Skip to main content
Log in

Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In order to promote genome research on coffee trees, one of the most important tropical crops, a bacterial artificial chromosome (BAC) library of the coffee allotetraploid species, Coffea arabica, was constructed. The variety IAPAR 59, which is widely distributed in Latin America and exhibits a fair level of resistance to several pathogens, was chosen. High-efficiency BAC cloning of the high molecular weight genomic DNA partially digested by HindIII was achieved. In total, the library contains 88,813 clones with an average insert size of 130 kb, and represents approximately eight C. arabica dihaploid genome equivalents. One original feature of this library is that it can be divided into four sublibraries with mean insert sizes of 96, 130, 183 and 210 kb. Characterisation of the library showed that less than 4.5% of the clones contained organelle DNA. Furthermore, this library is representative and shows good genome coverage, as established by hybridisation screening of high-density filters using a number of nuclear probes distributed across the allotetraploid genome. This Arabica BAC library, the first large-insert DNA library so far constructed for the genus Coffea, is well-suited for many applications in genome research, including physical mapping, map-based cloning, functional and comparative genomics as well as polyploid genome analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agwanda C, Lashermes P, Trouslot P, Combes MC, Charrier A (1997) Identification of RAPD markers for resistance to coffee berry disease, Colletotrichum kahawae, in Arabica coffee. Euphytica 97:241–248

    Article  CAS  Google Scholar 

  • Ayliffe MA, Scott NS, Timmis JN (1998) Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol 15:738–745

    CAS  PubMed  Google Scholar 

  • Chalhoub B, Belcram H, Caboche MN (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnol J (in press)

  • Choi S, Wing RA (2000) The construction of bacterial artificial chromosome (BAC) libraries. In: Gelvin S, Schilperoort (eds) Plant molecular biology manuals, 2nd edn, suppl IV. Kluwer, Dordrecht

  • Clarke L, Carbon J (1976) A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell 9:91–99

    CAS  PubMed  Google Scholar 

  • Cros J, Combes MC, Chabrillange N, Duperray C, Monnot des Angles A, Hamon S (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20

    Google Scholar 

  • Cros J, Combes MC, Trouslot P, Anthony F, Hamon S, Charrier A, Lashermes P (1998) Phylogenetic analysis of chloroplast DNA variation in Coffea L. Mol Phylogenet Evol 9:109–117

    Article  CAS  PubMed  Google Scholar 

  • Danesh D, Peñuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND (1999) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst nematode resistance gene. Theor Appl Genet 96:196–202

    Article  Google Scholar 

  • Deng Z, Tao Q, Chang YL, Huang S, Ling P, Yu C, Chen C, Gmitter FG Jr, Zhang HB (2001) Construction of a bacterial artificial chromosome (BAC) library for citrus and identification of BAC contigs containing resistance gene candidates. Theor Appl Genet 102:1177–1184

    Article  CAS  Google Scholar 

  • Herrera JC, Combes MC, Anthony F, Charrier A, Lashermes P (2002) Introgression into the allotetraploid coffee (Coffea arabica L.): segregation and recombination of the C. canephora genome in the tetraploid interspecific hybrid (C. arabica × C. canephora). Theor Appl Genet 104:661–668

    Article  Google Scholar 

  • Johnson LA, Soltis E (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156

    Google Scholar 

  • Lashermes P, Combes MC, Robert J, Trouslot P, D’Hont A, Anthony F, Charrier A (1999) Molecular characterisation and origin of the Coffea arabica L. genome. Mol Gen Genet 261:259–266

    CAS  PubMed  Google Scholar 

  • Lashermes P, Paczek V, Trouslot P, Combes MC, Couturon E, Charrier A (2000a) Single-locus inheritance in the allotetraploid Coffea arabica L. and interspecific hybrid C. arabica x C. canephora. J Hered 91:81–85

    Article  CAS  PubMed  Google Scholar 

  • Lashermes P, Andrzejewski S, Bertrand B, Combes MC, Dussert S, Graziosi G, Trouslot P, Charrier A (2000b) Molecular analysis of introgressive breeding in coffee (Coffea arabica L.). Theor Appl Genet 100:139–146

    CAS  Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    Article  CAS  PubMed  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu TE, Earle ED, Tanksley SD (1993) Map-based-cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    CAS  PubMed  Google Scholar 

  • Nam Y-W, Penmesta RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646

    CAS  Google Scholar 

  • Noir S, Anthony F, Combes MC, Lashermes P (2003) Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in Coffea arabica. Plant Pathol 52:97–103

    Article  CAS  Google Scholar 

  • Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10:116–128

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Habour Laboratory Press, New York

    Google Scholar 

  • Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141

    CAS  PubMed  Google Scholar 

  • Schuster W, Wissinger B, Unseld M, Brennicke A (1990) Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria. EMBO J 9:263–269

    CAS  PubMed  Google Scholar 

  • Scott NS, Timmis JN (1984) Homologies between nuclear and plastid DNA in spinach. Theor Appl Genet 67:279–288

    CAS  Google Scholar 

  • Sera T (2001) Coffee genetic breeding at IAPAR. Crop Breed Appl Biotechnol 1:179–199

    Google Scholar 

  • Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300 kb fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–9797

    CAS  PubMed  Google Scholar 

  • Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620 kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103

    CAS  PubMed  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    CAS  PubMed  Google Scholar 

  • Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  CAS  Google Scholar 

  • Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7:525–533

    CAS  PubMed  Google Scholar 

  • Yang D, Parco A, Nandi S, Subudhi P, Zhu Y, Wang G, Huang N (1997) Construction of a bacterial artificial chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor Appl Genet 95:1147–1154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Community through the International Scientific Co-operation Programme (INCO Contract ICA4-CT-2001-10070). We thank Dr. B. Bertrand CIRAD/Promecafe for the seed material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lashermes.

Additional information

Communicated by J.W. Snape

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noir, S., Patheyron, S., Combes, MC. et al. Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109, 225–230 (2004). https://doi.org/10.1007/s00122-004-1604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1604-1

Keywords

Navigation