Skip to main content

Advertisement

Log in

BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNRÖSCHEN and DORNRÖSCHEN-LIKE

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The BIM1 protein which has been implicated in brassinosteroid (BR) signal transduction was identified from a two hybrid screen using the N-terminus, including the AP2 domain, of the transcription factors DORNROESCHEN (DRN) and DORNROESCHEN-LIKE (DRNL) which control embryonic patterning. The protein–protein interaction between BIM1 and DRN or DRNL was confirmed by co-immunoprecipitation and for DRN also in vivo by bimolecular fluorescence complementation. BIM1 can also physically interact with PHAVOLUTA (PHV), another interaction partner of DRN and DRNL. Loss of BIM1 function results in embryo patterning defects at low penetrance, including cell division defects in the hypophyseal region and apical domain defects such as cotyledon fusion and polycotyledony, in addition to polyembryony. BIM1 expression overlaps with that of DRN and DRNL from early globular embryo stages onwards. Higher order mutants between bim1, drn, drnl and phv suggest that although BIM1 may act partially redundantly with DRN in early embryo development, all genes function within the same pathway determining cotyledon development, supporting the hypothesis that they participate in a multimeric transcription factor complex. A role of BIM1 in embryonic development not only implicates a function for brassinosteroids in this process, but the interaction of BIM1 with DRN, involved with auxin signalling, represents a possible point of hormonal crosstalk in embryonic patterning and the first example of an interaction of components of the auxin and BR signalling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857. doi:10.1105/tpc.9.6.841

    Article  PubMed  CAS  Google Scholar 

  • Alonso J et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. doi:10.1126/science.1086391

    Article  PubMed  Google Scholar 

  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA et al (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15:2497–2501. doi:10.1105/tpc.151140

    Article  PubMed  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua N-H (2001) Overexpression of ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami YangZ (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631. doi:10.1104/pp.103.036897

    Article  PubMed  CAS  Google Scholar 

  • Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314:1410–1411. doi:10.1126/science.1134040

    Article  PubMed  CAS  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G et al (2003) Local, efflux-dpendent auxin gradients as a common module for plant organ formation. Cell 115:591–602. doi:10.1016/S0092-8674(03)00924-3

    Article  PubMed  Google Scholar 

  • Bennet SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J 8:505–520. doi:10.1046/j.1365-313X.1995.8040505.x

    Article  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N, Coen E (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:85–95. doi:10.1016/0092-8674(93)90052-R

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW, Cole M, Flier A, Grewe B, Werr W (2007) The AP2 transcription factors DORNROESCHEN and DORNROESCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134:1653–1662. doi:10.1242/dev.001016

    Article  PubMed  CAS  Google Scholar 

  • Chandler JW, Cole M, Werr W (2008) The role of DORNROESCHEN (DRN) and DRN-LIKE (DRNL) in Arabidopsis embryonic patterning. Plant Signal Behav 3(1):49–51

    Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439. doi:10.1105/tpc.107.053009

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054. doi:10.1101/gad.1077503

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassiosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451. doi:10.1146/annurev.arplant.49.1.427

    Article  PubMed  CAS  Google Scholar 

  • Cole M, Nolte C, Werr W (2006) Nuclear import of the transcription factor SHOOTMERISTEMLESS depends on heterodimerisation with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Res 34:1281–1292. doi:10.1093/nar/gkl016

    Article  PubMed  CAS  Google Scholar 

  • Duek P, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54. doi:10.1016/j.tplants.2004.12.005

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–152. doi:10.1038/nature02085

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O et al (2004) a PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865. doi:10.1126/science.1100618

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin- and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573. doi:10.1104/pp.103.034736

    Article  PubMed  CAS  Google Scholar 

  • Hamann T, Mayer U, Jürgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

    PubMed  CAS  Google Scholar 

  • Hamann T, Benkova E, Baurle I, Kientz M, Jürgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615. doi:10.1101/gad.229402

    Article  PubMed  CAS  Google Scholar 

  • Hardtke C (2007) Transcriptional auxin-brassinosteroid crosstalk: who’s talking? Bioessays 29:1115–1123. doi:10.1002/bies.20653

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411. doi:10.1093/emboj/17.5.1405

    Article  PubMed  CAS  Google Scholar 

  • Hardtke C, Dorcey E, Osmont KS, Sibout R (2007) Phytohormone collaboration: zooming in on auxin-brassinosteroid interactions. Trends Cell Biol 17:485–492. doi:10.1016/j.tcb.2007.08.003

    Article  PubMed  CAS  Google Scholar 

  • Heisler MG, Atkinson A, Bylstra YH, Walsh R, Smyth D (2001) SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 128:1089–1098

    PubMed  CAS  Google Scholar 

  • Hibara K, Karim MR, Takada S, Taoka K, Furutani M, Aida M et al (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957. doi:10.1105/tpc.106.045716

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Banno H, Niu Q-W, Howell S, Chua N-H (2006) The ENHANCER OF SHOOT REGENERATION 2 genes of Arabidopsis regulates CUP SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant Cell Physiol 47:1443–1456. doi:10.1093/pcp/pcl023

    Article  PubMed  CAS  Google Scholar 

  • Jenik PD, Jurkuta RE, Barton K (2005) Interactions between the cell cycle and embryonic patterning in Arabidopsis uncovered by a mutation in DNA polymerase epsilon. Plant Cell 17:3362–3377. doi:10.1105/tpc.105.036889

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101:13374–13379. doi:10.1073/pnas.0405450101

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim HY (2006) Molecular characterisation of a bHLH transcription factor involved in Arabidopsis abscisic acid-mediated response. Biochim Biophys Acta 1759:191–194

    PubMed  CAS  Google Scholar 

  • Liu C, Xu Z, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  Google Scholar 

  • Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JHW, Karaba A et al (2006) BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol Biol 62:825–843. doi:10.1007/s11103-006-9059-1

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Torres Ruiz RAT, Berleth T, Misear S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407. doi:10.1038/353402a0

    Article  Google Scholar 

  • Nag A, Yang Y, Jack T (2007) DORNROSCHEN-LIKE, an AP2 gene is necessary for stamen emergence in Arabidopsis. Plant Mol Biol 65:219–232. doi:10.1007/s11103-007-9210-7

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T et al (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853. doi:10.1104/pp.103.030031

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Goda H, Shimada Y, Yoshida S (2004) Brassinosteroid selectively regulates PIN gene expression in Arabidopsis. Biosci Biotechnol Biochem 68:952–954. doi:10.1271/bbb.68.952

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Nakajima N, Goda H, Shimada Y, Hayashi K-I, Nozaki H et al (2006) Arabidopsis Aux/IAA genes are involved in brassinosteroid-mediated growth responses in a manner dependent on organ type. Plant J 45:193–205. doi:10.1111/j.1365-313X.2005.02582.x

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:E258. doi:10.1371/journal.pbio.0020258

    Article  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76. doi:10.1105/tpc.104.026161

    Article  PubMed  CAS  Google Scholar 

  • Rashotte A, Mason MG, Hutchison C, Ferreira FJ, Schaller GE, Kieber J (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081–11085. doi:10.1073/pnas.0602038103

    Article  PubMed  CAS  Google Scholar 

  • Saibo NJM, Vriezen WH, De Grauwe L, Azmi A, Prinsen E, Van der Straeten D (2007) A comparative analysis of the Arabidopsis mutant amp1-1 and a novel weak amp1 allele reveals new functions of the AMP1 protein. Planta 225:831–842. doi:10.1007/s00425-006-0395-9

    Article  PubMed  CAS  Google Scholar 

  • Sasse J (1999) Physiological actions of brassinosteroids. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer-Verlag, Tokyo, pp 137–161

    Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail P (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770. doi:10.1105/tpc.013839

    Article  PubMed  CAS  Google Scholar 

  • Tsukada K, Tsuji T, Hirose S, Yamazaki K (2004) Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol 45:225–231. doi:10.1093/pcp/pch017

    Article  Google Scholar 

  • Überlacker B, Werr W (1996) Optimized vectors for expression and transfer of large open reading frames in transgenic plants. Mol Breed 2:293–295. doi:10.1007/BF00564208

    Article  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression or transcription by auxin-responsive factors. Proc Natl Acad Sci USA 96:5844–5849. doi:10.1073/pnas.96.10.5844

    Article  PubMed  CAS  Google Scholar 

  • Vernon DM, Meinke DW (1994) Embryonic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol 165:566–573. doi:10.1006/dbio.1994.1276

    Article  PubMed  CAS  Google Scholar 

  • Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T et al (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531. doi:10.1242/dev.02027

    Article  PubMed  CAS  Google Scholar 

  • Vroemen C, Mordhorst AP, Albrecht C, Kwaaitaal MA, de Vries SC (2003) The CUP-SHAPED COTYLEDON gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15:1563–1577. doi:10.1105/tpc.012203

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Chaban C, Schütze K, Batistic O, Wechermann K, Näke C et al (2004) Visulaisation of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438. doi:10.1111/j.1365-313X.2004.02219.x

    Article  PubMed  CAS  Google Scholar 

  • Ward JM, Smith AM, Shah PK, Galanti SE, Yi H, Demianski AJ et al (2006) A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell 18:29–39. doi:10.1105/tpc.105.036707

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Wang ZY, Mora-Garcia S, Li J, Yoshida S, Asami T et al (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191. doi:10.1016/S0092-8674(02)00721-3

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259. doi:10.1016/j.cell.2004.11.044

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Somerville CR (1997) Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proc Natl Acad Sci USA 94:7349–7355. doi:10.1073/pnas.94.14.7349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Sommer for constructing and providing the library for two hybrid screening and Y. Yin for bim1 bim2 bim3 mutant seed. This project was funded by the Deutsche Forschungsgemeinschaft through SFB572.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandler, J.W., Cole, M., Flier, A. et al. BIM1, a bHLH protein involved in brassinosteroid signalling, controls Arabidopsis embryonic patterning via interaction with DORNRÖSCHEN and DORNRÖSCHEN-LIKE. Plant Mol Biol 69, 57–68 (2009). https://doi.org/10.1007/s11103-008-9405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9405-6

Keywords

Navigation