Skip to main content

Detektoren in der Dünnschichtchromatographie

  • Chapter
  • First Online:
Quantitative Dünnschichtchromatographie
  • 7974 Accesses

Zusammenfassung

Die Stärke der Dünnschichtchromatographie liegt in ihrer einfachen Handhabung. Nicht zuletzt ist es das Auge, das überall verfügbar als qualitativer Detektor dienen kann. Quantitativ lässt sich eine DC‐Platte so nicht auswerten. Seit Anfang der 1950er‐Jahre wurde in der Papierchromatographie quantifiziert, indem das Papier mit Reagenzien transparent gemacht und die Schwächung des durchscheinenden Lichtes gemessen wurde. Die Lichtschwächung wurde dabei mit Photomaterialien auf Basis der Silberphotographie bestimmt. Welche Detektionsmöglichkeiten es auf der Platte gibt, ist Thema des 9. Kapitel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Touchstone JC, Sherma J (1979) Densitometry in thin-layer chromatography, practice and applications. Wiley, New York

    Google Scholar 

  2. Klaus R (1964) Einige kritische Betrachtungen zur photometrischen Auswertung von Dünnschichtplatten. J Chromatogr 16:311–326

    Article  CAS  Google Scholar 

  3. Jork H (1967) Die direkte quantitative dünnschicht-chromatographische Analyse. Fresenius Z Anal Chem 234:310–326

    Google Scholar 

  4. Jork H (1966) Direkte spektralphotometrische Auswertung von Dünnschicht-Chromatogrammen im UV-Bereich. Fresenius Z Anal Chem 221:17–33

    Article  CAS  Google Scholar 

  5. Schuster A (1905) Radiation through a foggy atmosphere Astrophys J 21:1–22

    Article  Google Scholar 

  6. Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Physik 11a:593–601

    Google Scholar 

  7. Spangenberg B (2006) Does the Kubelka-Munk theory describe TLC evaluations correctly? J Planar Chromatogr 19:332–341

    Article  CAS  Google Scholar 

  8. Kortüm G (1969) Reflexionsspektroskopie. Springer, Heidelberg

    Book  Google Scholar 

  9. Kubelka P (1948) New contributions to the optics of intensely light-scattering materials, Teil I. J Opt Soc Am 38:448–457, 1067

    Article  CAS  Google Scholar 

  10. Kortüm G, Vogel J (1958) Die Theorie der diffusen Reflexion von Licht an pulverförmigen Stoffen. Z Physik Chem 18:110–122

    Article  Google Scholar 

  11. Ebel S, Kussmaul H (1974) Auswertung von Dünnschicht-Chromatogrammen über die Kubelka-Munk-Funktion. Chromatographia 7:197–199

    Article  CAS  Google Scholar 

  12. Eckert Th, Knie U (1981) Zum Einfluss reflektierender Trägermaterialien bei der quantitativen In-situ-Hochleistungs-Dünnschichtchromatographie. Untersuchungen am Beispiel einer Kieselgel 60-Beschichtung. J Chromatogr 213:453–462

    Article  CAS  Google Scholar 

  13. Klaus R (1969) Quantitative In-situ-Auswertung bandförmig aufgetragener Substanzen in der Dünnschichtchromatographie. J Chromatogr 40:235–243

    Article  CAS  Google Scholar 

  14. Goldmann J, Goodall RR (1968) Quantitative analysis on thin-layer chromatograms: A theory for light absorption methods with an experimental verification. J Chromatogr 32:24–42

    Article  Google Scholar 

  15. Huf FA (1987). In: Treiber LR (Hrsg) Quantitative thin-layer chromatography and its industrial applications. Marcel Dekker, New York, S 17–66

    Google Scholar 

  16. Tausch W (1972) Quantitative Auswertung von Dünnschicht-Chromatogrammen durch direkte Photometrie. Messtechnik 2:38–44

    Google Scholar 

  17. Poole CF, Poole SK (1989) Progress in densitometry for quantification in planar chromatography. J Chromatogr 492:539–584

    Article  CAS  Google Scholar 

  18. Bayerbach S, Gauglitz G (1989) Spectral detection in thin-layer chromatography by linear photodiode array spectrometry. Fresenius Z Anal Chem 335:370–374

    Article  CAS  Google Scholar 

  19. Wuthe W (1986) Rechnergesteuerte Auswertung in der Dünnschichtchromatographie mit Photodiodenarray-Scanner. Thesis, Würzburg

    Google Scholar 

  20. Hamman BL, Martin MM (1966) A versatile spectrophotometric scanner for large TLC Plates. Anal Biochem 15:305–312

    Article  CAS  Google Scholar 

  21. Spangenberg B, Klein K-F (2000) Fibre optical scanning with high resolution in thin-layer chromatography. J Chromatogr A 898:265–269

    Article  CAS  Google Scholar 

  22. Stroka J, Arranz I, MacCourt J, Spangenberg B (2003) A simple and reliable HPTLC method for the quantification of the intense sweetner Sucralose®. J Liq Chromatogr & Rel Technol 26:2729–2739

    Article  Google Scholar 

  23. Bleichert M, Eckhardt H-S, Klein K-F, Spangenberg B (2008) A simple and reliable method for quantification of glucosamine in nutritional supplements. J Planar Chromatogr 21:55–59

    Article  CAS  Google Scholar 

  24. Spangenberg B, Klein K-F (2001) New evaluation algorithm in diode-array thin-layer chromatography. J Planar Chromatogr 14:260–265

    Article  CAS  Google Scholar 

  25. Milz B, Klein K-F, Spangenberg B (2012) Quantitative two-dimensional thin-layer chromatography using a diode-array detector. J Planar Chromatogr 25:493–497

    Article  CAS  Google Scholar 

  26. Hawrył MA, Hawrył A, Soczewiński E (2002) Application of normal- and reversed-phase 2D TLC on a Cyanopropyl-bonded polar stationary phase for separation of phenolic compounds from the flowers of Sambucus nigra L. J Planar Chromatogr 15:4–10

    Article  Google Scholar 

  27. Demme U, Ahrens B, Klein A, Erner R (2000) The combination of two-dimensional thin-layer chromatography and remission spectrometry – A chromatographic technique with high identification power for systematic toxicological analysis. Problems of Forensic Sciences, Bd. XLII, S 64–74

    Google Scholar 

  28. Prosek M, Drusany I, Golc-Wondra A (1991) Quantitative two-dimensional thin-layer chromatography. J Chromatogr 553:471–481

    Article  Google Scholar 

  29. Yamamoto H, Nakamura K, Nakatani D, Terada H (1991) Determination of phospholipids on two-dimensional thin-layer chromatographic plates by imaging densitometry. J Chromatogr 543:201–210

    Article  CAS  Google Scholar 

  30. Vovk I, Prošek M, Kaiser RE (2001) Image analysis. In: Nyiredy Sz (Hrsg) Planar chromatography. A retrospective view for the third millennium. Springer, Budapest, S 464–488

    Google Scholar 

  31. Ford-Holevinski TS, Agranoff BW, Radin NS (1983) An inexpensive, microcomputer-based, video densitometer for quantitating thin-layer chromatographic spota. Anal Biochem 132:132–136

    Article  CAS  Google Scholar 

  32. Prošek M, Medja A, Katic M, Kaiser RE (1984) Quantitative evaluation of TLC, Teil 7: Scanning with micro D-cam. CAL 4:249–251

    Google Scholar 

  33. Mustoe S, McCrossen S (2001) TLC image capture and analysis by use of a prototype device for visualizing fluorescence. J Planar Chromatogr 14:252–255

    Article  CAS  Google Scholar 

  34. Spangenberg B, Stehle S, Ströbele Ch (1995) Quantitative DC mit einem Handscanner: Co2+-Bestimmung. GIT 39:461–464

    CAS  Google Scholar 

  35. Broszat M, Ernst H, Spangenberg B (2010) A simple method for quantifying triazine herbicides using thin-layer chromatography and a CCD camera. J Liq Chrom & Rel Technol 33:948–956

    Article  CAS  Google Scholar 

  36. Stroka J, Peschel T, Tittelbach G, Weidner G, van Otterdijk R, Anklam A (2001) Modification of an office scanner for the determination of aflatoxins after TLC separation. J Planar Chromatogr 14:109–112

    CAS  Google Scholar 

  37. Hannig K, Wirth H (1968) Ein neuartiges elektronisches Densitometer zur raschen Auswertung von Pherogrammen und trägerfreien Trennung. Fres Z Anal Chem 243:522–526

    Article  CAS  Google Scholar 

  38. Capel M, Redman B, Bourque DP (1979) Quantitative comparative analysis of complex two-dimensional electropherograms. Anal Biochem 97:210–228

    Article  CAS  Google Scholar 

  39. Bossinger J, Miller MJ, Vo K-P, Geiduschek EP, Xuong N-H (1979) Quantitative analysis of two-dimensional electrophoretograms. J Biol Chem 254:7986–7998

    CAS  Google Scholar 

  40. Kramer J, Gusev NB, Friedrich P (1980) Quantitative evaluation of gel electrophoretic patterns by videodensitometry. Anal Biochem 108:295–298

    Article  CAS  Google Scholar 

  41. Thomas AH, Thomas JM (1980) Use of the image analyser Optomax for the quantitative evaluation of antibiotics separated by gel electrophoresis and by thin-layer chromatography. J Chromatogr 195:297–302

    Article  CAS  Google Scholar 

  42. Ford-Holevinski TS, Agranoff BW, Radin NS (1983) An inexpensive, microcomputer-based, video densitometer for quantitating thin-layer chromatographic spots. Anal Biochem 132:132–136

    Article  CAS  Google Scholar 

  43. Rees DD, Fogarty KE, Levy LK, Fay FS (1985) Computerized analysis of TV images for ultrasensitive monitoring of the reaction of fluorochrome with protein. Anal Biochem 144:461–468

    Article  CAS  Google Scholar 

  44. Ford-Holevinski TS, Radin NS (1985) Quantitation of thin-layer chromatograms with an Apple II computer-based videodensitometer. Anal Biochem 150:359–363

    Article  CAS  Google Scholar 

  45. Broszat M, Ernst H, Spangenberg B (2010) A simple method for quantifying triazine herbicides using thin-layer chromatography and a CCD camera. J Liq Chrom & Rel Technol 33:948–956

    Article  CAS  Google Scholar 

  46. Aldridge PK, Callis JB, Burns DH (1990) Laptop chemistry: A compact portable thin layer scanner. J Liquid Chromatogr 13:2829–2839

    Article  CAS  Google Scholar 

  47. Milz B, Spangenberg B (2013) 2D-Thin-layer chroamtography (2D-TLC) flash test of 17α-Ethinylestradiol and related steroids detected by fluorescence densitometry. J Liq Chrom & Rel Technol 36:1–9

    Google Scholar 

  48. Komsta Ł, Ciésla Ł, Bogucka-Kocka A, Józefczyk A, Kryszeń J, Waksmundzka-Hajnos M (2011) The start-to-end chemometric image processing of 2D thin-layer videoscans. J Chromatogr A 1218:2820–2825

    Article  CAS  Google Scholar 

  49. Pollak VA, Doelemeyer A, Winkler W, Schulze-Clewing J (1992) Important design features of a system for the densitometric analysis of two-dimensional flat-bed separations. J Chromatogr 596:241–249

    Article  CAS  Google Scholar 

  50. Milz B, Spangenberg B (2013) A validated quantification of Benzocaine in Lozenges using TLC and a flatbed scanner. Chromatographia 76:1307–1313

    Article  CAS  Google Scholar 

  51. Morlock GE, Oellig C (2009) Rapid planar chromatographic analysis of 25 water-soluble dyes used as food additives. J AOAC 92:745–756

    CAS  Google Scholar 

  52. Cosgrove JA, Bilhorn RB (1989) Spectrometric analysis of planar separations using charged-coupled device detection. J Planar Chromatogr 2:362–367

    CAS  Google Scholar 

  53. Brown SM, Busch KL (1992) A charge-coupled device for optical detection of sample bands in thin-layer-chromatograms. J Planar Chromatogr 5:338–342

    CAS  Google Scholar 

  54. Seigel A, Milz B, Spangenberg B (2013) Quantification of Parabens by diode-array thin-layer chromatography coupled with a Vibrio fischeri bioluminescence assay. J Planar Chromatogr 26:119–124

    Article  CAS  Google Scholar 

  55. Spangenberg B (2011) A new way of using chemiluminescence in thin-layer chromatography. J Planar Chromatogr 24:357–359

    Article  CAS  Google Scholar 

  56. Randerath K (1970) An evaluation of film detection methods for weak ß-emitters, particularly tritium. Anal Biochem 34:188

    Article  CAS  Google Scholar 

  57. Touchstone JC, Dobbins MF (1978) Practice of thin-layer chromatography. Wiley, New York

    Google Scholar 

  58. Gregson NA, Hall SM (1973) A quantitative analysis of the effects of the intraneural injection of lysophosphatidyl choline, J Cell Sci 13:257–277

    CAS  Google Scholar 

  59. Rager IOC, Kovar K-A (2001). In: Nyiredy Sz (Hrsg) Planar chromatography. A retrospective view for the third millennium. Springer, Budapest S 247–260

    Google Scholar 

  60. Glauninger G, Kovar K-A, Hoffmann V (1990) Possibilities and limits of an on-line coupling of thin-layer chromatography and FTIR-spectroscopy. J Anal Chem 338:710–716

    Article  CAS  Google Scholar 

  61. Kovar K-A, Hoffman V (1991) Möglichkeiten und Grenzen der direkten DC-FTIR-Kopplung. GIT 35:1197–1201

    CAS  Google Scholar 

  62. White RL (1985) Analysis of thin-layer chromatographic adsorbates by Fourier transform infrared photoacoustic spectroscopy. Anal Chem 57:1819–1822

    Google Scholar 

  63. Petty C, Cahoon N (1993) The analysis of thin-layer chromatography plates by near-infrared FT-Raman. Spectrochim Acta 49:645–655

    Article  Google Scholar 

  64. Sollinger S, Sawatzki J (1999) TLC-Raman für Routine-Anwendungen. GIT 43:14–18

    CAS  Google Scholar 

  65. Séquaris J-M L, Koglin E (1987) Direct analysis of high-performance thin-layer chromatography spots of nucleic purine derivatives by surface-enhanced Raman scattering spectrometry. Anal Chem 59:525–527

    Article  Google Scholar 

  66. Koglin E (1989) Combining HPTLC and micro-surface-enhanced Raman spectroscopy (Micro-SERS). J Planar Chromatogr 2:194–197

    CAS  Google Scholar 

  67. Busch KL (2001). In: Nyiredy Sz (Hrsg) Planar chromatography. A retrospective view for the third millennium. Springer, Budapest S 261–277

    Google Scholar 

  68. van Berkel GJ, Pasilis SP, Ovchinnikova O (2008) Established and emerging atmospheric pressure surface sampling, ionization techniques for mass spectrometry. J Mass Spectrom 43:1161–1180

    Article  Google Scholar 

  69. Cocan S (2009) Hyphenated techniques in thin-layer chromatography. Adv Chromatogr 47:353–453

    Google Scholar 

  70. Luftmann H (2004) A simple device for the extraction of TLC spots: direct coupling with an electrospray mass spectrometer. Anal Bioanal Chem 378:964–968

    Article  CAS  Google Scholar 

  71. Alpmann A, Morlock G (2006) Improved online coupling of planar chromatography with electrospray mass spectrometry: extraction of zones from glass plates. Anal Bioanal Chem 386:1543–1551

    Article  CAS  Google Scholar 

  72. Luftmann H, Aranda M, Morlock GE (2007) Automated interface for hyphenation of planar chromatography with mass spectrometry. Rapid Commun Mass Spectrom 21:3772–3776

    Article  CAS  Google Scholar 

  73. Dreisewerd K, Kolbl S, Peter-Katalinic J, Berkenlcamp S, Pohlentz G (2006) Analysis of native milk oligosaccharides directly from thin-layer chromatography plates by matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry with glycerol matrix. J Am Soc Mass Spectrom 17:139–150

    Article  CAS  Google Scholar 

  74. Fuchs B, Schiller J, Süß R, Zscharnack M, Bader A, Müller P, Schürenberg M, Becker M, Suckau D (2008) Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Anal Bioanal Chem 392:849–860

    Article  CAS  Google Scholar 

  75. Fuchs B, Schiller J, Süß R, Nimptsch A, Schürenberg M, Suckau D (2009) Capabilities and disadvantages of combined matrix-assisted laser-desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and high-performance thin-layer chromatography (HPTLC) analysis of egg yolk lipids. J Planar Chromatogr 22:35–42

    Article  CAS  Google Scholar 

  76. Cody RB, Laramee JA, Dupont DH (2005) Versatile new ion source for analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302

    Article  CAS  Google Scholar 

  77. Morlock G, Ueda Y (2007) New coupling of planar chromatography with direct analysis in real time mass spectrometry. J Chromatogr A 1143:243–251

    Article  CAS  Google Scholar 

  78. Haddad R, Milagre HMS, Catharino RR, Eberlin MN (2008) Easy ambient sonic-spray ionisation mass spectrometry combined with thin-layer chromatography. Anal Chem 80:2744–2750

    Article  CAS  Google Scholar 

  79. Peng S, Edler M, Ahlmann N, Hoffmann T, Franzke J (2005) A new interface to couple thin-layer chromatography with laser desorption/atmospheric pressure chemical ionization mass spectrometry for plate scanning. Rapid Commun Mass Spectrom 19:2789–2793

    Article  CAS  Google Scholar 

  80. Ford MJ, Kertesz V, van Berkel GJ (2005) Thin-layer chromatography/electrospray ionization triple-quadrupole linear ion trap mass spectrometry system: analysis of rhodamine dyes separated on reversed-phase C8 plates. J Mass Spectrom 40:866–875

    Article  CAS  Google Scholar 

  81. Pasilis SP, Kertesz V, van Berkel GJ, Schulz M, Schorcht S (2008) HPTLC/DESI-MS imaging of tryptic protein digests separated in two dimensions. J Mass Spectrom 43:1627–1635

    Article  CAS  Google Scholar 

  82. van Berkel GJ, Kertesz V (2006) Automated sampling and imaging of analytes separated on thin-layer chromatography plates using desorption electrospray ionization mass spectrometry. Anal Chem 78:4938–4944

    Article  Google Scholar 

  83. van Berkel GJ, Ford MJ, Deibel MA (2005) Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization. Anal Chem 77:1207–1215

    Article  Google Scholar 

  84. Sherma J, Larkin JD, Larkin FH (2009) A field guide to instrumentation. J AOAC Int 92:29 A–35 A

    Google Scholar 

  85. Miwa M, Matsumoto M, Tezuka M, Okada S, Ohsuka S, Fujiwake H (1986) Quantitative fluorographic detection of 3H and 14C on two-dimensional Thin-Layer chromatographic sheets by an ultra-high sensitive TV camera system. Anal. Biochem 152:391–395

    Google Scholar 

  86. Hazai I (2004) Use of multiple readings to increase the sensitivity of phosphor image detection in TLC. J Planar Chromatogr 17:449–453

    Article  CAS  Google Scholar 

  87. Zhong S, Li H, Bodi Z, Button J, Vespa L, Herzog M, Fray RG (2008) MTA is an arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20:1278–1288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Spangenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spangenberg, B. (2014). Detektoren in der Dünnschichtchromatographie. In: Quantitative Dünnschichtchromatographie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55102-4_9

Download citation

Publish with us

Policies and ethics