Skip to main content
Log in

Abstract

Fungi are generally easily dispersed and are able to colonize a very wide variety of different substrata and to withstand many different environmental conditions. Because of these characteristics they spread all over the world. The Antarctic mycoflora is quite diversified within the different climatic regions of the continent. Most Antarctic microfungi are cosmopolitan; some of them are propagules transported to Antarctica but unable to grow under the Antarctic conditions, while others, termed indigenous, are well adapted and able to grow and reproduce even at low temperatures, mostly as psychrotolerant, or fast sporulating forms, able to conclude their life-cycles in very short time. In the most extreme and isolated areas of the continent, such as the Antarctic Dry Valleys, endemic species showing physiological and morphological adaptations have locally evolved. Most Antarctic fungi, as well as fungi from other dry and cold habitats, are adapted to low temperatures, repeated freeze and thawing cycles, low water availability, osmotic stress, desiccation, low nutrients availability and high UV radiation. Sometimes single strategies are not specific for single stress factors and allow these microorganisms to cope with more than one unfavourable condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, Inc, New York, pp 265–285

    Google Scholar 

  • Ahmadjian V, Jacobs JB (1987) Studies on the development of synthetic lichens. Bibl Lichenol 25:47–58

    Google Scholar 

  • Arcangeli C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids; approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biospectroscopy 57:178–186

    Google Scholar 

  • Arcangeli C, Zucconi L, Onofri S, Cannistraro S (1997) Fluoroscence study on whole Antarctic fungal spores under enhanced UV irradiation. J Photochem Photobiol B: Biol 39:258–264

    Google Scholar 

  • Azmi OR, Seppelt RD (1997) Fungi of the Windmill Islands, Continental Antarctica. Effect of temperature, pH and culture medium on the growth of selected microfungi. Polar Biol 18:128–134

    Google Scholar 

  • Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 9–71

    Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    CAS  Google Scholar 

  • Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21:361–368

    Google Scholar 

  • Blumthaler M, Ambach W (1990) Indication of increasing solar ultra-violet-B radiation flux in Alpine regions. Science 248:206–208

    CAS  Google Scholar 

  • Brewer MS (1999) Traditional preservatives-sodium chloride. In: Robinson RK, Blatt CA, Patel PD (eds) Encyclopaedia of food microbiology. Academic Press, London, pp 1723–1728

    Google Scholar 

  • Bridge PD, Worland MR (2004) First report of an entomophthoralean fungus on an arthropod host in Antarctica. Polar Biol 27:190–192

    Google Scholar 

  • Broady PA (1993) Soils heated by volcanism. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, Inc, New York, pp 413–432

    Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335

    Google Scholar 

  • Brown AD (1978) Compatible solutes and extracellular water stress in eukaryotic microorganisms. Adv Microb Physiol 17:181–242

    Article  CAS  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc London B 265:1461–1465

    CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1113

    CAS  Google Scholar 

  • Caretta G, Del Frate G, Margiarotti AM (1994) A record of Arthrobotrys tortor Jarowaja and Engyodontium album (Limber) de Hoog from Antarctica. Bol Micol 9:9–13

    Google Scholar 

  • Cockell CS, Blaustein A (2001) Ecosystems, evolution and UV radiation. Springer, New York

    Google Scholar 

  • Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345

    CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    CAS  Google Scholar 

  • Crowe LM, Womersley C, Crowe JH, Reid D, Appel L, Rudolph A (1986) Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochem Biophys Acta 861:131–140

    CAS  Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10

    CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    CAS  Google Scholar 

  • D’Amore T, Crumplen R, Stewart GG (1991) The involvement of trehalose in yeast stress tolerance. J Ind Microbiol 7:191–196

    CAS  Google Scholar 

  • Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7

    Google Scholar 

  • de Hoog GS, Zalar P, Urzì F, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37

    Google Scholar 

  • de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76

    Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Eviron Microbiol 5:231–237

    Google Scholar 

  • de los Ríos A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190

    Google Scholar 

  • Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. Adv Microb Ecol 14:251–274

    CAS  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of Soil Fungi, Vol 2. Academic Press, London. (reprint IHW – Verlag, Eching 1993)

  • Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 608pp

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Google Scholar 

  • Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280

    Google Scholar 

  • Fenice M, Selbmann L, Di Giambattista R, Federici F (1998) Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res Microbiol 149:289–300

    CAS  Google Scholar 

  • Feofilova EP, Tereshina VM, Gorova IB (1994) Changes in carbohydrate composition of fungi during adaptation to thermostress. Microbiology 63:442–445

    Google Scholar 

  • Finotti E, Moretto D, Marsella R, Mercantini R (1993) Temperature effects and fatty acid patterns in Geomyces species isolated from Antarctic soil. Polar Biol 13:127–130

    Google Scholar 

  • Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136

    Google Scholar 

  • Frederick JE, Snell HE (1988) Ultraviolet radiation levels during the Antarctic spring. Science 241:438–440

    Google Scholar 

  • Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem Photobiol 50:443–450

    CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Google Scholar 

  • Friedmann EI (1993) Antarctic microbiology. Wiley-Liss, New York, 634pp

  • Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res 9:167–172

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249

    Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–259

    CAS  Google Scholar 

  • Friedmann EI, Druk AY, McKay CP (1994) Limits if life and microbial extinction in the Antarctic desert. Antarct JUS 29:176–179

    Google Scholar 

  • Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254

    CAS  Google Scholar 

  • Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Gorbushina AA, Krumbein WE, Panina L, Soukharjevsky S, Wollenzien U, Hamann KH (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221

    Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138

    CAS  Google Scholar 

  • Gorbushina AA, Beck A, Schulte A (2005) Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycol Res 109(11): 1288–1296

    Google Scholar 

  • Grant WD (2004) Life at low water activity. Phil Trans R Soc London B 359:1249–1267

    CAS  Google Scholar 

  • Green TGA, Schroeter B, Sancho LG (1999) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, Inc, New York, pp 495–543

    Google Scholar 

  • Grondona I, Monte E, Rives V, Vicente MA (1997) Lichenized association between Septonema tormes sp. nov., a coccoid cyanobacterium, and a green alga with an unforeseen biopreservation effect of Villamayor sandstone at ‘Casa lis’ of Salamanca, Spain. Mycol Res 101:1489–1495

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns-natural ecological niches for halophilic black yeast. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, Petrovič U, Turk M, Kogej T, de Hoog GS, Plemenitaš A (2004) Fungi in salterns. In: Ventosa A (Eds) Halophilic microorganisms. Springer-Verlag, Berlin pp 103–113

    Google Scholar 

  • Gunde-Cimerman N, Oren A, Plemenitaš A (2005) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, The Netherlands, 577pp

  • Han KH, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43(5): 1065–1078

    Google Scholar 

  • Holdgate MV (1977) Terrestrial ecosystems in the Antarctic. Philos T Roy Soc B 279:5–25

    Google Scholar 

  • Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the Dry Valleys of Antarctica. Science 193:242–245

    Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115

    CAS  Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 69:1488–1491

    CAS  Google Scholar 

  • Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491

    CAS  Google Scholar 

  • Jumpponen A, Newsham KK, Neises DJ (2003) Filamentous ascomycetes inhabiting the rhizoid environment of the liverwort Cephaloziella varians in Antarctica are assessed by direct PCR and cloning. Mycologia 95:457–466

    CAS  Google Scholar 

  • Kappen L (1974) Response to extreme environments. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 311–380

    Google Scholar 

  • Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 433–490

    Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 92–110

    Google Scholar 

  • Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034

    CAS  Google Scholar 

  • Kerry E (1990) Effects of temperature on growth rates of fungi from subantarctic Macquarie Island and Casey, Antarctica. Polar Biol 10:293–299

    Google Scholar 

  • Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2003) Evolution of genomic diversity and sex at extreme environments: fungal life under hypersaline Dead Sea stress. PNAS 100:14970–14975

    CAS  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish E Yu, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of long term natural cryopreservation. Microbiology 70:356–364

    CAS  Google Scholar 

  • Kogej T, Wheeler MH, Rižner TL, Gunde-Cimerman N (2004) Evidence for 1,8–dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209

    CAS  Google Scholar 

  • Leotta GA, Paré JA, Sigler L, Montalti D, Vigo G, Petruccelli M, Reinoso EH (2002) Thelebolus microsporus mycelial mats in the trachea of wild brown skua (Catharacta antarctica lonnbergi) and South Polar skua (C. maccormicki) carcasses. J Wildlife Dis 38(2): 443–447

    Google Scholar 

  • Lewis JG, Learmonth RP, Watson K (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141:687–694

    Article  CAS  Google Scholar 

  • Ma L, Rogers SO, Catranis CM, Starmer TS (2000) Detection and charaterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295

    Google Scholar 

  • Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B: Biol 46:5–19

    CAS  Google Scholar 

  • Maggi O, Persiani AM, Fabbri AA, De Luca C, Lunghini D, Quadraccia L, Fanelli C (1991) Differenze nella composizione fosfolipidica di diversi taxa fungini. Giorn Bot Ital 125(3):259

    Google Scholar 

  • Méjanelle L, Lòpez JF, Gunde-Cimerman N, Grimalt JO (2001) Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J Lipid Res 42:352–358

    Google Scholar 

  • Mercantini R, Marsella R, Moretto D, Finotti E (1993) Keratinophilic fungi in the Antarctic environment. Mycopathalogia 122:169–175

    CAS  Google Scholar 

  • Montemartini Corte A (1991) Funghi di ambienti acquatici. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st Meeting on ‘Biology in Antarctica’ (English summaries). Roma CNR 22–23 June 1989, Scienza e Cultura, Edizioni Universitarie Patavine, pp 67–76

  • Montemartini Corte A, Caretta G, Del Frate G (1993) Notes on Thelebolus microsporus isolated in Antarctica. Mycotaxon 48:343–358

    Google Scholar 

  • Montiel PO (2000) Solubile carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo-Lett 21:83–90

    Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412

    Google Scholar 

  • Nishiyama T (1977) Studies on evaporite minerals from Dry Valley, Victoria Land, Antarctica. Antarct Rec 58:171–185

    Google Scholar 

  • Ocampo-Friedmann R, Friedmann EI (1993). Biologically active substances produced by Antarctic cryptoendolithic fungi. Ant JUS 28:252–254

    CAS  Google Scholar 

  • Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic publishers, Dordrecht, Boston, London, pp 323–336

    Google Scholar 

  • Onofri S, Friedmann EI (1998) Cryptoendolithic microorganisms in sandstone and pegmatite in the northern Victoria Land. In: Tamburrini M, D’Avino R (eds), Newsletter of the italian biological research in Antartica. Camerino University Press, Camerino, pp 45–51

    Google Scholar 

  • Onofri S, Tosi S (1992) Arthrobotrys ferox sp. nov. a springtail-capturing hyphomycete from Continental Antarctica. Mycotaxon 44:445–451

    Google Scholar 

  • Onofri S, Rambelli A, Maggi O, Persiani AM, Riess S, Tosi S, Grasselli E (1991) Micologia del suolo. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st Meeting on ‘Biology in Antarctica’ (English summaries). Roma CNR 22–23 June 1989. Scienza e Cultura, Edizioni Universitarie Patavine, pp 55–65

  • Onofri S, Tosi S, Persiani AM, Maggi O, Riess S, Zucconi L (1994) Mycological reserches in Victoria Land terrestrial ecosystem. Proceedings of the Second Meeting on “Antarctic Biology”, Padova, 26–28 February 1992. Scienza e cultura, Edizioni Universitarie Patavine, Padova, pp 19–32

  • Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antartica. Nova Hedwigia 68:175–181

    Google Scholar 

  • Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks and soil. Ital J Zool 67(suppl. 1):163–168

    Article  Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Tosi S, Fenice M, Barreca D, Ruisi S (2005a) Studies on Antarctic fungi. Polarnet Tech Rep.1:49–52

    Google Scholar 

  • Onofri S, Selbmann L, Zucconi L, Tosi S, de Hoog GS (2005b) The Mycota of Continental Antarctica. Terra Antart Rep 11:37–42

    Google Scholar 

  • Onofri S, Zucconi L, Tosi S (2006) Continental Antarctic Fungi. IHW-Verlag, Eching (in press)

  • Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. In: Øvstedal DO, Lewis Smith RI (eds) A guide to their identification and ecology. Studies in Polar Research, University of Cambridge, pp 4–5

    Google Scholar 

  • Pascual S, Melgarejo P, Magan N (2002) Water availability affects the growth, accumulation of compatible solutes and the viability of the biocontrol agent Epicoccum nigrum. Mycopathologia 156:93–100

    Google Scholar 

  • Pickard J, Seppelt RD (1984) Phytogeography of Antarctica. J Biogeogr 11:83–102

    Google Scholar 

  • Rivkina E, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    CAS  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanized fungi from limestone in Mallorca. Mycol Progr 4:23–38

    Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans Roy Soc London Ser B 326:595–611

    CAS  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    CAS  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58

    Google Scholar 

  • Staley JT, Palmer FE, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095

    Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock inhabiting meristematic fungi. Antonie van Leeuwenhoek 74:271–281

    CAS  Google Scholar 

  • Sterflinger K (2005) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa C, Gabor P (eds) Yeast handbook: biodiversity and ecophysiology of yeasts. Springer, New York, pp 505–518

    Google Scholar 

  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  Google Scholar 

  • Tosi S, Begoña C, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268

    Google Scholar 

  • Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac H (2005) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482

    Google Scholar 

  • Turian G (1977) Coniosporium aeroalgicolum sp. nov. – a dematiaceous fungus living in balanced parasitism with aerial algae. B Soc Bot Suisse 87:19–24

    Google Scholar 

  • Urzì C, Realini M (1998) Colours changes of Noto’s calcareous sandstone as related to its colonization by microorganisms. Int Biodeter Biodegr 42:45–54

    Google Scholar 

  • Urzì C, Wollenzien U, Criseo G, Krumbein WE (1995) Biodiversity of the rock inhabiting microflora with special reference to black fungi and black yeasts. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB International, Wallingford, UK, pp 289–302

    Google Scholar 

  • van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210

    Google Scholar 

  • van Uden N (1984) Temperature profiles of yeasts. Adv Microb Physiol 25:195–251

    Google Scholar 

  • Verona O, Firpi M (1971) Sui micromiceti carticoli dei generi Alternaria, Ulocladium, Stemphylium. Cell Carta 8:55–72

    Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antartica. Cambridge University Press, Cambridge, 303pp

  • Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12(3): 374–385

    Google Scholar 

  • Vishniac HS (1987) Psychrophily and systematics of yeast-like fungi. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Stud. Mycol. 30:389–402

  • Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 433–490

    Google Scholar 

  • Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of Yeasts, Springer, pp 419–440

  • Vishniac HS, Onofri S (2002) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 83:233–235

    Google Scholar 

  • Volkmann M, Whitehead K, Rüttgers H, Rullkötter J, Gorbushina AA (2003) Mycosporine-glutamicol-glucoside: a natural UV absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Comm Mass Spectr 17:897–902

    CAS  Google Scholar 

  • Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229

    CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58:209–217

    CAS  Google Scholar 

  • Wierzchos J, Ascaso C (2001) Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica: suggestions for in situ further research. Polar Biol 24:863–868

    Google Scholar 

  • Wierzchos J, Ascaso C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1:51–59

    Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294

    CAS  Google Scholar 

  • Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146

    Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075

    CAS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2001) In: Horneck G, Baumstark-Khan C (eds) Environmental UV radiation: biological strategies for protection and avoidance, in astrobiology: the quest for the conditions of life. Springer-Verlag, Berlin, pp 244–259

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Taxonomy of the endoconidial black yeast genera Phaeotheca and Hyphospora. Stud Mycol 43:49–56

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999c) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62

    Google Scholar 

  • Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61

    Google Scholar 

  • Zucconi L, Ripa C, Selbmann L, Onofri S (2002) Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol 25:500–505

    Google Scholar 

Download references

Acknowledgements

The authors thank the Italian National Program for Research in Antarctica (PNRA) and the European Commission’s Research Infrastructure (SYNTHESYS Project) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvano Onofri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruisi, S., Barreca, D., Selbmann, L. et al. Fungi in Antarctica. Rev Environ Sci Biotechnol 6, 127–141 (2007). https://doi.org/10.1007/s11157-006-9107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-9107-y

Keywords

Navigation