Skip to main content
Log in

Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Quinoa (Chenopodium quinoa Willd.) is adapted to the harsh environments of the Andean Altiplano region. Its seeds have a well-balanced amino acid composition and exceptionally high protein content with respect to human nutrition. Quinoa grain is a staple in the diet of some of the most impoverished people in the world. The plant is an allotetraploid displaying disomic inheritance (2n=4x=36) with a di-haploid genome of 967 Mbp (megabase pair), or 2C=2.01 pg. We constructed two quinoa BAC libraries using BamHI (26,880 clones) and EcoRI (48,000 clones) restriction endonucleases. Cloned inserts in the BamHI library average 113 kb (kilobase) with approximately 2% of the clones lacking inserts, whereas cloned inserts in the EcoRI library average 130 kb and approximately 1% lack inserts. Three plastid genes used as probes of high-density arrayed blots of 73,728 BACs identified approximately 2.8% of the clones as containing plastid DNA inserts. We estimate that the combined quinoa libraries represent at least 9.0 di-haploid nuclear genome equivalents. An average of 12.2 positive clones per probe were identified with 13 quinoa single-copy ESTs as probes of the high-density arrayed blots, suggesting that the estimate of 9.0× coverage of the genome is conservative. Utility of the BAC libraries for gene identification was demonstrated by probing the library with a partial sequence of the 11S globulin seed storage protein gene and identifying multiple positive clones. The presence of the 11S globulin gene in four of the clones was verified by direct comparison with quinoa genomic DNA on a Southern blot. Besides serving as a useful tool for gene identification, the quinoa BAC libraries will be an important resource for physical mapping of the quinoa genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:229–241

    Article  CAS  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu Y, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939

    Article  PubMed  CAS  Google Scholar 

  • Chauhan GS, Eskin NAM, Mills PA (1999) Effect of saponin extraction on the nutritional quality of quinoa (Chenopodium quinoa Willd.) proteins. J Food Sci Technol 36:123–126

    CAS  Google Scholar 

  • Chen Q, Sun S, Ye Q, McCuine S, Huff E, Zhang H-B (2004) Construction of two BAC libraries from the wild Mexican diploid potato, Solanum pinnatisectum, and the identification of clones near the late blight and Colorado potato beetle resistance loci. Theor Appl Genet 108:1002–1009

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Creelman RA, Mullet JE, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol Biol Rep 13:124–128

    Article  Google Scholar 

  • Coles ND, Coleman CE, Christensen SA, Jellen EN, Stevens MR, Bonifacio A, Rojas-Beltran JA, Fairbanks DJ, Maughan PJ (2005) Development and use of an expressed sequenced tag library in quinoa (Chenopodium quinoa Willd.) for the discovery of single nucleotide polymorphisms. Plant Sci 168:439–447

    Article  CAS  Google Scholar 

  • Coulter L, Lorenz K (1990) Quinoacomposition, nutritional value, food applications. Food Sci Technol 23:203–207

    CAS  Google Scholar 

  • Danesh D, Peñuela S, Mudge J, Denny RL, Nordstrom H, Martinez JP, Young ND, (1998) A bacterial artificial chromosome library for soybean and identification of clones near a major cyst resistance gene. Theor Appl Genet 96:196–202

    Article  CAS  Google Scholar 

  • Deng Z, Tao Q, Chang Y-L, Huang S, Ling P, Yu C, Chen C, Gmitter Jr FG, Zhang H-B (2001) Construction of a bacterial artificial chromosome (BAC) library for citrus and identification of BAC contigs containing resistance gene candidates. Theor Appl Genet 102:1177–1184

    Article  CAS  Google Scholar 

  • Domoney C, Casey R (1985) Measurement of gene number for seed storage proteins in Pisum. Nucl Acids Res 13:687–699

    Article  PubMed  CAS  Google Scholar 

  • Domoney C, Ellis THN, Davies DR (1986) Organization and mapping of legumin genes in Pisum. Mol Gen Genet 202:280–285

    Article  CAS  Google Scholar 

  • Frijters ACJ, Zhang Z, van-Damme M, Wang G-L, Ronald PC, Michelmore RW (1997) Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genomic fragments of lettuce. Theor Appl Genet 94:390–399

    Article  CAS  Google Scholar 

  • Giusti L (1970) El género Chenopodium en Argentina: I. Números de cromosomas. Darwiniana 16:98–105

    Google Scholar 

  • Heim U, Schubert R, Bäumlein H, Wobus U (1989) The legumin gene family: structure and evolutionary implications of Vicia faba B-type genes and pseudogenes. Plant Mol Biol 13:653–663

    Article  PubMed  CAS  Google Scholar 

  • Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271:709–716

    Article  PubMed  CAS  Google Scholar 

  • Kawabe A, Miyashita NT (2003) Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst 78:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kolano B, Pando LG, Maluszynska J (2001) Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Bot Pol 70:85–90

    CAS  Google Scholar 

  • Luo M, Wang Y-H, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  PubMed  CAS  Google Scholar 

  • Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630

    Article  CAS  Google Scholar 

  • Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, Mason SL, Jarvis DE, Gardunia BW, Fairbanks DJ (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286

    Article  PubMed  CAS  Google Scholar 

  • Moullet O, Zhang H-B, Lagudah ES (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Nam Y-W, Penmetsa RV, Endre G, Uribe P, Kim D, Cook DR (1999) Construction of a bacterial artificial chromosome library of Medicago truncatula and identification of clones containing ethylene-response genes. Theor Appl Genet 98:638–646

    Article  CAS  Google Scholar 

  • Nam Y-W, Lee J-R, Song K-H, Lee M-K, Robbins MD, Chung S-M, Staub JE, Zhang H-B (2005) Construction of two BAC libraries from cucumber (Cucumis sativus L.) and identification of clones linked to yield component quantitative trait loci. Theor Appl Genet 111:150–161

    Article  PubMed  CAS  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  PubMed  CAS  Google Scholar 

  • Noir S, Patheyron S, Combes M-C, Lashermes P, Chalhoub B (2004) Construction and characterisation of a BAC library for genome analysis of the allotetraploid coffee species (Coffea arabica L.). Theor Appl Genet 109:225–230

    Article  PubMed  CAS  Google Scholar 

  • Parkinson SE (2001) Cytogenetic studies and construction of a bacterial artificial chromosome library from Chenopodium quinoa (Willd.). MS thesis. Agronomy and Horticulture, Provo, UT

  • Partap T, Joshi BD, Galwey NW (1998) Chenopods. Chenopodium spp. Promoting the conservation and use of underutilized and neglected crops. 22. Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute, Gatersleben, Germany/Rome, Italy

  • Prado FE, Boero C, Gallardo M, González JA (2000) Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds Bot Bull Acad Sin 41:27–34

    CAS  Google Scholar 

  • Risi JC, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216

    Google Scholar 

  • Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR (1999) Genetic relationship among 19 accessions of six species of Chenopodium L., by random amplified polymorphic DNA fragments (RAPD). Euphytica 105:25–32

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Salinas J, Matassi G, Montero LM, Bernardi G (1988) Compositional compartmentalization and compositional patterns in the nuclear genomes of plants. Nucl Acids Res 16:4269–4285

    Article  PubMed  CAS  Google Scholar 

  • Simmonds NW (1971) The breeding system of Chenopodium quinoa. I. Male sterillity. Heredity 27:73–82

    Article  Google Scholar 

  • Talbot DR, Adang MJ, Slightom JL, Hall TC (1984) Size and organization of a multigene family encoding phaseolin, the major seed storage protein of Phaseolus vulgaris L. Mol Gen Genet 198:42–49

    Article  CAS  Google Scholar 

  • Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica R, Ortiz R, Otazu J, Rea J, Salas B, Zanabria E (1979) Quinua y kañiwa: Cultivos andinos. CIID-IICA, Bogota, Columbia

  • Tomkins JP, Yu Y, Miller-Smith H, Frisch DA, Woo SS, Wing RA (1999a) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424

    Article  CAS  Google Scholar 

  • Tomkins JP, Mahalingam R, Smith H, Goicoechea JL, Knap HT, Wing RA (1999b) A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol 41:25–32

    Article  CAS  Google Scholar 

  • Tomkins JP, Davis G, Main D, Yim Y, Duru N, Musket T, Goicoechea JL, Frisch DA, Coe EH Jr, Wing RA (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933

    CAS  Google Scholar 

  • Vacher JJ (1998) Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation. Agric Ecosyst Environ 68:99–108

    Article  Google Scholar 

  • Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116:11–16

    Article  CAS  Google Scholar 

  • Wobus U, Bäumlein H, Bassüner R, Heim U, Jung R, Müntz K, Saalbach G, Weschke W (1986) Characteristics of two types of legumin genes in the field bean (Vicia faba L. var. minor) genome as revealed by cDNA analysis. FEBS Lett 201:74–80

    Article  CAS  Google Scholar 

  • Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucl Acids Res 22:4922–4931

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Parco A, Nandi S, Subudhi P, Zhu Y, Wang G, Huang N (1997) Construction of a bacterial artifical chromosome (BAC) library and identification of overlapping BAC clones with chromosome 4-specific RFLP markers in rice. Theor Appl Genet 95:1147–1154

    Article  CAS  Google Scholar 

  • Yoo EY, Kim S, Kim YH, Lee CJ, Kim B-D (2003) Construction of a deep coverage BAC library from Capsicum annuum, ‘CM334’. Theor Appl Genet 107:540–543

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zhang H-B (2000) Construction and manipulation of large-insert bacterial clone libraries manual. Texas A&M University, College Station, TX

    Google Scholar 

  • Zhang H-B, Choi S, Woo S-S, Li Z, Wing RA (1996) Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. Mol Breed 2:11–24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution to this work by Jared Tyler. This research was made possible by financial support from the McKnight Foundation-CCRP, Holmes Family Foundation, and the Ezra Taft Benson Agriculture and Food Institute and germplasm contributions by PROINPA (La Paz, Bolivia) and the National University of the Altiplano/FAO (Puno, Peru). The work reported here was carried out in compliance with laws governing genetic experimentation in the United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Stevens.

Additional information

Communicated by E. Guiderdoni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, M.R., Coleman, C.E., Parkinson, S.E. et al. Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor Appl Genet 112, 1593–1600 (2006). https://doi.org/10.1007/s00122-006-0266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0266-6

Keywords

Navigation