Skip to main content
Log in

Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We estimated the genome size of Korean ginseng ( Panax ginseng C.A. Meyer), a medicinal herb, constructed a Hin dIII BAC library, and analyzed BAC-end sequences to provide an initial characterization of the library. The 1C nuclear DNA content of Korean ginseng was estimated to be 3.33 pg (3.12×103 Mb). The BAC library consists of 106,368 clones with an average size of 98.61 kb, amounting to 3.34 genome equivalents. Sequencing of 2167 BAC clones generated 2492 BAC-end sequences with an average length of 400 bp. Analysis using BLAST and motif searches revealed that 10.2%, 20.9% and 3.8% of the BAC-end sequences contained protein-coding regions, transposable elements and microsatellites, respectively. A comparison of the functional categories represented by the protein-coding regions found in BAC-end sequences with those of Arabidopsis revealed that proteins pertaining to energy metabolism, subcellular localization, cofactor requirement and transport facilitation were more highly represented in the P. ginseng sample. In addition, a sequence encoding a glucosyltransferase-like protein implicated in the ginsenoside biosynthesis pathway was also found. The majority of the transposable element sequences found belonged to the gypsy type (67.6%), followed by copia (11.7%) and LINE (8.0%) retrotransposons, whereas DNA transposons accounted for only 2.1% of the total in our sequence sample. Higher levels of transposable elements than protein-coding regions suggest that mobile elements have played an important role in the evolution of the genome of Korean ginseng, and contributed significantly to its complexity. We also identified 103 microsatellites with 3–38 repeats in their motifs. The BAC library and BAC-end sequences will serve as a useful resource for physical mapping, positional cloning and genome sequencing of P. ginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14:1023–1034

    CAS  PubMed  Google Scholar 

  • Bennetzen JL, Chandler VL, Schnable P (2001) Maize genome sequencing project. Plant Physiol 127:1572–1578

    Article  CAS  PubMed  Google Scholar 

  • Bowen NJ, Jordan IK (2002) Transposable elements and the evolution of eukaryotic complexity. Curr Issues Mol Biol 4:65–76

    CAS  PubMed  Google Scholar 

  • Boysen C, Simon MI, Hood L (1997) Analysis of the 1.1-Mb human α/δ T-cell receptor locus with bacterial artificial chromosome clones. Genome Res 7:330–338

    CAS  PubMed  Google Scholar 

  • Budiman MA, Mao L, Wood TC, Wing RA (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129–136

    CAS  PubMed  Google Scholar 

  • Choi SD, Creelman R, Mullet, Wing RA (1995) Construction and characterization of a bacterial artificial chromosome library from Arabidopsis thaliana. Weed World 2:17–20

    CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97:7002–7007

    PubMed  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons ( gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188

    CAS  PubMed  Google Scholar 

  • Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defense response. Genetica 100:241–252

    CAS  PubMed  Google Scholar 

  • Green ED, Riethman HC, Dutchik JE, Olson MV (1991) Detection and characterization of chimeric yeast artificial-chromosome clones. Genomics 11:658–669

    CAS  PubMed  Google Scholar 

  • Harn C, Whang J (1963) Development of female gametophyte of Panax ginseng. Korean J Bot 6:3–6

    Google Scholar 

  • Ho ISH, Leung FC (2002) Isolation and characterization of repetitive DNA sequences from Panax ginseng. Mol Genet Genomics 266:951–961

    Article  CAS  PubMed  Google Scholar 

  • Islam-Faridi MN, Childs KL, Klein PE, Hodnett G, Menz MA, Klein RR, Rooney WL, Mullet JE, Stelly DM, Price HJ (2002) A molecular cytogenetic map of sorghum chromosome 1. Fluorescence in situ hybridization analysis with mapped bacterial artificial chromosomes. Genetics 161:345–353

    CAS  PubMed  Google Scholar 

  • Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22:224-230

    Article  CAS  PubMed  Google Scholar 

  • Kelley JM, Field CE, Craven MB, Bocskai DB, Kim UJ, Rounsley SD, Adams MD (1999) High-throughput direct end sequencing of BAC clones. Nucleic Acids Res 27:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Kilian A, Chen J, Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    CAS  PubMed  Google Scholar 

  • Kim UJ, Birren BW, Slepak T, Mancino V, Boysen C, Kang HL, Simon MI, Shizuya H (1996) Construction and characterization of a human bacterial artificial chromosome library. Genomics 34:213-218

    CAS  PubMed  Google Scholar 

  • Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376-7381

    CAS  PubMed  Google Scholar 

  • Lee JH, Yen Y, Kaeppler SM, Baenziger PS, Arumuganathan K (1997) Synchronization of cell cycle in root-tips and flow karyotype of metaphase chromosomes of common wheat ( Triticum aestivum L.). Genome 40:633–638

    Google Scholar 

  • Leeton PR, Smyth DR (1993) An abundant LINE-like element amplified in the genome of Lilium speciosum. Mol Gen Genet 237:97–104

    CAS  PubMed  Google Scholar 

  • Leutwiler LS, Hough-Evans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194:15–23

    CAS  Google Scholar 

  • Lim YP, Shin CS, Lee SJ, Youn YN, Jo JS (1993) Survey of proper primers and genetic analysis of Korean ginseng ( Panax ginseng C.A. Meyer) variants using the RAPD technique. Korean J Ginseng Sci 17:153–158

    CAS  Google Scholar 

  • Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt ( Fom -2). Genome 44:154-162

    Article  CAS  PubMed  Google Scholar 

  • Mahady GB, Gyllenhaal C, Fong HHS, Farnsworth NR (2000) Ginseng: a review of safety and efficacy. Nutr Clin Care 3:90–101

    Article  Google Scholar 

  • Mahairas GG, Wallace JC, Smith K, Swartzell S, Holzman T, Keller A, Shaker R, Furlong J, Young J, Zhao S, Adams M, Hood L (1999) Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome. Proc Natl Acad Sci USA 96:9739–9744

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res 10:982–990

    CAS  PubMed  Google Scholar 

  • Marra M, et al (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nat Genet 22:265–270

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660-1676

    CAS  PubMed  Google Scholar 

  • Nam KY (2002) Clinical application and efficacy of Korean ginseng ( Panax ginseng C.A. Meyer). J Ginseng Res 26:111–131

    CAS  Google Scholar 

  • Ngan F, Shaw P, But P, Wang J (1999) Molecular authentication of Panax species. Phytochemistry 50:787–791

    Article  CAS  PubMed  Google Scholar 

  • O’Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J 23:233–243

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 89:8794–8797

    CAS  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice ( Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequencing of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    PubMed  Google Scholar 

  • Tomkins JP, Mahalingam R, Smith H, Goicoechea JL, Knap HT, Wing RA (1999) A bacterial artificial chromosome library for soybean PI 437654 and identification of clones associated with cyst nematode resistance. Plant Mol Biol 41:25-32

    CAS  PubMed  Google Scholar 

  • Venter JC, Smith HO, Hood L (1996) A new strategy for genome sequencing. Nature 381:364–366

    CAS  PubMed  Google Scholar 

  • Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 55:567–575

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7:525–533

    CAS  PubMed  Google Scholar 

  • Wang GL, Warren R, Innes R, Osborne B, Baker B, Ronald PC (1996) Construction of an Arabidopsis BAC library and isolation of clones hybridizing with disease-resistance gene-like sequences. Plant Mol Biol Rep 14:107-114

    Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    CAS  PubMed  Google Scholar 

  • Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    Article  CAS  PubMed  Google Scholar 

  • Yu J, et al (2002) A draft sequence of the rice genome ( Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Zhang HB, Choi SD, Woo SS, Li ZK, Wing RA (1996) Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred population. Mol Breed 2:11–24

    CAS  Google Scholar 

  • Zhao S (2000) Human BAC ends. Nucleic Acids Res 28:129–132

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Malek J, Mahairas G, Fu L, Nierman W, Venter JC, Adams MD (2000) Human BAC ends quality assessment and sequence analysis. Genomics 63:321–332

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, et al (2001) Mouse BAC ends quality assessment and sequence analysis. Genome Res 11:1736–1745

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by Plant Diversity Research Center (PDRC) Grant No. PF003101-01

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Lim.

Additional information

Communicated by M.-A. Grandbastien

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, C.P., Lee, S.J., Park, J.Y. et al. Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Genet Genomics 271, 709–716 (2004). https://doi.org/10.1007/s00438-004-1021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1021-9

Keywords

Navigation