Skip to main content

Cold-Adapted Yeasts in Arctic Habitats

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

The Arctic area is a polar region at the northernmost part of the Earth, north of the Arctic Circle (66° 33′N). It is a region of an ice-covered Arctic ocean, surrounded by treeless permafrost. The climate within the Circle is extremely cold, and much of the area is permanently covered with ice. Unlike in the temperate zones, where filamentous fungi prevail, extremophilic yeasts are particularly well adapted to these conditions and thus thrive in different polar environments. The range of Arctic environments inhabited by yeasts includes glacial ice with brine networks and inclusions, subglacial environments, soil, permafrost, Arctic sea and sea ice. Yeast isolates from cryoconite holes and cryptoendolithic environments are rare. The physiological activity of yeasts has been demonstrated at temperatures below −20 °C. Studies of the abundance, distribution and taxonomy of Arctic yeasts are very much limited in comparison with the studies of the Antarctic yeasts. Interestingly, the dominant yeasts in the Arctic are also of basidiomycetous affinity and belong to the same genera that occur frequently in the Antarctic soils and polar offshore sea waters. These are different species of the genera Aureobasidium, Candida, Debaryomyces, Metschnikowia, Pichia, Protomyces, Bensingtonia, Bulleromyces, Cryptococcus, Cystofilobasidium, Filobasidium, Leucosporidiella, Malassezia, Kondoa, Mastigobasidium, Mrakia, Mrakiella, Rhodosporidium, Rhodotorula, Sporidiobolus, Sporobolomyces, Trichosporon and Udeiomyces. Amongst these, the polyphyletic genera Cryptococcus and Rhodotorula appear to be the predominant and are also represented by the highest numbers of species. Classical culture-based methods, molecular techniques and more recently also metagenomic analyses have revealed the existence of yet unknown species, genera and even new phylogenetic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friemann EI (ed) Antarctic microbiology. Wiley, New York, pp 265–295

    Google Scholar 

  • Abyzov SS, Hoover RB, Imura S, Mitskevich IN, Naganuma T, Poglazova MN, Ivanov MV (2004) Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv Space Res 33:1222–1230

    Article  Google Scholar 

  • Babjeva I, Reshetova I (1998) Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–5

    Google Scholar 

  • Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G, Taberlet P, Brochmann C (2013) Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189

    Article  PubMed  CAS  Google Scholar 

  • Birgisson HK, Delgado O, Arroyo LG, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    PubMed  CAS  Google Scholar 

  • Bodisetisch B, Koeberl C, Master S, Reimold W (2005) Estimating duration and intensity of neoproterozoic snowball glaciation from Ir anomalies. Science 308:239–242

    Article  CAS  Google Scholar 

  • Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369

    Article  PubMed  CAS  Google Scholar 

  • Bridge P, Spooner B, Roberts P (2013) List of non-lichenized fungi from the Antarctic region. Available online: http://www.antarctica.ac.uk/bas_research/data/access/fungi/. Accessed 3 Apr 2013

  • Brown MV, Bowman JP (2001) A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35:267–275

    Article  PubMed  CAS  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita M-A, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73:121–133

    PubMed  CAS  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in Arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Chi ZM, Wang F, Chi Z, Yue LX, Liu GL, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biot 82:793–804

    Article  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479–485

    Article  Google Scholar 

  • de García V, Brizzio S, Libkind D, Buzzini P, van Broock M (2007) Biodiversity of coldadapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microb Ecol 59:331–341

    Google Scholar 

  • de García V, Brizzio S, Libkind D, Rosa CA, van Broock M (2010a) Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia. Argentina. Int J Syst Evol Microbiol 60:1693–1696

    Article  CAS  Google Scholar 

  • de García V, Brizzio S, Russo G, Rosa CA, Boekhout T, Theelen B, van Libkind D, Broock M (2010b) Cryptococcus spencermartinsiae sp. nov., a basidiomycetous yeast isolated from glacial waters and apple fruits. Int J Syst Evol Microbiol 60:707–711

    Article  PubMed  CAS  Google Scholar 

  • de García V, Zalar P, Brizzio S, Gunde-Cimerman N, van Broock M (2012) Cryptococcus species (Tremellales) from glacial biomes in the southern (Patagonia) and northern (Svalbard) hemispheres. FEMS Microbiol Ecol 82:523–539

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two lecidea lichens in granite from Continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–189

    Article  PubMed  Google Scholar 

  • de los A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. Environ Microbiol 5:231–237

    Article  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  PubMed  CAS  Google Scholar 

  • Dynowska M, Wojczulanis-Jakubas K, Pacynska JA, Jakubas D, Ejdys E (2013) Potentially pathogenic yeast isolated from the throat and cloaca of an Arctic colonial seabird: the little auk (Alle alle). Polar Biol 36:343–348

    Article  Google Scholar 

  • Edwards A, Douglas B, Anesio AM, Rassner SM, Irvine-Fynn TDL, Sattler B, Griffith GW (2013) A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecol 6:168–176

    Article  Google Scholar 

  • Ekstrom G, Nettles M, Abers GA (2003) Glacial earthquakes. Science 302:622–624

    Article  PubMed  CAS  Google Scholar 

  • Fahnestock M (2003) Geophysics: glacial flow goes seismic. Science 302:578–579

    Article  PubMed  CAS  Google Scholar 

  • Faizutdinova RN, Suzina NE, Duda VI, Petrovskaya LE, Gilichinsky DA (2005) Yeasts isolated from ancient permafrost. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton University Press, Princeton, pp 118–126

    Google Scholar 

  • Fell JW, Scorzetti G, Connell L, Craig S (2006) Biodiversity of micro-eukaryotes in Antarctic dry valley soils with <5 % soil moisture. Soil Biol Biochem 38:3107–3119

    Article  CAS  Google Scholar 

  • Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res 9:167–172

    Article  PubMed  CAS  Google Scholar 

  • Frisvad JC (2008) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 137–156

    Chapter  Google Scholar 

  • Gadanho M, Sampaio JP (2004) Application of temperature gradient gel electrophoresis to the study of yeast diversity in the estuary of the Tagus river, Portugal. FEMS Yeast Res 5:253–261

    Article  PubMed  CAS  Google Scholar 

  • Gadanho M, Sampaio J (2005) Occurrence and diversity of yeasts in the Mid-Atlantic ridge hydrothermal fields near the azores archipelago. Microb Ecol 50:408–417

    Article  PubMed  CAS  Google Scholar 

  • Gadanho M, Almeida JMGCF, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. A van Leeuwenhoek 84:217–227

    Article  CAS  Google Scholar 

  • Gilichinsky DA, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311

    Article  PubMed  CAS  Google Scholar 

  • Golubev WI (1998) New species of basidiomycetous yeasts, Rhodotorula creatinovora and R. yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykologiya I Phytopathologiya 32:8–13

    Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631

    Article  PubMed  CAS  Google Scholar 

  • Gosink JJ, Irgens RL, Staley JT (1993) Vertical distribution of bacteria in arctic sea ice. FEMS Microbiol Lett 102:85–90

    Article  Google Scholar 

  • Gostinčar C, Turk M, Trbuha T, Vaupotič T, Plemenitaš A, Gunde-Cimerman N (2008) Expression of fatty-acid-modifying enzymes in halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 61:51–59

    Article  PubMed  Google Scholar 

  • Gostinčar C, Grube M, de Hoog GS, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  CAS  Google Scholar 

  • Grabińska-Łoniewska A, Koniłłowicz-Kowalska T, Wardzyńska G, Boryn K (2007) Occurrence of fungi in water distribution system. Pol J Environ Stud 16:539–547

    Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Gunde-Cimerman N, Butinar L, Sonjak S, Turk M, Uršič V, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 397–423

    Chapter  Google Scholar 

  • Jones GEB (1976) Recent advances in aquatic mycology. The Gresham Press, Old Woking, Surrey

    Google Scholar 

  • Kennedy J, Flemer B, Jackson SA, Lejon DPH, Morrissey JP, O’Gara F, Dobson ADW (2010) Marine metagenomics: new tools for the study and exploitation of marine microbial metabolism. Mar Drugs 8:608–628

    Article  PubMed  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York

    Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts: a review. Yeast 25:465–483

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Park AK, Do H, Sun Park KS, Moh SH, Chi YM, Kim HJ (2012) Structural basis for antifreeze activity of ice-binding protein from Arctic yeast. J Biol Chem 287:11460–11468

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Gadanho M, van Broock M, Sampaio JP (2005) Sporidiobolus longiusculus sp. nov. and Sporobolomyces patagonicus sp. nov., novel yeasts of the Sporidiobolales isolated from aquatic environments in Patagonia, Argentina. Int J Syst Evol Microbiol 55:503–509

    Article  PubMed  CAS  Google Scholar 

  • Libkind D, Moline M, Sampaio JP, van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362

    Article  PubMed  CAS  Google Scholar 

  • Ludley K, Robinson CH (2008) ‘Decomposer’ Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol Biochem 40:11–29

    Article  CAS  Google Scholar 

  • Lydolph MC, Jacobsen J, Arctander P, Gilbert MT, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl Environ Microbiol 71:1012–1017

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Catranis CM, Starmer WT, Rogers SO (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73

    Article  Google Scholar 

  • Ma L, Rogers SO, Catranis CM, Starmer WT (2000) Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295

    Article  Google Scholar 

  • Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262

    Article  PubMed  Google Scholar 

  • Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from alpine and arctic habitats. Int J Syst Evol Microbiol 58:2977–2982

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184

    Article  PubMed  CAS  Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  PubMed  CAS  Google Scholar 

  • Montes MJ, Belloch C, Galiana M, Garcia MD, Andres C, Ferrer S, Torres-Rodriguez JM, Guinea J (1999) Polyphasic taxonomy of a novel yeast isolated from antarctic environment; description of Cryptococcus victoriae sp. nov. Syst Appl Microbiol 22:97–105

    Article  PubMed  CAS  Google Scholar 

  • Morozova D, Mohlmann D, Wagner D (2007) Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig Life Evol Biosph 37:189–200

    Article  PubMed  CAS  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig Beih 123:173–197

    Google Scholar 

  • Nagahama T, Hamamoto M, Nakase T, Takami H, Horikoshi K (2001) Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. A van Leeuwenhoek 80:101–110

    Article  CAS  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial liophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  • Omelon C, Pollard W, Ferris F (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29

    Article  Google Scholar 

  • Omelon C, Pollard W, Ferris F (2007) Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microb Ecol 54:740–752

    Article  PubMed  Google Scholar 

  • Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antarctica. Nova Hedwigia 68:175–181

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Article  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109

    Article  PubMed  CAS  Google Scholar 

  • Ozerskaya SM, Kochkina GA, Ivanushkina NE, Knyazeva EV, Gilichinskii DA (2008) The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiology 77:482–489

    Article  CAS  Google Scholar 

  • Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Margesin R (ed.) Permafrost soils. Springer-Verlag, Berlin Heidelberg, pp 85–95

    Google Scholar 

  • Panikov NS (2009) Microbial activity in frozen soils. In: Margesin R (ed) Permafrost soils. Springer, Berlin Heidelberg, pp 119–147

    Chapter  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35 °C. FEMS Microbiol Ecol 59:500–512

    Article  PubMed  CAS  Google Scholar 

  • Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of Midre Lovenbreen Glacier, Arctic and Bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314

    Article  PubMed  CAS  Google Scholar 

  • Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky DA (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Rohde RA, Price PB (2007) Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc Natl Acad Sci USA 104:16592–16597

    Article  PubMed  CAS  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (2002) Introduction to food- and airborne fungi. Central Bureau for Schimmelcultures, Utrecht

    Google Scholar 

  • Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp nov, a xylanase producing basidiomycetous yeast from Antarctica. A van Leeuwenhoek 77:153–157

    Article  CAS  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AH, Ruibal C, De Leo F, Urzi C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20

    Article  PubMed  CAS  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Singh SM (2012) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Singh P, Tsuji M, Singh SM, Roy U, Hoshino T (2013) Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovenbreen glacier, Svalbard, Arctic. Cryobiology 66:167–175

    Article  PubMed  CAS  Google Scholar 

  • Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220

    Article  PubMed  CAS  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microb Ecol 52:207–216

    Article  PubMed  Google Scholar 

  • Starmer W, Fell J, Catranis C, Aberdeen V, Ma L, Zhou S, Rogers S (2005) Yeasts in the genus Rhodotorula recovered from the Greenland ice sheet. In: Castello JD, Rogers SO (eds) Life in ancient ice. Princeton Univ Press, New Jersey, pp 181–195

    Google Scholar 

  • Steven B, Leveille R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267

    Article  PubMed  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55:17–26

    Article  Google Scholar 

  • Takano Y, Kobayashi K, Marumo K, Ishikawa Y (2004) Biochemical indicators and enzymatic activity below permafrost environment. In: Extremophiles 5th international conference on extremophiles, Abstract Book, Cambridge, Maryland, p 84

    Google Scholar 

  • Thomas DN, Dieckmann GS (2002) Antarctic sea ice: a habitat for extremophiles. Science 295:641–644

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall S, Watson K (2002) Cryptococcus nyarrowii sp nov, a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall S, Watson K, Scorzetti G (2002) Cryptococcus statzelliae sp nov and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int J Syst Evol Microbiol 52:2303–2308

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: mrakia robertii sp nov, Mrakia blollopis sp nov and Mrakiella niccombsii sp nov. Extremophiles 14:47–59

    Article  PubMed  CAS  Google Scholar 

  • Timling I, Taylor DL (2012) Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429

    Article  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    Article  PubMed  CAS  Google Scholar 

  • Turk M, Plemenitaš A, Gunde-Cimerman N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958

    Article  PubMed  CAS  Google Scholar 

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Sci 12:374–385

    Article  Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48:103–112

    Article  PubMed  Google Scholar 

  • Vishniac HS (1985) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedman EI (ed) Antarctic microbiology. Wiley-Liss, Inc., New York, pp 297–341

    Google Scholar 

  • Vishniac HS (2002) Cryptococcus tephrensis, sp. nov, and Cryptococcus heimaeyensis, sp. nov; new anamorphic basidiomycetous yeast species from Iceland. Can J Microbiol 48:463–467

    Article  PubMed  CAS  Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Rosa CA, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440

    Chapter  Google Scholar 

  • Vishniac HS, Takashima M (2010) Rhodotorula arctica sp nov, a basidiomycetous yeast from Arctic soil. Int J Syst Evol Micr 60:1215–1218

    Article  CAS  Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky DA, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Wagner D (2008) Microbial communities and processes in Arctic permafrost environments. In: Dionand P, Nautiyal CS (eds) Microbiology of extreme soils. Springer, Berlin, pp 133–154

    Chapter  Google Scholar 

  • Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7:1582–1592

    Article  PubMed  CAS  Google Scholar 

  • Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394–403

    Article  PubMed  CAS  Google Scholar 

  • Xin MX, Zhou PJ (2007) Mrakia psychrophila sp nov, a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 8:260–265

    Article  PubMed  CAS  Google Scholar 

  • Zalar P, Gostinčar C, de Hoog GS, Ursic V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  PubMed  CAS  Google Scholar 

  • Ziolkowski LA, Mykytczuk NCS, Omelon CR, Johnson H, Whyte LG, Slater GF (2013) Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences Discuss 10:2269–2304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gunde-Cimerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zalar, P., Gunde-Cimerman, N. (2014). Cold-Adapted Yeasts in Arctic Habitats. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_3

Download citation

Publish with us

Policies and ethics