Skip to main content

Brassinosteroids: Biosynthesis and Role in Growth, Development, and Thermotolerance Responses

  • Chapter
  • First Online:
Molecular Stress Physiology of Plants

Abstract

Brassinosteroids are new and unique class of plant growth regulators that constitutes the sixth class of phytohormones. Till date more than 70 analogues of these natural occurring and nonnatural analogues of brassinolides (BL) have been identified from different plant species. Brassinoslides due to their ubiquitous presence in plant species in almost all parts of plant orchestrate myriad growth and developmental processes. Owing to their peculiar structural features, their extremely low abundance in natural sources, and potent biological activity, BLs are being studied intensively to understand their role in plant metabolism under normal and inadequate growth conditions. Their main physiological effects in plants include cell division control, germination and growth promotion, regulation of hormonal balance, activation of protein and nucleic acid synthesis, enzyme activity, and most interestingly increased resistance to abiotic and biotic stresses. Exogenous application of BLs to plants at seed level or as foliar spray enhances antioxidant defense activities, and accumulation of osmoprotectants such as proline and glycine betaine under stress conditions illustrated antistress properties of brassinosteroids. BLs reported to play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis, and other plants may offer a novel therapeutic strategy for various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alam MM, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45:139–142

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Hasan SA, Ahmad A (2006) Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci Hortic 110:267–273

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L). Environ Exp Bot 59:217–223

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008a) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiate L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Ali Q, Athar HUR, Ashraf M (2008b) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 240epibrassinolide. Plant Growth Regul 56:107–116

    Article  CAS  Google Scholar 

  • Anuradha S, Rao SSR (2007a) The effect of brassinosteroids on radish (Raphanus sativus L) seedlings growing under cadmium stress. Plant Soil Environ 53:465–472

    CAS  Google Scholar 

  • Anuradha S, Rao SSR (2007b) Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian J Plant Physiol 12:396–400

    CAS  Google Scholar 

  • Arora N, Bhrdwaj R, Sharma P, Arora HK (2008) 28-Homobrassinolide alleviates oxidative stress in salt treated maize (Zea mays L.) plants. Braz J Plant Physiol 20:153–157

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Bajguz A (2000) Effects of brassinosteroids on nucleic acids and protein in cultured cells in Chlorella vulgaris. Plant Physiol Biochem 38:209–215

    Article  CAS  Google Scholar 

  • Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–324

    Article  CAS  Google Scholar 

  • Bajguz A (2009) Blockage of heavy metal accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol Biochem 38:797–801

    Article  Google Scholar 

  • Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179

    Article  CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effect of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134(4):1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Bobrick AO (1995) Application of brassinosteroids in the potato breeding. In: Brassinosteroids – biorational, ecologically safe regulators of growth and productivity of plants, 4th, Minsk, p 23

    Google Scholar 

  • Brosa C (1999) Structure activity relationship. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer, Tokyo, pp 191–222

    Google Scholar 

  • Cag S, Goren-Saglam N, Cingil-Baris C, Kaplan E (2007) The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanin content and peroxidase activity in excised red cabbage (Brassica oleraceae L.) cotyledons. Biotech Biotechnol Equip 21:422–425

    CAS  Google Scholar 

  • Castle J, Montoya T, Bishop GJ (2003) Selected physiological responses of brassinosteroids: a historical approach. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic Publishers, Dordrecht/Boston/London, pp 45–68

    Google Scholar 

  • Chandler JW, Cole M, Filer A, Werr W (2009) BIM1, a bHLH protein involved in brassinosteroid signaling, controls Arabidopsis embryonic patterning via interaction with DORNROSCHEN and DORNROSCHEN–LIKE. Plant Mol Biol 69:57–68

    Article  PubMed  CAS  Google Scholar 

  • Chen JC, Wang LF, Zhao YJ (1990) Effects of 24-epibrassinolide on growth of tobacco root explants. Acta Agric Shanghai 6:89–92

    Google Scholar 

  • Choi YH, Fujioka S, Nomura T, Harada A, Yokota T, Takatsuto S, Sakurai A (1997) An alternative brassinolide biosynthetic pathway via late C-6 oxidation. Phytochemistry 44:609–613

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  PubMed  CAS  Google Scholar 

  • Cui JX, Zhou YH, Ding JG, Xia XJ, Shi K, Chen SC, Asami T, Chen Z, Yu JQ (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34:347–358

    Article  PubMed  CAS  Google Scholar 

  • De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyls. Plant Cell Physiol 46(6):827–836

    Article  PubMed  CAS  Google Scholar 

  • Debez A, Chaibi W, Bouzid S (2001) Effect of NaCl and growth regulators on germination of Atriplex halimus L. Cah Agric 10:135–138

    Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment with 24- epibrassinolide (a brassinosteroid) increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:332–342

    Article  Google Scholar 

  • Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat shock protein synthesis following thermal stress. Plant J 29(6):681–691

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Shi K, Zhou YH, Yu JQ (2009a) Effects of root and foliar applications of 24-epibrassinolide on fusarium wilt and antioxidant metabolism in cucumber roots. Hortic Sci 44(5):1340–1349

    Google Scholar 

  • Ding J, Shi K, Zhou YH, Yu JQ (2009b) Microbial community responses associated with the development of Fusarium oxysporum f. sp. cucumerinum after 24-epibrassinolidee applications to shoots and roots in cucumber. Eur J Plant Pathol 124:141–150

    Article  CAS  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroids: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136

    Article  CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid – mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Article  CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-Homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49(1):55–64

    Article  CAS  Google Scholar 

  • Fedina EO, Karimova FG, Tarchevsky IA, Khripach VA (2008) Effect of epibrassinolide on tyrosine phosphorylation of the Calvin cycle enzymes. Russ J Plant Physiol 55:193–200

    Article  CAS  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308

    Article  PubMed  CAS  Google Scholar 

  • Fujioka S, Noguchi T, Yokota T, Takatsuto S, Yoshida S (1998) Brassinosteroids in Arabidopsis thaliana. Phytochemistry 48:595–599

    Article  PubMed  CAS  Google Scholar 

  • Gampala SS, Kim TW, He JX, Tang W, Deng Z (2007) An essential role of 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13:177–189

    Article  PubMed  CAS  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457

    Article  PubMed  CAS  Google Scholar 

  • Haubrick LL, Torsethaugen G, Assmann SM (2006) Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol Plant 128:134–143

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A (2003a) 28-Homobrassinolide induced changes favoured germinability of wheat seeds. Bulg J Plant Physiol 29(1–2):55–62

    Google Scholar 

  • Hayat S, Ahmad A (2003b) Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in the field of India. Ann Appl Biol 143:121–124

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007a) Effect of 28-homobrassinolide on salinity induced changes in Brassica juncea. Turk J Biol 31:141–146

    CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007b) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638

    Article  PubMed  CAS  Google Scholar 

  • Houimli SIM, Denden M, Mouhandes BD (2010) Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl stress. Eur Asia J Bio Sci 4:96–104

    Article  CAS  Google Scholar 

  • Hu Y, Bao F, Li J (2000) Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J 24(5):693–701

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Chu CH, Chen SL, Juan HF, Chen YM (2006) A proteomics study of the mung bean epicotyls regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Lett 11:264–278

    Article  PubMed  CAS  Google Scholar 

  • Ikekawa N, Takatsuto S, Kitsuwa T, Saito H, Morishita T, Abe H (1984) Analysis of natural brassinosteroids by gas chromatography and gas chromatography-mass spectrometry. J Chromatogr 290:289–302

    Article  CAS  Google Scholar 

  • Jager CE, Gregory MS, John JR, James BR (2008) Do brassinosteroids mediate the water stress response? Physiol Plant 133:417–425

    Article  PubMed  CAS  Google Scholar 

  • Janeckzo A, Koscielniak J, Pilipowiez M, Szarek-Lukaszewska G, Skoczowski A (2005) Protection of winter rape phosystem II by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298

    Article  Google Scholar 

  • Janeckzo A, Gullner G, Skoczowski A, Dubert F, Barna B (2007) Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51:335–358

    Google Scholar 

  • Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  PubMed  CAS  Google Scholar 

  • Kandenlinskaya OL, Topunov AF, Grishehenko ER (2007) Biochemical aspects of growth-stimulating effects of steroid phytohormones on lupine plants. Appl Biochem Microbiol 43:324–331

    Article  CAS  Google Scholar 

  • Kauschmann A, Adam G, Lichtblau D, Mussig C, Schmidt J, Voigt B, Willmitzer L, Altmann T (1997) Molecular/genetic analysis of brassinosteroid synthesis and action. Proc Plant Growth Regul Soc Am 24:95–96

    Google Scholar 

  • Kesy J, Trzaskalska A, Galoch E, Kopeewiez J (2003) Inhibitory effect of brassinostreoids on the flowering of the short-day plant Pharbitis nil. Biol Plant 47(4):597–600

    Article  CAS  Google Scholar 

  • Khan MA, Gul B, Weber DJ (2000) Germination responses of Salicornia rubra to temperature and salinity. J Arid Environ 45:207–214

    Article  Google Scholar 

  • Khripach VA, Zhabinski VN, Groot AE (1999) Physiological mode of action of BS. In: Khripach VA, Zhabinskii VN, Groot AE (eds) Brassinosteroids: a new class of plant hormones. Academic, San Diego/London/Boston/New York/Sydney/Tokyo/Toronto, pp 219–299

    Google Scholar 

  • Khripach V, Ahabinskii V, de Groot A (2000) Twenty years of brassinsoteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Akihisa T, Tamura T, Matsumoto T, Yokota T, Takahashi N (1988) 24-Methylene-25-methylcholesterol in Phaseolus vulgaris seed: structural relation to brassinosteroids. Phytochemistry 27:629–631

    Article  CAS  Google Scholar 

  • Kim TW, Guan S, Sun Y, Deng Z, Tang W (2009) Brassinosteroid signal transduction from cell surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260

    Article  PubMed  CAS  Google Scholar 

  • Kitanaga Y, Jian C, Hasegawa M, Yazaki J, Kishimoto N, Kikuchi S, Nakamura H, Ichikawa H, Asami T, Yoshida S, Yamaguchi I, Suzuki Y (2006) Sequential regulation of gibberellins, brassinosteroid and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. Biosci Biotechnol Biochem 70(10):2410–2419

    Article  PubMed  CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Sirhindi G, Bhardwaj R, Kumar S, Jain G (2010) Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation top 24-epibrassinolide under chilling stress. Indian J Biochem Biophys 47:378–382

    PubMed  CAS  Google Scholar 

  • Kumar S, Sirhindi G, Bhardwaj R, Kumar M (2011) Evaluation of brassinolide effect on growth, proteins and antioxidative enzyme activities in Brassica juncea L. J Indian Bot Soc 90(1&2):154–158

    Google Scholar 

  • Kumar S, Sirhindi G, Bhardwaj R, Kimar M, Arora P (2012) Role of 24-epibrassinolide in amelioration of high temperature stress through antioxidant defense system in Brassica juncea L. Plant Stress, 6(1):55–58

    Google Scholar 

  • Kurepin LV, Qaderi MM, Back TG, Reid DM, Pharis RP (2008) A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regul 55:165–167

    Article  CAS  Google Scholar 

  • Leubner-Metzger G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathway. Planta 213:758–763

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Nagpal P, Viart V, McMorris TC, Chory J (1996) A role of brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  PubMed  CAS  Google Scholar 

  • Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  • Li KR, Wang HH, Han G, Wang QJ, Fan J (2008) Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New For 35:255–266

    Article  Google Scholar 

  • Liu Y, Zhao Z, Si J, Di C, Han J, An L (2009) Brassinosteroids alleviate chilling oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul 59(3):207–214

    Article  CAS  Google Scholar 

  • Mandava NB (1988) Plant growth promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • Mazorra LM, Núñez M, Hechavarria M, Coll F, Sánchez-Blanco MJ (2002) Influence of brassinosteroid on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45(4):593–596

    Article  CAS  Google Scholar 

  • Müssig C, Shin GH, Altman T (2003) Brassinosteroids promote root growth in Arabidopsis. Plant Physiol 133(3):1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33(5):887–898

    Article  PubMed  CAS  Google Scholar 

  • Nüñez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47(1):67–70

    Article  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogues S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Ozdemir F, Bor M, Demiral T, Turkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L) under salinity stress. Plant Growth Regul 42(3):203–211

    Article  Google Scholar 

  • Papadopoulou E, Grumet R (2005) Brassinosteroid – induced femaleness in cucumber and relationship to ethylene production. Hortic Sci 49:1763–1767

    Google Scholar 

  • Pustovoitova TN, Zhdanova NE, Zholkevich VN (2001) Epibrassinolide increases plant water resistance. Dokl Biochem Biophys 376:36–38

    Article  PubMed  CAS  Google Scholar 

  • Rao SSR, Vardhini BVV, Sujatha E, Anuradha S (2002) Brassinosteroids – a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:57–166

    Article  Google Scholar 

  • Rönsch H, Adam G, Matschke J, Schachler G (1993) Influence of (22S, 23S)-homobrassinolide on rooting capacity and survival of adult Norway spruce cuttings. Tree Physiol 12:71–80

    Article  PubMed  Google Scholar 

  • Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19:2749–2762

    Article  PubMed  CAS  Google Scholar 

  • Saglam-Cag S (2007) The effects of epibrassinolide on senescence in wheat leaves. Biotech Biotechnol Equip 21:63–65

    CAS  Google Scholar 

  • Sairam RK (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Saka H, Fujii S, Imakawa AM, Kato N, Watanabe S, Nishizawa T, Yonekawa S (2003) Effect of brassinolide applied at the meiosis and flowering stages on the levels of endogenous plant hormones during grain-filling in rice plant (Oryza sativa L). Plant Prod Sci 6(1):36–42

    Article  CAS  Google Scholar 

  • Sakurai A, Fujioka S (1997a) Biosynthesis of steroidal plant hormones, brassinosteroids. Baiosaiensu to Indasutori 55:38–40

    CAS  Google Scholar 

  • Sakurai A, Fujioka S (1997b) Studies on biosynthesis of brassinosteroids. Biosci Biotech Biochem 61:757–762

    Article  CAS  Google Scholar 

  • Sasse JM (1999) Physiological actions of brassinosteroids. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer, Tokyo, pp 137–161

    Google Scholar 

  • Saygideger S, Deniz F (2008) Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress. Plant Growth Regul 56:219–223

    Article  CAS  Google Scholar 

  • Schmidt J, Spengler B, Yokota T, Adam G (1993a) The co-occurrence of 24-epi-castasterone and castasterone in seeds of Ornithopus sativus. Photochemistry 32:1614–1615

    Article  CAS  Google Scholar 

  • Schmidt J, Yokota T, Spengler B, Adam G (1993b) 28-Homoteasterone a naturally occurring brassinosteroid from seeds of Raphanus sativus. Phytochemistry 34:391–392

    Article  CAS  Google Scholar 

  • Schneider B, Kolbe A, Winter J, Porzel A, Schmidt J, Strack D, Adam G (1997) Pathways and enzymology of brassinosteroid metabolism. Proc Plant Growth Regul Soc Am 24:91–93

    Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full length cDNA microaaray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HUR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L)? Plant Growth Regul 55:51–64

    Article  CAS  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Mattson RA, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L). Aust J Crop Sci 5(5):500–510

    CAS  Google Scholar 

  • Sharma P, Bhardwaj R (2007) Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L under copper metal stress. Acta Physiol Plant 29:259–263

    Article  CAS  Google Scholar 

  • Sharma P, Bhardwaj R, Arora N, Arora HK, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52:767–770

    Article  CAS  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2010) Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L under cadmium stress. Indian J Biochem Biophys 47(3):172–177

    PubMed  CAS  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L under chromium toxicity. Ecotoxicology 20:862–874

    Article  PubMed  CAS  Google Scholar 

  • She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, Shi S, Wang J, Yang M, Wang ZY et al (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768

    Article  PubMed  CAS  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    Article  CAS  Google Scholar 

  • Sirhindi G, Kumar S, Bhardwaj R, Kumar M (2009) Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L. Physiol Mol Biol Plant 15(4):335–341

    Article  CAS  Google Scholar 

  • Sirhindi G, Kumar M, Bhardwaj R, Kumar S, Pradhan SK (2011) Effect of 24-epibrassinolide on activity of antioxidant enzymes in Brassica juncea L. under H2O2 stress. Indian J Plant Physiol 16(1):68–71

    Google Scholar 

  • Song WJ, Zhou WJ, Jin ZL, Cao DD, Joel DM, Takeuchi Y, Yoneyama K (2005) Germination response of Orobanche seeds subjected to conditioning temperature, water potential and growth regulator treatments. Weed Res 45:467–476

    Article  Google Scholar 

  • Song WJ, Zhou WJ, Jin ZL, Zhang D, Yoneyama K, Takeuchi Y, Joel DM (2006) Growth regulators restore germination of Orobanche seeds that are conditioned under water stress and suboptimal temperature. Aust J Agric Res 57:1195–1201

    Article  CAS  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Fan X-Y, Cao D-M, Tang W, He K, Zhu J-Y, He J-X, Bai M-Y, Zhu S, Oh E et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  PubMed  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  PubMed  CAS  Google Scholar 

  • Tabur S, Demir K (2009) Cytogenetic response of 24-epibrassinolide on the root meristem cells of barley seeds under salinity. Plant Growth Regul 58:119–123

    Article  CAS  Google Scholar 

  • Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellins as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22(3):259–271

    Article  CAS  Google Scholar 

  • Tang W, Deng Z, Oses-Prieto JA, Suzuki N, Zhu SW (2008a) Proteomics studies of brassinosteroid signal transduction using perfactionation and two-dimensional DIGE. Mol Cell Proteomics 7:728–738

    PubMed  CAS  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z (2008b) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  PubMed  CAS  Google Scholar 

  • Upreti KK, Murti GSR (2004) Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol Plant 48:407–411

    Article  CAS  Google Scholar 

  • Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41(1):25–31

    Article  CAS  Google Scholar 

  • Vert G, Chory J (2006) Downstream nuclear events in brassinosteroid signalling. Nature 441:96–100

    Article  PubMed  CAS  Google Scholar 

  • Vleesschauwer DD, Buyten EV, Satoh K, Balidion J, Mauleon R, Choi IR, Vrea-Cruz C, Kikuchi S, Höfte M (2012) Brassinosteroids antagonize gibberellin – and salicylate – mediated root immunity in rice. Plant Physiol 158:1833–1846

    Article  PubMed  CAS  Google Scholar 

  • Wada K, Marumo S (1981) Synthesis and plant growth-promoting activity of brassinolide analogues. Agric Biol Chem 45:2579–2585

    Article  CAS  Google Scholar 

  • Wang SG, Deng RF (1992) Effects of brassinosteroid (BR) on root metabolism in rice. J Southwest Agric Univ 14:177–181

    Google Scholar 

  • Wang ZY, Nakano T, Gendron J (2002) Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2:505–513

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8:855–865

    Article  PubMed  CAS  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  PubMed  CAS  Google Scholar 

  • Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci U S A 13:6100–6105

    Article  Google Scholar 

  • Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2:137–143

    Article  Google Scholar 

  • Yokota T, Kim SK, Kosaka Y, Ogino Y, Takahashi N (1986) Conjugation of brassinostreoids. In: Schreiber K, Schütte HR, Sembdner G (eds) Conjugated plant hormones. Structure, metabolism and function. Proceedings of the international symposium. VEB Deutscher Verlag der Wissenschaften, Berlin, pp 288–296

    Google Scholar 

  • Yokota T, Ogino Y, Suzuki H, Takahashi N, Saimoto H, Fujiko S, Sakurai A et al (1991) Metabolism and biosynthesis of brassinosteroids. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids chemistry bioactivity and applications, vol 474, ACS symposium series. American Chemical Society, Washington, pp 86–96

    Chapter  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55(399):1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105:7618–7623

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P et al (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  PubMed  CAS  Google Scholar 

  • Yun HS, Bae YH, Lee YJ, Chang SC, Kim S-K, Li J, Nam KH (2009) Analysis of phosphorylation of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol Cells 27:183–190

    Article  PubMed  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2011) Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60:68–76

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves Lucerne (Medicago sativa L) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    Article  CAS  Google Scholar 

  • Zhang MC, Zhai ZX, Tian XL, Duan LS, Li ZH (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L). Plant Growth Regul 56:257–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to University Grants Commission, New Delhi, India, which supported this research on the role of brassinosteroids under stress and growth and development by grant No. 33-194 (2007)/SR under major research project. Immense gratitude also to Prof. Renu Bhardwaj from Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, who introduced me to the fascinating world of brassinosteroids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geetika Sirhindi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Sirhindi, G. (2013). Brassinosteroids: Biosynthesis and Role in Growth, Development, and Thermotolerance Responses. In: Rout, G., Das, A. (eds) Molecular Stress Physiology of Plants. Springer, India. https://doi.org/10.1007/978-81-322-0807-5_13

Download citation

Publish with us

Policies and ethics