:61–71

    Google Scholar 

  • Naeimi S, Okhovvat SM, Javan-Nikkhah M, Vágvölgyi C, Khosravi V, Kredics L (2010) Biological control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma strains. Phytopathol Mediterr 49:287–300

    Google Scholar 

  • Naeimi S, Khosravi V, Varga A, Vágvölgyi C, Kredics L (2020) Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy 10:1258

    Article  Google Scholar 

  • Ng L, Ngadin A, Azhari M, Zahari N (2015) Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian J Plant Pathol 9:46–58

    Article  Google Scholar 

  • Patkowska E, Mielniczuk E, Jamiołkowska A, Skwaryło-Bednarz B, Błażewicz-Woźniak M (2020) The Influence of Trichoderma harzianum Rifai T-22 and other biostimulants on rhizosphere beneficial microorganisms of carrot. Agronomy 10:1637

    Article  Google Scholar 

  • Ramada MHS, Steindorff AS, Bloch C Jr, Ulhoa CJ (2016) Secretome analysis of the mycoparasitic fungus Trichoderma harzianum ALL 42 cultivated in different media supplemented with Fusarium solani cell wall or glucose. Proteomics 16:477–490

    Article  Google Scholar 

  • Rivera-Méndez W, Obregón M, Morán-Diez ME, Hermosa R, Monte E (2020) Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control 141:

    Article  Google Scholar 

  • Rojo FG, Reynoso MM, Ferez M, Chulze SN, Torres AM (2007) Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Prot 26:549–555

    Article  Google Scholar 

  • Saikia SK, Tiwari S, Pandey R (2013) Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Biol Control 65:225–234

    Article  Google Scholar 

  • Sánchez AD, Ousset MJ, Sosa MC (2019) Biological control of Phytophthora collar rot of pear using regional Trichoderma strains with multiple mechanisms. Biol Control 135:124–134

    Article  Google Scholar 

  • Sánchez-Montesinos B, Diánez F, Moreno-Gavira A, Gea FJ, Santos M (2019) Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress. Int J Environ Res Public Health 16:2053

    Article  Google Scholar 

  • Sangeetha G, Usharani S, Muthukumar A (2009) Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopathol Mediterr 48:214–225

    Google Scholar 

  • Santi L, Da Silva WOB, Berger M, Guimarães JA, Schrank A, Vainstein MH (2010) Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 55:874–880

    Article  Google Scholar 

  • Saravanakumar K, Li Y, Yu C, Wang Q-Q, Wang M, Sun J, Gao J-X, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7:1771

    Article  Google Scholar 

  • Sautour M, Chrétien M, Valot S, Lafon I, Basmaciyan L, Legouge C, Verrier T, Gonssaud B, Abou-Hanna H, Dalle F (2018) First case of proven invasive pulmonary infection due to Trichoderma longibrachiatum in a neutropenic patient with acute leukemia. Journal de mycologie medicale 28:659–662

    Article  Google Scholar 

  • Savary S, Willocquet L, Pethybridge S, Esker P, Mcroberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439

    Article  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzyme Microbial Technol 40:961–968

    Article  Google Scholar 

  • Shang J, Liu B, Xu Z (2020) Efficacy of Trichoderma asperellum TC01 against anthracnose and growth promotion of Camellia sinensis seedlings. Biol Control 143:

    Article  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I, Herrera-Estrella A, Kleifeld O, Spiegel Y (2001) Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–693

    Article  Google Scholar 

  • Siddiqui IA, Zareen A, Zaki M, Shaukat S (2001) Use of Trichoderma species in the control of Meloidogyne javanica, root knot nematode in Okra and Mungbean. Pak J Biol Sci 4:846–848

    Article  Google Scholar 

  • Sivakumar D, Wijeratnam RW, Wijesundera R, Marikar F, Abeyesekere M (2000) Antagonistic effect of Trichoderma harzianum on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica 28:240

    Article  Google Scholar 

  • Sivan A, Chet I (1993) Integrated control of Fusarium crown and root rot of tomato with Trichoderma harzianum in combination with methyl bromide or soil solarization. Crop Prot 12:380–386

    Article  Google Scholar 

  • Sonkar SS, Bhatt J, Meher J, Kashyap P (2018) Bio-efficacy of Trichoderma viride against the root-knot nematode (Meloidogyne incognita) in tomato plant. J Pharmacogn Phytochem 7:2010–2014

    Google Scholar 

  • Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants 9:762

    Article  Google Scholar 

  • Stefanelli LEP, Mota Filho TMM, Camargo RDS, CaOD Matos, Forti LC (2021) Effects of entomopathogenic fungi on individuals as well as groups of workers and immatures of Atta sexdens rubropilosa leaf-cutting ants. Insects 12:10

    Article  Google Scholar 

  • Sundaramoorthy S, Balabaskar P (2013) Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J Appl Biol Biotechnol 1:36–40

    Google Scholar 

  • Tewari L, Singh R (2012) Biological control of sheath blight of rice by Trichoderma harzianum using different delivery systems. Indian Phytopathol 58:552–554

    Google Scholar 

  • Thambugala KM, Daranagama DA, Phillips AJ, Kannangara SD, Promputtha I (2020) Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Front Cell Infect Microbiol 10:

    Article  Google Scholar 

  • United-Nations (2015) Resolution adopted by the General Assembly on 25 September 2015, 15-16301 (E). A/RES/70/1. Transforming our world: the 2030 Agenda for Sustainable Development. 70th session Agenda items 15 and 116

  • Valenzuela NL, Angel DN, Ortiz DT, Rosas RA, García CFO, Santos MO (2015) Biological control of anthracnose by postharvest application of Trichoderma spp. on maradol papaya fruit. Biol Control 91:88–93

    Article  Google Scholar 

  • Wang S-Q, Jia M, Meng W, Wang X-H, Li Y-Q, Jie C (2019) Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize. J Integr Agric 18:2063–2071

    Article  Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Yendyo S, Ramesh G, Pandey BR (2017) Evaluation of Trichoderma spp., Pseudomonas fluorescens and Bacillus subtilis for biological control of Ralstonia wilt of tomato. F1000Research 6:1–22

    Article  Google Scholar 

  • Yuan M, Huang Y, Ge W, Jia Z, Song S, Zhang L, Huang Y (2019) Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom 20:1–13

    Article  Google Scholar 

  • Zaim S, Bekkar AA, Belabid L (2018) Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Arch Phytopathol Plant Prot 51:217–226

    Article  Google Scholar 

  • Zhang Y, Tian C, Xiao J, Wei L, Tian Y, Liang Z (2020) Soil inoculation of Trichoderma asperellum M45a regulates rhizosphere microbes and triggers watermelon resistance to Fusarium wilt. AMB Express 10:1–13

    Article  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose work could not be cited due to space constraints. Flavia Ferreira and Matías Musumeci are staff members of The Argentinean National Research Council (CONICET).

Funding

This work was supported by ANPCyT (Grant PICT 2018-01372) and National University of Entre Rios (PID-UNER 8103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías A. Musumeci.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F.V., Musumeci, M.A. Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Microbiol Biotechnol 37, 90 (2021). https://doi.org/10.1007/s11274-021-03058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03058-7

Keywords

Navigation