Skip to main content

Prospects for Quinoa (Chenopodium Quinoa Willd.) Improvement Through Biotechnology

  • Chapter
  • First Online:
Biotechnology of Neglected and Underutilized Crops

Abstract

Quinoa (Chenopodium quinoa Willd., 2n = 4x = 36) is an Andean broadleaf seed and vegetable crop of ancient origin. Quinoa represents one or two botanical varieties of a much broader tri-species complex native to North and South America and dominated by weedy forms of pitseed goosefoot (C. berlandieri Moq.) and avian goosefoot (C. hircinum Schrad.). This biological species complex includes at least two extant domesticated forms of C. berlandieri subsp. nuttaliae (Safford) H.D. Wilson and Heister: Mexican huazontle and chia roja. Within quinoa itself the two main limitations to the crop’s improvement and dissemination are restricted access to cultivated Highland Andean germplasm and heat-stress susceptibility in the best agronomic types from the southern Altiplano. These limitations underscore the importance of the exotic gene pool for future quinoa breeding. A sophisticated tool box of DNA-based genetic markers and genomic resources has been developed to facilitate gene transfer from exotic sources in pre-breeding and accelerate the process of breeding elite cultivars. In addition, quinoa physiology and agronomy research have identified promising strategies and potential gene targets for improving yield, heat tolerance, maturity, and other traits critical to the expansion of quinoa into temperate and subtropical lowland production environments. The existing political climate in key areas of the Andean region, while unfavorable for the application of transgenic breeding approaches, should encourage accelerated efforts to incorporate MAS strategies in quinoa breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLP:

Amplified fragment length polymorphism

BAC:

Bacterial artificial chromosome

BAFI:

Ezra T. Benson Agriculture and Food Institute

BVP:

Basic vegetative phase

CIP:

International Potato Center (Lima, Peru)

EST:

Expressed sequence tag

FCB:

Financial costbenefit ratio

FISH:

Fluorescent in situ hybridization

GA:

Gibberellic acid

GLAI:

Green leaf area index

GM:

Genetically modified

IGS:

Intergenic spacer

IPAR:

Incidental photosynthetically active radiation

LAI:

Leaf area index

MAB:

Marker assisted breeding

MAS:

Marker assisted selection

NOR:

Nucleolar organizer region

NTS:

Non-transcribed spacer or 5S rRNA gene

PAR:

Photosynthetically active radiation

PPS:

Photoperiod sensitivity

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RIE:

Radiation interception efficiency

RIL:

Recombinant inbred line

RUE:

Radiation use efficiency

SNP:

Single nucleotide polymorphism

SOS1:

Salt Overly Sensitive 1 (gene)

SRA:

Sequence read archive

SSR:

Simple sequence repeat

TPAR:

Transmitted photosynthetically active radiation

References

  • Abbate PE, Andrade FH, Culot JP et al (1997) Grain yield in wheat: effects of radiation during spike growth period. Field Crops Res 54:245–257

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  Google Scholar 

  • Balzotti MRB, Thornton JN, Maughan PJ et al (2008) Expression and evolutionary relationships of the Chenopodium quinoa 11s seed storage protein gene. Int J Pl Sci 169:281–291

    Article  CAS  Google Scholar 

  • Bertero HD (2003) Response of developmental processes to temperature and photoperiod in quinoa (Chenopodium quinoa W.). Food Rev Int 19:87–97

    Article  Google Scholar 

  • Bertero HD, Ruiz RA (2008) Determination of seed number in sea level Quinoa (Chenopodium quinoa Willd.) cultivars. Eur J Agron 28:186–194

    Article  Google Scholar 

  • Bertero HD, Ruiz RA (2010) Reproductive partitioning in sea level quinoa (Chenopodium quinoa Willd.) cultivars. Field Crops Res 118:94–101

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999a) Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa W.). Field Crops Res 63:19–34

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (1999b) Photoperiod-sensitive phases of development in quinoa (Chenopodium quinoa W.). Field Crops Res 60:231–243

    Article  Google Scholar 

  • Bertero HD, King RW, Hall AJ (2000) Photoperiod and temperature effects on the rate of leaf appearance in quinoa (Chenopodium quinoa W.). Austral J Pl Physiol 27:349–356

    Article  Google Scholar 

  • Bertero HD, de la Vega AJ, Correa G et al (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res 89:299–318

    Article  Google Scholar 

  • Berti M, Wilckens R, Hevia F et al (2000) Fertilización nitrogenada en quinoa (Chenopodium quinoa Willd.). Ciencia Invest Agraria 27:81–90

    Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodeaceae). Genet Res Crop Evol 53:1309–1320

    Article  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2007) Genetic variability and interrelationships among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.). Field Crops Res 101:104–116

    Article  Google Scholar 

  • Bingham IJ, Blake J, Foulkes MJ, Spink J (2007) Is barley yield in the UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source–sink balance. Field Crops Res 101:198–211

    Article  Google Scholar 

  • Bois JF, Winkel T, Lhomme JP et al (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. Eur J Agron 25:299–308

    Article  Google Scholar 

  • Bonifacio A (1995) Interspecific and intergeneric hybridization in chenopod species.MS thesis. Brigham Young University, USA

    Google Scholar 

  • Bonifacio A (2003) Chenopodium sp.: genetic resources, ethnobotany, and geographic distribution. Food Rev Int 19:1–7

    Article  Google Scholar 

  • Carmen ML (1984) Acclimatization of quinoa (Chenopodium quinoa Willd.) and canihua (Chenopodium pallidicaule Aellen) to Finland. Ann Agric Fenn 23:135–144

    Google Scholar 

  • Castellión ML (2008) Procesos de deterioro y mecanismos de protección y reparación involucrados en la pérdida diferencial de la viabilidad durante el almacenamiento en semillas de Chenopodium quinoa Willd. Ph D thesis. University of Buenos Aires, Argentina

    Google Scholar 

  • Castellión M, Matiacevich S, Buera P, Maldonado S (2010) Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chem 121:952–958

    Article  Google Scholar 

  • Ceccato D, Bertero HD, Batilla D (2011) Environmental control of dormancy in quinoa (Chenopodium quinoa Willd.). Two potential sources of pre-harvest sprouting tolerance. Seed Sci Res 21:133–141

    Article  Google Scholar 

  • Cenci A, Chantret N, Kong X et al (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp durum). Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  • Christensen SA, Pratt DB, Pratt C et al (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resources: Charact Util 5:82–95

    Article  CAS  Google Scholar 

  • Coles ND, Coleman CE, Christensen SA et al (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447

    Article  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460

    Article  PubMed  CAS  Google Scholar 

  • ESP (2009) Economic survey of Pakistan. Minister of Finance, Government of Pakistan, 2:17–19

    Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University, Cambridge

    Google Scholar 

  • Fairbanks DJ, Burgener KW, Robison LR et al (1990) Electrophoretic characterization of quinoa seed proteins. Plant Breed 104:190–195

    Article  CAS  Google Scholar 

  • Fairbanks DJ, Waldrigues A, Ruas CF et al (1993) Efficient characterization of biological diversity using field DNA extraction and random amplified polymorphic DNA markers. Rev Brasil Genet 16:11–22

    Google Scholar 

  • FAOSTAT(2008)http://www.fao.org/economic/ess/publications-studies/statistical-yearbook/fao-statistical-yearbook-2007-2008/g-human-welfare/en/. Accessed 5 Jan 2012

  • Fischer RA (1985) Number of kernels in wheat crops and the influence of solar radiation and temperature. J Agric Sci 105:447–461

    Article  Google Scholar 

  • Flenet F, Kiniry J, Board J, Westgate M, Reicosky DC (1996) Row spacing effects on light extinction coefficients of corn, sorghum, soybean and sunflower. Agron J 88:185–190

    Article  Google Scholar 

  • Fuentes FF, Martinez EA, Hinrichsen PV et al (2009) Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoaWilld.) germplasm using multiplex fluorescent microsatellite markers. Conserv Genet 10:369–377

    Article  CAS  Google Scholar 

  • Galwey NW (1989) Quinoa. Biologist 36:267–274

    Google Scholar 

  • García M (2003) Agroclimatic study and drought resistance analysis of quinoa for an irrigation strategy in the Bolivian Altiplano. Ph D thesis. Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  • García M, Raes D, Jacobsen SE, Michel T (2007) Agroclimatic constraints to rainfed agriculture in the Bolivian Altiplano. J Arid Environ 71:109–121

    Article  Google Scholar 

  • Geerts S, Raes D, Garcia M et al (2008a) Indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress. Field Crops Res 108:150–156

    Article  Google Scholar 

  • Geerts S, Raes D, Garcia M et al (2008b) Introducing deficit irrigation to stabilize yields of quinoa (Chenopodium quinoa Willd.). Eur J Agron 28:427–436

    Article  Google Scholar 

  • Geerts S, Raes D, Garcia M et al (2009) Modeling the potential for closing quinoa yield gaps under varying water availability in the Bolivian Altiplano. Agric Water Man 96:1652–1658

    Article  Google Scholar 

  • Gómez MB, Aguirre Castro P, Mignone C, Bertero HD (2011) Can yield potential be increased by manipulation of reproductive partitioning in quinoa? Evidence from giberellic acid synthesis inhibition using paclobutrazol. Funct Plant Bio 38:420–430

    Article  Google Scholar 

  • González JA, Bruno M, Valoy M, Prado FE (2011) Genotypic variation of gas exchange parameters and leaf stable carbon and nitrogen isotopes in ten quinoa cultivars grown under drought. J Agron Crop Sci 197:81–93

    Article  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y et al (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    Article  PubMed  CAS  Google Scholar 

  • Heiser CB, Nelson C (1974) On the origin of the cultivated chenopods. Genet 78:503–505

    Google Scholar 

  • Hong CP, Lee SJ, Park JY et al (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716

    Article  PubMed  CAS  Google Scholar 

  • Iliadis C, Karyotis T, Mitsibonas T (1997) Research on quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus caudatus) in Greece. In: Proceedings of COST workshop 24–25 Oct 1997, CPRO-DLO, Wageningen, pp. 85–91

    Google Scholar 

  • Iliadis C, Karyotis T, Jacobsen SE (2001) Adaptation of quinoa under xerothermic conditions and cultivation for biomass and fibre production. In: Jacobsen SE, Portillo Z (eds) International potato centre (CIP) memorias, Primer Taller Internacional sobre Quinua—Recursos Geneticos y Sistemas de Produccion, UNALM, Lima, Peru, pp 371–378, 10–14 May 1999

    Google Scholar 

  • Jacobsen SE (2003) The worldwide potential of quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:167–177

    Article  Google Scholar 

  • Jacobsen SE, Bach AP (1998) The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd.). Seed Sci Tech 26:515–523

    Google Scholar 

  • Jacobsen SE, Denis-Ramirez AR (1986) Quinoa-en sydamerikansk proteinafgrode. Agrologisk Tidsskrift Marken 12:23–25

    Google Scholar 

  • Jacobsen SE, Stølen O (1993) Quinoa—morphology and phenology and prospects for its production as a new crop in Europe. Eur J Agron 2:19–29

    Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.)? Sci Hort 122:281–287

    Article  CAS  Google Scholar 

  • Jacobsen SE, Jorgensen I, Stølen O (1994) Cultivation of quinoa (Chenopodium quinoa) under temperate climatic conditions in Denmark. J Agric Sci 122:47–52

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Christiansen JL et al (2005) Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. Eur J Agron 22:131–139

    Article  Google Scholar 

  • Jacobsen SE, Monteros C, Corcuera et al (2007) Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.). Eur J Agron 26:471–475

    Article  Google Scholar 

  • Jarvis DE, Kopp OR, Jellen EN et al (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51

    Article  PubMed  CAS  Google Scholar 

  • Jellen EN, Benlhabib O, Maughan PJ et al (2005) Introduction of the Andean crop quinoa in Morocco. Am Soc Agron Proceed. 6–9 Nov 2005, Salt Lake City, UT., USA, P7560

    Google Scholar 

  • Jensen CR, Jacobsen SE, Andersen MN et al (2000) Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying. EurJ Agron 13:11–25

    Article  Google Scholar 

  • Joffre R, Acho J (2008) Quinua, descanso y tholars en el sur de Altiplano Boliviano. Rev Habitat 75:38–43

    Google Scholar 

  • Johnson D, McCamant J (1987) Quinoa research and development 1987. Sierra Blanca Associates, Denver p 7

    Google Scholar 

  • Kamman CI, Linsel S, Gobling JW, Koyro HW (2011) Influence of biochar on drought tolerance of Chenopodium quinoa Willd. and on soil-plant relations. Pl Soil. doi:10.1007/s1110401107715

  • Keskitalo M (1997) Quinoa (Chenopodiumquinoa Willd.). In: Proceedings of COST workshop, 24–25 Oct 1997, CPRO-DLO, Wageningen, The Netherlands

    Google Scholar 

  • Kolano B, Plucienniczak A, Kwasniewski M, Maluszynska J (2008) Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome. J Appl Genet 49:313–320

    Article  PubMed  Google Scholar 

  • Kolano B, Gardunia BW, Michalska M et al (2011) Chromosomal localization of two novel repetitive sequences isolated from the Chenopodium quinoa Willd. Genome. Genome 54:710–717

    Article  PubMed  CAS  Google Scholar 

  • Koyro HW, Eisa SS (2008) Effect of salinity on composition, viability and germination of seed of Chenopodium quinoa Willd. Pl Soil 302:79–90

    Article  CAS  Google Scholar 

  • Limburg H, Mastebroek HD (1996) Breeding high yielding lines of Chenopodium quinoa Willd. with saponinfree seed. In: Proceedings of COST workshop, 22–24 Feb 1996, Eur Comm EUR 17473/KVL, Copenhagen, Denmark

    Google Scholar 

  • Mason SL, Stevens MR, Jellen EN et al (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    Article  CAS  Google Scholar 

  • Mastebroek HD, Limburg H (1996) Breeding for harvest security of Chenopodium quinoa Willd. In: Proceedings of COST workshop, 22–24 Feb, 1996, Eur Comm EUR 17473/KVL, Copenhagen, Denmark

    Google Scholar 

  • Mastebroek HD, Marvin HP (1997) Content of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd.). In: Proceedings of COST workshop, 24–25 Oct 1997, Wageningen, The Netherlands

    Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN et al (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J et al (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and C. berlandieri. Genome 49:825–839

    Article  PubMed  CAS  Google Scholar 

  • Maughan PJ, Sisneros N, Luo MZ et al (2008) Construction of an Amaranthus hypochondriacus bacterial artificial chromosome library and genomic sequencing of herbicide target genes. Crop Sci 48:S85–S94

    Article  CAS  Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE (2009a) Characterization of salt overly sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa willd.). Genome 52:647–657

    Article  PubMed  CAS  Google Scholar 

  • Maughan PJ, Yourstone SM, Jellen EN, Udall JA (2009b) SNP discovery via genomic reduction, barcoding and 454-pyrosequencing in amaranth. Plant Genome 2:260–270

    Article  CAS  Google Scholar 

  • Mignone C, Bertero D (2008) Relación entre la tasa de crecimiento, el número y peso de granos en el cultivo de quínoa (Chenopodium quínoa). XIII Latin American/XXVII Argentinean Pl physiol meeting, Rosario, 21–24 Sep 2008

    Google Scholar 

  • Morales AJ, Bajgain P, Garver Z, Maughan PJ, Udall JA (2011) Evaluation of the physiological responses of Chenopodium quinoa to salt stress. Int J Plant Physiol Biochem 3:219–232

    Google Scholar 

  • Mujica A, Jacobsen SE, Izquierdo J, Marathee JP (2001) Results of American and European tests of quinoa. FAO, UNA-Puno, CIP, Peru

    Google Scholar 

  • Munir H (2011) Introduction and assessment of quinoa (Chenopodium quinoa Willd.) as a potential climate proof grain crop. Ph D Thesis, University of Agriculture, Faisalabad

    Google Scholar 

  • Munir H, Basra SMA (2010) Improved germination and seedling vigor enhancement of quinoa (Chenopodium quinoa Willd.) grown at different salinity levels. In: Qadir D, Wichelns J, Oster J et al (ed) Sustainable management of saline waters and salt affected soils for agriculture, 2nd Bridging Workshop, ICARDA & IWMI, Aleppo, Syria and Colombo, Sri Lanka, 15–18 Nov 2009

    Google Scholar 

  • Munir H, Basra SMA, Cheema MA, Wahid A (2011) Phenotypic flexibility in exotic quinoa (Chenopodium quinoa Willd.) germplasm for seedling vigor and viability. Pak J Agric Sci 48:255–261

    Google Scholar 

  • Noir S, Patheyron S, Combes MC, Lashermes P, Chalhoub B (2004) Construction and characterization of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica l.). Theor Appl Genet 109:225–230

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson I (1997) Quinoa-a potential crop for Sweden? In: Proceedings of COST Workshop, CPRO-DLO, Wageningen, The Netherlands, 24–25 Oct 1997

    Google Scholar 

  • Orsini F, Accorsi M, Gianquinto G et al (2011) Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halomorphism. Funct Plant Biol 38:818–831

    Article  CAS  Google Scholar 

  • Ortiz R, Ruiz-Tapia EN, Mujica-Sanchez A (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483

    Article  Google Scholar 

  • Ortiz R, Madsen S, Ruiz-Tapia EN et al (1999) Validating a core collection of Peruvian quinoa germplasm. Genet Res Crop Evol 46:285–290

    Article  Google Scholar 

  • Padilla JM, Otegui ME (2005) Co-ordination between leaf initiation and leaf appearance in field grown maize (Zea mays): genotypic differences in response of rates to temperature. Ann Bot 96:97–1007

    Article  Google Scholar 

  • Palomino G, Trejo Hernandez L, de la Cruz Torres E (2008) Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttaliae. Euphytica 164:221–230

    Article  CAS  Google Scholar 

  • Passioura JB (1981) The interaction between the physiology and the breeding of wheat. In: Evans LT, Peacock WJ (eds) Wheat science-today and tomorrow. Cambridge University, Cambridge

    Google Scholar 

  • Prado FF, Gallardo MB, Gonzalez JA (2000) Effect of NaCl on germination, growth and soluble sugar contents in Chenopodium quinoa (Willd.) seeds. Bot Bull Acad Sin Hortic 41:27–34

    Google Scholar 

  • Rauf S, Khan AA, DeSilva T, Naveed A (2010) Consequences of plant breeding on genetic diversity. Int J Plant Breed 4:1–21

    Article  Google Scholar 

  • Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Risi JC, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216

    Google Scholar 

  • Risi JC, Galwey NW (1989) The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd.), I. Associations between characteristics. Euphytica 41:147–167

    Article  Google Scholar 

  • Risi JC, Galwey NW (1991) Genotype x environment interaction in the Andean grain crop quinoa (Chenopodium quinoa) in temperate environments. Plant Breed 107:141–147

    Article  Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF et al (1999) Genetic relationship among 19 accessions of six species of ChenopodiumL., by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Article  Google Scholar 

  • Ruffino AMC, Rosa M, Hilal M et al (2010) The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant Soil 326:213–224

    Article  CAS  Google Scholar 

  • Ruiz RA, Bertero HD (2008) Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd.) cultivars. Eur J Agron 29:144–152

    Article  Google Scholar 

  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK et al (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem 49:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotech 15:144–147

    Article  PubMed  CAS  Google Scholar 

  • Schulte auf′m Erley G, Kaul HP, Kruse M, Aufhammer W (2005) Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under different nitrogen fertilization. Eur J Agron 22:95–100

    Article  Google Scholar 

  • Slafer GA, Savín R (2006) Physiology of crop yield. In: Goodman RE (ed) Encyclopedia of plant and crop science. Taylor and Francis, New York

    Google Scholar 

  • Slafer GA, González FG, Kantolic AG et al (2006) Grain number determination in major grain crops. In: Amarjit SB (ed) Handbook of seed science and technology. Food Products Press, New York

    Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE et al (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321

    Article  Google Scholar 

  • Tapia M, Alandia S, Cardozo A et al (1979) Quinua y canihua. In: Tapia M (ed) Cultivos andinos. Serie libros y materiales educativos 49. IICA, Bogotá

    Google Scholar 

  • Tapia ME, Mujica SA, Canahua A (1980) Origen, distibucion geografica y sistemas de produccion en quinua. In: Primera reunion sobre genetica y fitomejoramiento de la quinua. UNTA, IBTA, IICA, Centro de Investigacion Internacional para el Desarrollo, Puno

    Google Scholar 

  • Trápani N, Hall AJ, Sadras VO, Vilella F (1992) Ontogenic changes in radiation-use efficiency of sunflower (Helianthus annuus L.). Field Crops Res 29:301–316

    Article  Google Scholar 

  • Vacher JJ (1998) Response of two main Andean crops, quinoa (Chenopodium quinoa Willd.) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation. Agric Ecosyst Environ 68:99–108

    Article  Google Scholar 

  • Vargas A, Elzinga DB, Rojas-Beltran JA et al (2011) Development and use of microsatellite markers for genetic diversity analysis of canahua (Chenopodium pallidicaule Aellen). Genet Res Crop Evol 58:727–739

    Article  Google Scholar 

  • Wilson HD (1980) Artificial hybridization among species of Chenopodium sect. Chenopodium. Syst Bot 5:253–263

    Article  Google Scholar 

  • Wilson HD (1981) Genetic variation among South American populations of tetraploid Chenopodium sect. Chenopodium subsect. Cellulata Syst Bot 6:380–398

    Article  Google Scholar 

  • Wilson HD (1988a) Allozyme variation and morphological relationships of Chenopodium hircinum (s.1.). Syst Bot 13:215–228

    Article  Google Scholar 

  • Wilson HD (1988b) Quinua biosystematics: domesticated populations. Econ Bot 42:461–477

    Article  Google Scholar 

  • Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of ‘Huauzontle’ (Chenopodium nuttaliae Safford), domesticated chenopod of Mexico. Am J Bot 66:198–206

    Article  Google Scholar 

  • Wilson HD, Manhart J (1993) Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor Appl Genet 86:642–648

    Article  Google Scholar 

  • Winkel T, Lhomme JP, Nina Laura JP et al (2009) Assessing the protective effect of vertically heterogeneous canopies against radiative frost: the case of quinoa on the Andean Altiplano. Agric Forest Meteor 149:1759–1768

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric N. Jellen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jellen, E.N., Maughan, P.J., Bertero, D., Munir, H. (2013). Prospects for Quinoa (Chenopodium Quinoa Willd.) Improvement Through Biotechnology. In: Jain, S., Dutta Gupta, S. (eds) Biotechnology of Neglected and Underutilized Crops. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5500-0_8

Download citation

Publish with us

Policies and ethics