Skip to main content

Stress Management Practices in Plants by Microbes

  • Chapter
  • First Online:
Microbial Inoculants in Sustainable Agricultural Productivity

Abstract

Plants are constantly subjected to biotic and abiotic stress factors, from their planting time up to the harvesting, transport, storage and consumption of plant products. These stresses exert deleterious harmful effects on crop health as well as cause huge losses to their production worldwide. To combat these stress factors, researchers all around the globe are involved in procuring management practices ranging from traditional genetics and breeding techniques to present day available novel biotechnological tools. Use of microorganisms is one such method by which both abiotic and biotic stress can be tackled in an economical, ecofriendly and successful manner. Plant growth-promoting rhizobacteria (PGPR) are the bacteria living in rhizosphere region and promoting plant growth and suppressing stress components as well. Different microorganisms acquire different mechanisms to fight with these plant stresses. In this chapter, an effort has been made to impart the knowledge about the abiotic and biotic stress factors, their management in an efficient and novel way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adesemoye A, Torbert H, Kloepper J (2009) Plant growth-promoting Rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58(4):921–929

    Article  CAS  PubMed  Google Scholar 

  • Ait Bakra E, Nowak J, Clement C (2006) Enhancement of chillingesistance of inoculated grapevine plantlets with a plant growth promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252

    Article  CAS  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by exopolysaccharide producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fert Soils 46:45–55

    Article  CAS  Google Scholar 

  • Allen MF, Boosalis MG (1983) Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytol 93:67–76

    Article  Google Scholar 

  • Allen R (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat rhizosphere by EPS producing Pantoea agglomerans and its effect on soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Jami AR, Hasan M (2007) Response of cotton to plant growth promoting Rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45(2):135–143

    Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non- mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59(8):2029–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshad M, Sharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC deaminase partially eliminate the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620

    Article  Google Scholar 

  • Ashraf M, Berge SH, Mahmood OT (2004) Inoculating wheat seedling with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fert Soils 40:157–162

    CAS  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growthpromoting Rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252

    CAS  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Chang Biol 8:1–16

    Article  Google Scholar 

  • Barassi CA, Ayrault G, Creus CM, Sueldo RJ, Sobero MT (2006) Seed inoulation with Azospirillum mitigates NaCl effects on lettuce. Sci Hortic (Amsterdam) 109:8–14

    Article  CAS  Google Scholar 

  • Bayaa B (1997) Screening lentil for resistance to Fusarium wilt: methodology and sources of resistance. Euphytica 98:69–74

    Article  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  PubMed  Google Scholar 

  • Berger S, Sinha AK, Roitsch T (2007) Plant physiology meets phytopathology: plantprimary metabolism and plant-pathogen Interactions. J Exp Bot 58:4019–4026

    Article  CAS  PubMed  Google Scholar 

  • Bolton MV (2009) Primary metabolism and plant defense-fuel for the fire. Mol Plant Microbe Interact 22:487–497

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Chang WS, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cho K, Toler H, Lee J, Ownley B, Stutz JC, Moore JL, Auge RM (2006) Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. J Plant Physiol 163:517–528

    Article  CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82(2):273–281

    Article  Google Scholar 

  • Diers B (2004) Soybean genetic improvement through conventional and molecular based strategies In: 5th European conference on grain legumes, Djion, France, 7–11 June 2004, AEP, pp 147–148

    Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th international crop science congress. http://www.cropscience.org.au/

  • Duque AS, Almeida AM, Bernardes da Silva A, Marques da Silva J, Farinha AP, Santos D, Fevereiro P, Araújo SS (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. In: Kourosh Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. InTech, Rijeka, pp 49–101

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soils 45:563–571

    Article  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189

    Article  Google Scholar 

  • Eitzinger J, Orlandini S, Stefanski R, Naylor REL (2010) Climate change and agriculture: introductory editorial. J Agric Sci Cambridge 148:499–500

    Article  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (2012) In: Intergovernmental Panel on Climate Change (IPCC) (ed) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Sylla SND, Dreyfus B, Bâ AM (2007) Arbuscular mycorrhizal colonization and nodulation improve tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159–166

    Article  CAS  PubMed  Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Glick BR, Liu C, Ghosh S, Dumbrof EB (1997) Early development of canola seedlings in the presence of plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Soil Biol Biochem 29:1233–1239

    Article  CAS  Google Scholar 

  • Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR (2008) The Pseudomonas syringae type III effector HopAM1 enhances virulence on water-stressed plants. Mol Plant Microbe Interact 21:361–370

    Article  CAS  PubMed  Google Scholar 

  • Grahm PH (1992) Stress tolerance in Rhizobium, Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    Article  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase containing plant growth promoting bacteria. Can J Microbiol 47:77–80

    Article  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431

    Article  CAS  PubMed  Google Scholar 

  • Hamdia ABE, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44:165–174

    Article  CAS  Google Scholar 

  • Hamwieh A, Udupa SM, Choumane W, Sarkar A, Dreyer F, Jung C, Baum M (2005) A genetic linkage map of lentil based on microsatellite and AFLP markers and localization of fusarium vascular wilt resistance. Theor Appl Genet 110:669–677

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek SV, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch AM, Kapulnik Y (1998) Signal transduction pathways in mycorrhizal associations: comparisons with the rhizobium–legume symbiosis. Fungal Genet Biol 23(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Hol WHG, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. TIPS 3:224–230

    Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grünwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change and its impacts in the near and long term under different scenarios. In: The Core Writing Team, Pachauri RK, Reisinger A (eds) Climate change 2007: synthesis report. IPCC, Geneva, pp 43–54

    Chapter  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting Rhizobacteria associated with chickpea (Cicer arietinum L). Int J Plant Prod 1(2):141–152

    Google Scholar 

  • Karakurt H, Aslantas R, Ozkan G, Guleryuz M (2009) Effects of indol–3-butyric acid (IBA), plant growth promoting rhizobacteria (PGPR) and carbohydrates on rooting of hardwood cutting of MM106 Apple rootstock. Afr J Agric Res 4(2):060–064

    Google Scholar 

  • Kim SH, Dennis CG, Richard CS, Jeffrey TB, Dennis JT, Vangimalla RR (2007) Temperature dependence of growth, development and photosynthesis in maize under elevated CO2. Environ Exp Bot 61:224–236

    Article  CAS  Google Scholar 

  • Kim K, Yim W, Trivedi P, Madhaiyan M, Boruah HPD, Islam MR, Lee G, Sa T (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429–440

    Article  CAS  Google Scholar 

  • Kohler J et al (2008) Plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kolkman JM, Kelly JD (2003) QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43:539–548

    Article  CAS  Google Scholar 

  • Kumar VK, Raju SK, Reddy MS, Kloepper JW, Lawrence KS, Groth DE, Miller ME, Sudini H, Binghai D (2009) Evaluation of commercially available PGPR for control of rice sheath blight caused by Rhizoctonia solani. J Pure Appl Microbiol 3(2):485–488

    Google Scholar 

  • Kumar VK, Reddy MS, Kloepper JW, Lawrence KS, Zhou XG, Groth DE, Zhang S, Sudhakara Rao R, Wang Q, Raju MRB, Krishnam R, Dilantha Fernando WG, Sudini H, Du B, Miller ME (2011) Commercial potential of microbial inoculants for sheath blight management and yield enhancement of rice. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 237–264

    Chapter  Google Scholar 

  • Liu C, Ruan Y, Lin Z, Wei R, Peng Q, Guan C, Ishii H (2008) Antagonism between acibenzolar-S-methyl-induced systemic acquired resistance and jasmonic acid-induced systemic acquired susceptibility to Colletotrichum orbiculare infection in cucumber. Physiol Mol Plant Pathol 72:141–145

    Article  CAS  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2:1–7

    Article  Google Scholar 

  • Luck J, Spackman M, Freeman A, TreË›bicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60:113–121

    Google Scholar 

  • Madgwick J, West J, White R, Semenov M, Townsend J, Turner J, Fitt BL (2011) Impacts of climate change on wheat anthesis and Fusarium ear blight in the UK. Eur J Plant Pathol 130:117–131

    Article  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Article  CAS  PubMed  Google Scholar 

  • Mahaian S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  Google Scholar 

  • Maraseni TN, Mushtaq S, Maroulis J (2009) Greenhouse gas emissions from rice farming inputs: a cross-country assessment. J Agric Sci Cambridge 147:117–126

    Article  CAS  Google Scholar 

  • Maron JL, Crone E (2006) Herbivory: effects on plant abundance, distribution and population growth. Proc R Soc B 273(2):575–2584

    Google Scholar 

  • Maron JL, Kauffman M (2006) Habitat-specific consumer impacts on plant population dynamics. Ecology 87:113–124

    Article  PubMed  Google Scholar 

  • Marquez LM, Redman RS, Rodriguez RJ, Roosinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315(5811):513–515

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcon R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought tolerant or drought sensitive Glomus species. Microb Ecol 54(3):543–552

    Article  CAS  PubMed  Google Scholar 

  • Massad TJ, Dyer LA, Vega CG (2012) Cost of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS One 7, e7554

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • McLellan CA, Turbyville TJ, Wijeratne K, Kerschen A, Vierling E, Queitsch C, Whiteshell L, Gunatilaka AAL (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145:174–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta CM, Gupta V, Singh S, Srivastava R, Sen E, Romantschuk M, Sharma AK (2012) Role of microbiologically rich compost in reducing biotic and abiotic stresses. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management. Springer, Dordrecht, pp 113–134

    Chapter  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Article  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–18

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mordecai EA (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441

    Article  Google Scholar 

  • Mutlu N, Miklas P, Reiser J, Coyne D (2005) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124:282–287

    Article  Google Scholar 

  • Nguyen TH (2008) The product BioGro and improvements in its performance. In: Kennedy IR, Choudhury ATMA, Kecskés ML, Rose MT (eds) Efficient nutrient use in rice production in Vietnam achieved using inoculant biofertilisers. In: Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 Oct 2007, pp 15–24

    Google Scholar 

  • Nguyen TH, Deaker R, Kennedy IR, Roughley RJ (2003) The positive yield response of field grown rice to inoculation with a multi-strain biofertiliser in the Hanoi area, Vietnam. Symbiosis 35:231–245

    Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, Nijs L, Hockland S, Maafi ZT (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Amsterdam, pp 21–43

    Chapter  Google Scholar 

  • Pimentel D (2002) Biological invasions: economic and environmental costs of alien plant, animal and microbe species. CRC Press, Boca Raton, p 384

    Book  Google Scholar 

  • Purohit M, Srivastava S, Srivastava PS (1998) Stress tolerant plants through tissue culture. In: Srivastava PS (ed) Plant tissue culture and molecular biology: application and prospects. Narosa Publishing House, New Delhi, pp 554–578

    Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Ramteke R, Gupta GK, Joshi OP (2004) Evaluation of rust resistance in soybean (Glycine max) under field condition. Indian J Agric Sci 74:623–624

    Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    Article  CAS  Google Scholar 

  • Rodriguez AA, Stella AM, Storni MM, Zulpa G, Zaccaro MC (2006) Effect of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Sys 2:7

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi G, Majidi E (2008) Influence of plant growth promoting Rhizobacteria on dry matter accumulation of Chickpea (Cicer arietinum L) under field conditions. J Agric Environ Sci 3(2):253–257

    Google Scholar 

  • Ruiz-Lozano JM, Azcon R (2000) Symbiotixc efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  CAS  Google Scholar 

  • Ryu C, Farag MA, Hu C, Reddy MS, Wei H, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100(8):4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sahrawat KL (2000) Macro and micronutrients removed by upland and lowland rice cultivars in West Africa. Commun Soil Sci Plant Anal 31:717–723

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing AC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2009a) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fert Soils 46:17–26

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Kishore N, Venkateswarlu B (2009b) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) Effects of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase from Pseudomonas fluorescence against saline stress under in vitro and field conditions in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JP, Gupta HS (2009) Mountain aspects influence the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress—induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci Cambridge 148:543–552

    Article  CAS  Google Scholar 

  • Stajner D, Kevresan S, Gasic O, Mimica-Dukic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plantarum 39(3):441–445

    Article  CAS  Google Scholar 

  • Strauss SY, Zangerl AR (2002) Plant-insect interactions in terrestrial ecosystems. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Science, Oxford, pp 77–106

    Google Scholar 

  • Subramanian KS, Charest C (1998) Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery. Physiol Plant 102:285–296

    Article  CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89(1):135–150

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana n gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria from rhizospheric soil of wheat under saline conditions. Curr Microbiol 59(5):489–496

    Article  CAS  PubMed  Google Scholar 

  • Venkateswarlu B, Desai S, Prasad YG (2008) Agriculturally important microorganisms for stressed ecosystems: challenges in technology development and application. In: Khachatourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1. Academic World, Bhopal, pp 225–246

    Google Scholar 

  • Versulues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  Google Scholar 

  • Wahid A, Farooq M, Hussain I, Rasheed R, Galani S (2012) Responses and management of heat stress in plants. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change, pp 135–57

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2003) JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev Cell 5:811–816

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kume T (2009) A general adaptation strategy for climate change impacts on paddy cultivation: special reference to the Japanese context. Paddy Water Environ 7:313–320

    Article  Google Scholar 

  • Yang H, Shankar M, Buirchell BJ, Sweetingham MW, Caminero C, Smith PMC (2002) Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 105:265–270

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Boersma JG, You MP, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14:145–151

    Article  CAS  Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of Rhizobacteria isolated from sweet potato rhizosphere. J Biotechnol 6(1):49–52

    Article  Google Scholar 

  • Yildirim E, Taylor AG (2005) Effect of biological treatments on growth of bean plans under salt stress. Ann Rep Bean Improv Coop 48:176–177

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Arshad M, Shaharoona B (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotech 18(5):958–963

    CAS  Google Scholar 

  • Zangerl AR, Berenbaum MR (2003) Phenotype matching in wild parsnip and parsnip webworms. causes and consequences. Evolution 57:806–815

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Butelli E, de Stefano R, Schoonbeek HJ, Magusin A, Pagliarani C, Wellner N, Hill L, Orzaez D, Granell A (2013) Anthocyanins double the shelf life of tomatoes by delaying over ripening and reducing susceptibility to graymold. Curr Biol 23:1094–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanak Sirari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Sirari, K., Kashyap, L., Mehta, C.M. (2016). Stress Management Practices in Plants by Microbes. In: Singh, D., Singh, H., Prabha, R. (eds) Microbial Inoculants in Sustainable Agricultural Productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2644-4_6

Download citation

Publish with us

Policies and ethics