Skip to main content

Arbuscular Mycorrhizal Fungi and Uptake of Nutrients

  • Chapter
  • First Online:
Symbiotic Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 37))

Abstract

The soil fungi arbuscular mycorrhizae (AM) are able to establish a mutual symbiosis with their host plant, in which the necessary carbon for the use of fungi is exchanged with water and nutrients. The presence of the host plant for the development of the fungi is necessary, although the fungal spores are able to germinate in the absence of the host plant. For the initiation of the symbiotic association, there must be some kind of biochemical dialogue between the fungi and the host plant, which results in morphological and physiological changes in the two symbionts. After the establishment of the symbiosis, the extensive hyphal network is able to significantly enhance plant uptake for water and nutrients as it is able to grow even into the finest soil pores where the root hairs are not able to grow. The unique properties of AM fungi make them a suitable symbiont for its host plant under different conditions including stress. Among the most important reasons which can increase plant tolerance under stress is the enhanced uptake of water and nutrients by AM fungi. Mycorrhizal symbiosis is able to increase the uptake of almost all nutrients. However, the impact of AM fungi on the uptake of phosphorus (P) is more pronounced related to the other nutrients as the fungi are able to produce enzymes such as phosphatase. Accordingly, the conditions of soil and plant P can affect mycorrhizal performance because the increased level of P can adversely influence P uptake by the fungi. There are some molecular processes, controlling the uptake of nutrients by the fungi and the host plant. In this chapter some of the most important findings, related to the uptake of nutrients by AM fungi and hence the host plant, are presented. There are also some details regarding the parameters, which may enhance the fungal ability for the uptake of nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Article  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47

    Article  CAS  Google Scholar 

  • Ames RN, Reid CPP, Porter KL, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14:221–228

    Article  PubMed  Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246

    Article  PubMed  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bonfante P, Anca LA (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  PubMed  CAS  Google Scholar 

  • Boomsma C, Vyn T (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31

    Article  Google Scholar 

  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 23:915–926

    Article  PubMed  CAS  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    Article  PubMed  CAS  Google Scholar 

  • Cimen I, Pirinc V, Doran I, Turgay B (2010) Effect of soil solarization and arbuscular mycorrhizal fungus (Glomus intraradices) on yield and blossom-end rot of tomato. Int J Agric Biol 12:551–555

    Google Scholar 

  • Cliquet JB, Stewart GR (1993) Ammonia assimilation in maize infected with the VAM fungus Glomus fasciculatum. Plant Physiol 101:65–871

    Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  PubMed  CAS  Google Scholar 

  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268

    Article  PubMed  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Schüepp H (1992) Transfer of symbiotically Wxed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular arbuscular mycorrhizal hyphae. New Phytol 122:447–454

    Article  CAS  Google Scholar 

  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  PubMed  CAS  Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    Article  CAS  Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hodge A (2003a) N capture by Plantagolanceolata and Brassicanapus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 57:401–411

    Article  Google Scholar 

  • Hodge A (2003b) Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. New Phytol 157:303–314

    Article  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Jackson LE, Burger M, Cavagnaro TR (2008) Nitrogen transformations and ecosystem services. Annu Rev Plant Biol 59:341–363

    Article  PubMed  CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Asadi Rahmani H, Rasuli Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    Article  PubMed  CAS  Google Scholar 

  • Jin H, PfeVer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  PubMed  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fertil Soils 16:66–70

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Khanpour Ardestani N, Zare-Maivan H, Ghanati F (2011) Effect of different concentrations of potassium and magnesium on mycorrhizal colonization of maize in pot culture. Afr J Biotechnol 10:16548–16550

    Google Scholar 

  • Kuang R, Liao H, Yan X, Dong Y (2005) Phosphorus and nitrogen interactions in weld-grown soybean as related to genetic attributes of root morphological and nodular traits. J Integr Plant Biol 47:549–559

    Article  CAS  Google Scholar 

  • Lioussanne L, Beauregard MS, Hamel C, Jolicoeur M, St-Arnaud M (2008) Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piché Y, Coughlan A (eds) Advances in mycorrhizal science and technology. NRC, Ottawa

    Google Scholar 

  • Liu A, Hamel C, Hamilton R, Smith D (2000) Mycorrhizae formation and nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf architecture as influenced by soil N and P levels. Plant Soil 221:157–166

    Article  CAS  Google Scholar 

  • Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in a resource-limited world. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth, Binghamton, NY, pp 38–66

    Google Scholar 

  • Liu JQ, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: cross-talk between photosynthate and microRNA399. Mol Plant 3:428–437

    Article  PubMed  CAS  Google Scholar 

  • Long S (2001) Gene and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72

    Article  PubMed  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. C R Biol 334:564–571

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Marschner P, Crowley D, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16 S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    Article  CAS  Google Scholar 

  • McFarland JW, Ruess RW, Kielland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4. Ecosystems 13:177–193

    Article  CAS  Google Scholar 

  • Mendoza RE, Pagani EA (1997) Influence of phosphorus nutrition on mycorrhizal growth response and morphology of mycorrhizae in Lotus tenuis. J Plant Nutr 20:625–639

    Article  CAS  Google Scholar 

  • Miransari M (2010a) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biol 12:563–569

    PubMed  CAS  Google Scholar 

  • Miransari M (2010b) Arbuscular mycorrhiza and soil microbes. In: Thangadurai D, Busso CA, Hijri M (eds) Mycorrhizal biotechnology. Science Publishers, New York, NY, p 226

    Google Scholar 

  • Miransari M (2010c) Biological fertilization. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Microbiology book series—2010 edition. Spain

    Google Scholar 

  • Miransari M (2010d) Mycorrhizal fungi and ecosystem efficiency. In: Fulton SM (ed) Mycorrhizal fungi: soil, agriculture and environmental implications. Nova Publishers, Hauppauge, NY. ISBN 978-1-61122-659-1

    Google Scholar 

  • Miransari M (2011a) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Review article. Appl Microbiol Biotechnol 89:917–930

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011b) Arbuscular mycorrhizal fungi and nitrogen uptake. Review article. Arch Microbiol 193:77–81

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011c) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011d) Soil microbes and plant fertilization. Review article. Appl Microbiol Biotechnol 92:875–885

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2012a) Soil microbes and environmental health. Nova Publishers, Hauppauge, NY. ISBN 978-1-61209-647-6

    Google Scholar 

  • Miransari M (2012b) Soil nutrients. Nova Publishers, Hauppauge, NY. ISBN 978-1-61324-785-3

    Google Scholar 

  • Miransari M, Mackenzie AF (2011a) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Commun Soil Sci Plant Anal 42:50–65

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011b) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycinemax (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Article  Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.) – Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Miransari M, Balakrishnan P, Smith DL, Mackenzie AF, Bahrami HA, Malakouti MJ, Rejali F (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosaccharides. Commun Soil Sci Plant Anal 37:1103–1110

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Mortimer P, Prez-Fernandez M, Valentine A (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaselous vulgaris. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3:288–299

    Article  PubMed  CAS  Google Scholar 

  • Sajedi NA, Ardakani MR, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351

    Article  PubMed  CAS  Google Scholar 

  • Sajedi NA, Ardakani MR, Madani H, Naderi A, Miransari M (2011) The effects of selenium and other micronutrients on the antioxidant activities and yield of corn (Zeamays L.) under drought stress. Physiol Mol Biol Plants 17:215–222

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  PubMed  CAS  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York, NY

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • St. John TV, Coleman DC, Reid CPP (1983) Association of vesicular–arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957–959

    Article  Google Scholar 

  • Subramanian K, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Talbot JM, Allison SD, Treseder KK (2008) Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol 22:955–963

    Article  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tian C, Kasiborski B, Koul R, Lammers PJ, Bucking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen Xux. Plant Physiol 153:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61:295–304

    Article  PubMed  CAS  Google Scholar 

  • Treseder K, Allen M (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Neceman M, Regvar M (2006) Colonization of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungi mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  Google Scholar 

  • Watts-Williams S, Cavagnaro T (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biol Fertil Soils 48:285–294

    Article  CAS  Google Scholar 

  • Wittenmayer L, Merbach W (2005) Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J Plant Nutr Soil Sci 168:531–540

    Article  CAS  Google Scholar 

  • Zaefarian F, Rezvani M, Rejali F, Ardakani MR, Noormohammadi G (2011) Effect of heavy metals and arbuscular mycorrhizal fungal on growth and nutrients (N, P, K, Zn, Cu and Fe) accumulation of alfalfa (Medicago sativa L.). Am Eurasian J Agric Environ Sci 11:346–352

    CAS  Google Scholar 

  • Zhang F, Smith DL (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperature. Plant Physiol 108:961–968

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miransari, M. (2013). Arbuscular Mycorrhizal Fungi and Uptake of Nutrients. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_13

Download citation

Publish with us

Policies and ethics