Skip to main content
Log in

Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Cytogenetic characterization by karyotyping and determination of DNA content by flow cytometry of seven cultivated varieties of Chenopodium was performed. Chenopodium quinoa cultivar Barandales and C. berlandieri subsp. nuttalliae cultigens Huauzontle, Quelite and Chia roja showed 2n = 4x = 36, x = 9. Statistically insignificant genome size differences for studied varieties ranged from 2.96 pg/2C (1 Cx = 724 Mbp) in C. quinoa to 3.04 pg/2C (1 Cx = 743 Mbp) in Huauzontle. Karyotype analyses revealed the presence of nine groups of four metacentric chromosomes, including two pairs of chromosomes with satellites. The first pair of satellites was located on the largest pair of chromosomes and the second on a different pair of chromosomes in all accessions analyzed. Variation among varieties was evident in chromosome size, genome length (GL) and the position of satellites. Chia roja exhibited greatest GL (58.82 μm) and biggest chromosomes (2.04 μm). Huauzontle showed the smallest GL (45.02 μm) and shortest chromosomes (1.60 μm). Comparison of GL in studied taxa was statistically significant and allowed to define three groups according to the use given to these plants. These data indicate that they are small, very stable genomes in terms of DNA content, and they support the allotetraploid origin(s) of C. berlandieri subsp. nuttalliae and C. quinoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basset J, Crompton WC (1982) The genus Chenopodium in Canada. Can J Bot 60:586–610

    Google Scholar 

  • Bennett MD, Smith J (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 334:309–345

    Article  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Karyotypic studies on some cultivated and wild species of Chenopodium (Chenopodiaceae). Genet Resour Crop Evol 53:1309–1320

    Article  Google Scholar 

  • Biradar DP, Rayburn AL (1993) Heterosis and nuclear DNA content in maize. Heredity 71:300–304

    Article  Google Scholar 

  • Bournouf-Radosevich M, Paupardin C (1985) Vegetative propagation of Chenopodium quinoa by shoot tip culture. Am J Bot 72:278–283

    Article  Google Scholar 

  • Cárdenas M, Hawkes JG (1948) Número de cromosomas de algunas plantas cultivadas por los indios de los Andes. Rev Agric B 32:109–114

    Google Scholar 

  • Conger AD, Fairchild LM (1953) A quick freeze method for making smear slides permanent. Stain Technol 28:281–283

    PubMed  CAS  Google Scholar 

  • Crawford D (1973) Morphology, flavonoid chemistry and chromosome numbers of the Chenopodium neomexicanum complex. Madroño 22:185–195

    Google Scholar 

  • Das AB, Mohanty S, Das P (1999) 4C DNA variation and karyotype diversity in nine species of Ferocactus. Cytologia 64:17–24

    Google Scholar 

  • De la Cruz TE, Rubluo IA, Palomino HG, García AJM, Laguna CA (2007) Characterization of Chenopodium germplasm, selection of putative mutants and its cytogenetic study. In: Ochat S, Mohan-Jain S (eds) Breeding of neglected and under-utilized crops, spices and herbs. Science Publishers, Enfield, pp 123–136

    Google Scholar 

  • Del Angel C, Palomino G, García A, Méndez I (2006) Nuclear genome size and karyotype analysis in Mammillaria species (Cactaceae). Caryologia 59:177–186

    Google Scholar 

  • Dolezel J (1995) Flow cytometry: principles and applications in mutation breeding. 14th (IAEA/FAO) International training course on advances in plant mutation techniques. Viena, Austria

  • Dolezel J (1997) Applications of flow cytometry for study of plant genomes. J Appl Genet 38:285–302

    Google Scholar 

  • Dolezel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayers R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26

    Article  CAS  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51A:127–128

    Article  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Willey-Vch Verlag, GmbH and Co. KGaA, Weinheim, pp 41–65

    Chapter  Google Scholar 

  • Dvorák F (1986) Annotated chromosome counts of the genus Chenopodium Bertol. Scripta Fac Sci Nat Univ Purk Brun (Biol) 16:13–40

    Google Scholar 

  • Dvorák F (1989) Study on Chenopodium strictum agg. Feddes Repert 100:197–234

    Google Scholar 

  • Dvorák F, Dadaková B (1989) A contribution to a better understanding of the variability of Chenopodium rubrum L Bertol. Scripta Fac Sci Nat Univ Purk Brun (Biol) 19:323–330

  • Ellul P, Boscaiu M, Vicente O, Moreno V, Rossello JA (2002) Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Ann Bot 90:345–351

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DH, Lambert GM, Macas J, Dolezel J (1998) Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson JP, Darzynkiewicz Z, Dean PN, Dressler LG, Orfao A, Rabinovitch PS, Stewart CC, Tanke HJ, Wheeless LL (eds) Current protocols in cytometry. Wiley, New York, pp 7.6.1–7.6.22

    Google Scholar 

  • Gandarillas H (1976) Genética y origen de la quinua (Chenopodium quinoa). Bol Genét Inst Fitotec Bolivia 9:3–14

    Google Scholar 

  • Gandarillas H, Luizaga J (1967) Número de cromosomas de Chenopodium quinoa Willd. en radículas y raicillas. Turrialba 17:275–279

    Google Scholar 

  • García AV (1990) Manual de técnicas de citogenética. Colegio de Posgraduados, Chapingo, México

    Google Scholar 

  • Giusti L (1970) El género Chenopodium en Argentina. l. Número de cromosomas. Darwiniana 16:98–105

    Google Scholar 

  • Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Gupta R, Gupta PK (1978) Karyotipic studies in the genus Crotalaria Linn. Cytologia 43:357–369

    Google Scholar 

  • Harbhajan S (1961) Grain Amaranthus buckwheat and Chenopods. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Heiser CH (1985) Chenopods: from weeds to the halls of Montezuma. In: Of plants and people. University of Oklahoma press, pp 82–99

  • Joubés J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  PubMed  Google Scholar 

  • Kidwell MG (2002) Transponsable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Bot Pol 70:85–90

    CAS  Google Scholar 

  • Leitch AR, Lim KY, Leitch IJ, O’Neill M, Chye M, Low F (1998a) Molecular cytogenetic studies in rubber, Hevea brasiliensis Mull. Arg. (Euphorbiaceae). Genome 41:464–467

    Article  CAS  Google Scholar 

  • Leitch IJ, Chase MW, Bennett MD (1998b) Phylogenetic analysis of DNA C-values evidence for a small ancestral genome size in flowering plants. Ann Bot 82(Suppl A):85–94

    Article  CAS  Google Scholar 

  • Levan A, Freiga K, Sandberg A (1964) Nomenclature for centromeric position on chromosome. Hereditas 52:201–219

    Article  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Physical Mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  PubMed  CAS  Google Scholar 

  • Markova M (1975) Karyosystematische untersuchungen an den Cistaceae Bulgariens. Plant Syst Evol 123:283–315

    Article  Google Scholar 

  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio A, Rojas J, Coleman CE, Stevens MR, Fairbanks DJ, Parkinson SE, Jellen EN (2006) Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839

    Article  PubMed  CAS  Google Scholar 

  • Mohanty S, Das AB, Das P (1996) Analysis of chiasma frequency and nuclear DNA variation in some species of Mammillaria. Cytobios 88:173–181

    Google Scholar 

  • Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewicz Z, Crissman HA (eds) Methods in cell biology. Academic Press, New York

    Google Scholar 

  • Palomino GH, Segura MD, Bye RB, Mercado RP (1990) Cytogenetic distinction between Teloxys and Chenopodium (Chenopodiaceae). Southwest Nat 35:351–353

    Article  Google Scholar 

  • Palomino G, Dolezel J, Méndez I, Rubluo A (2003) Nuclear genome size analysis of A. tequilana Weber. Caryologia 56:37–46

    Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  PubMed  CAS  Google Scholar 

  • Price HJ (1976) Evolution of DNA content in higher plants. Bot Rev 42:27–52

    Article  CAS  Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR (1999) Genetic relationship among 19 accessions of six species of Chenopodium L. by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Article  Google Scholar 

  • Simmonds NW (1971) The breeding system of Chenopodium quinoa. I. Male sterility. Heredity 27:73–82

    Article  Google Scholar 

  • Stevens MR, Coleman CE, Parkinson SE, Maughan PJ, Zhang HB, Balzotti MR, Kooyman DL, Arumuganathan K, Bonifacio A, Fairbanks DJ, Jellen EN, Stevens MR (2006) Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16

    Article  CAS  Google Scholar 

  • Walters TW (1987) Electrophoretic evidence for the evolutionary relationship of the tetraploid Chenopodium berlandieri to its putative diploid progenitors. Selbyana 10:36–55

    Google Scholar 

  • Wilson HD, Heiser CB (1979) The origin and evolutionary relationships of “Huauzontle” (Chenopodium nuttalliae Safford), domesticated chenopod of Mexico. Am J Bot 66(2):198–206

    Article  Google Scholar 

Download references

Acknowledgements

The project was partially supported by International Atomic Energy Agency (IAEA) Research Contract 14035 RO, Consejo Nacional de Ciencia y Tecnología (CONACYT) project number 33285B and Sistema Nacional de Recursos Fitogenéticos para la Agricultura y Alimentación (SINAREFI) 084. We thank Ingrid Brunner for maintenance of plant material, A. Laguna Cerda for his assistance in statistical analysis and E. Jellen for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Palomino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomino, G., Hernández, L.T. & de la Cruz Torres, E. Nuclear genome size and chromosome analysis in Chenopodium quinoa and C. berlandieri subsp. nuttalliae . Euphytica 164, 221–230 (2008). https://doi.org/10.1007/s10681-008-9711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9711-8

Keywords

Navigation