Skip to main content
Log in

Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp.

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Hyphae and vesicles of arbuscular mycorrhizal fungi (AMF) were found within the decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. at three montane sites in Colombia. Hyphae, vesicles, and arbuscule-like structures were also found within scale-like leaves of the rhizomes of Paepalanthus sp. The litter found in the vicinity of the roots was divided into three decomposition layers. The highest AMF colonization occurred in the most decomposed leaves, which were in close association with roots. In contrast, there were no differences in AMF colonization of roots present in the different decomposition layers. Colonization of decomposing leaves by AMF did not differ between the two closely related species M. parvifolia and M. pubescens, nor between two sites (Guatavita and Zipacón, Colombia) differing in soil fertility. Occurrence of vesicles in decomposing leaves was correlated with abundant AMF extraradical hyphae among the leaves. We propose that AMF enter decomposing leaves mechanically through vascular tissue. As a consequence, AMF are well positioned to obtain and efficiently recycle mineral nutrients released by decomposer microorganisms before their loss by leaching or immobilization in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a-h.

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Google Scholar 

  • Bravo A, Castillo A, Chaves G (1996) Evaluación de 3 métodos sobre la pregerminación de semillas del laurel de cera. BSC thesis, Universidad Autónoma Nacional, Pasto, Colombia

  • Díaz L (2001) Presencia de hongos similares a los de micorriza arbuscular en hojarasca de cultivos de Coffea arabica L. en sistemas agrícolas diferentes. MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia

  • Dix N, Webster J (1995) Fungal ecology. Chapman & Hall, London

  • Fischer C, Janos D, Perry D, Linderman R, Sollins P (1994) Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26:369–377

    Google Scholar 

  • Friese C, Allen M (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Google Scholar 

  • Gerdemann J, Nicholson T (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Hall J, Flowers T, Roberts R (1981) Plant cell structure and metabolism, 2nd edn. Longman, New York

  • Herrera R, Merida T, Stark N, Jordan C (1978) Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208–209

    CAS  Google Scholar 

  • Herrera R, Rodriguez A, Furrazola E (1986) Método para determinar la biomasa de micelio extramátrico vesiculo-arbuscular. In: Ciclo lectivo sobre el tema: Técnicas de investigación en micorriza. Turrialba, Costa Rica 18–28 Septiembre 1985. Fundación Internacional para la Ciencia, Estocolomo, Suecia, pp 197–207

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820

    Article  Google Scholar 

  • Hodge A, Campbell C, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Google Scholar 

  • Imhof S (2001) Subterranean structures and mycotrophy of the achlorophyllous Dictyostega orobanchoides (Burmanniaceae). Rev Biol Trop 49:239–247

    CAS  PubMed  Google Scholar 

  • Janos D (1983) Tropical mycorrhizas, nutrient cycles and plant growth. In: Sutton S, Whitmore T, Chadwick A (eds) Tropical rain forest: ecology and management. Blackwell, Oxford, UK, pp 327–345

  • Janos D (1987) VA mycorrhizas in humid tropical ecosystems. In: Safir G (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, Fla, pp 107–134

  • Jeffries P, Barea J (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant-soil systems. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, Switzerland, pp 101–116

  • Jenkins W (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Koske R (1984) Spores of vesicular-arbuscular mycorrhizal fungi inside spores of vesicular-arbuscular mycorrhizal fungi. Mycologia 76:853–862

    Google Scholar 

  • Linderman R (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay G, Linderman R (eds) Mycorrhizae in sustainable agriculture. ASA Special Publication No. 54, Madison, Wis, pp 45–70

  • Maffia B, Nadkarni NM, Janos DP (1993) Vesicular-arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza 4:5–9

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • McKee KL (2001) Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? J Ecol 89:876–887

    Article  Google Scholar 

  • Meyer J, Linderman R (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Article  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular-arbuscular infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Google Scholar 

  • Nadkarni N (1981) Canopy roots: convergent evolution in rainforest nutrient cycles. Science 214:1023–1024

    Google Scholar 

  • Nicolson T (1959) Mycorrhiza in the Gramineae. I. Vesicular-arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Google Scholar 

  • Pabón A (2000) Presencia de estructuras similares a las que componen el hongo de micorriza arbuscular en hojarasca de Cedrela montana Turczaninov. BSC thesis, Pontificia Universidad Javeriana, Bogotá, Colombia

  • Parra CA (1998) Taxonomía del género Myrica (Myricaceae) en Colombia. BSC thesis, Pontificia Universidad Javeriana, Bogotá, Colombia

  • Parra A, Proano C, Arevalo D, Rodriguez C (1985) Estudio general de suelos del oriente de Cundinamarca y municipio de Umbita. Instituto Geográfico Agustín Codazzi, Bogotá, Colombia

  • Phillips J, Hayman D (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Google Scholar 

  • Rabatin S, Rhodes L (1982) Acaulospora bireticulata inside Oribatid mites. Mycologia 74:859–861

    Google Scholar 

  • Rabatin S, Stinner B, Paoletti M (1993) Vesicular-arbuscular mycorrhizal fungi, particularly Glomus tenue, in Venezuelan bromeliad epiphytes. Mycorrhiza 4:17–20

    Google Scholar 

  • Racette S, Torrey JG, Berg RH (1991) Sporulation in root nodules of actinorhizal plants inoculated with pure cultured strains of Frankia. Can J Bot 69:1471–1476

    Google Scholar 

  • Read D (1992) The mycorrhizal mycelium. In: Allen M (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 102–133

  • Reddell P, Hopkins M, Graham A (1996) Functional association between apogeotropic roots, mycorrhizas and paper-barked stems in a lowland tropical rainforest in North Queensland. J Trop Ecol 12:763–777

    Google Scholar 

  • Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press, Cambridge, UK

  • Rivera E, Guerrero E (1998) Ciclaje directo de nutrientes a través de endomicorriza. Un complemento del proceso de mineralización? In: Congres Mondial de Science Dusol, 20–26 August 1998, Montpellier, France

  • Rose S, Paranka J (1987) The location of roots and mycorrhizae in tropical forest litter. In: Sylvia D, Hung L, Graham J (eds) Mycorrhizae in the next decade: practical applications and research priorities. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla, p 165

  • Sanford R (1987) Apogeotropic roots in an Amazon rain forest. Science 235:1062–1064

    Google Scholar 

  • Scheiner S (1993) MANOVA: multiple response variables and multispecies interactions. In: Scheiner S, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, New York, pp 94–112

  • Smith S, Read D (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego, Calif

  • St John T, Coleman D, Reid C (1983) Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles. Ecology 64:957–959

    Google Scholar 

  • Sturm H, Rangel O (1985) Ecología de los páramos Andinos: Una visión preliminar integrada. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá

  • Taber R (1982a) Gigaspora spores and associated hyperparasites in weed seeds in soil. Mycologia 74:1026–1031

    Google Scholar 

  • Taber R (1982b) Occurrence of Glomus spores in weed seeds in soil. Mycologia 74:515–520

    Google Scholar 

  • Taber R, Strong M (1982) Vesicular-arbuscular mycorrhiza in roots and xylem of Tradescantia. Mycologia 74:152–156

    Google Scholar 

  • Taber R, Trappe J (1982) Vesicular-arbuscular mycorrhiza in rhizomes, scale-like leaves, roots, and xylem of ginger. Mycologia 74:156–161

    Google Scholar 

  • vanVuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192

    CAS  Google Scholar 

  • Varma A (1999) Hydrolytic enzymes from arbuscular mycorrhizae: the current status. In: Varma A, Hock B (eds) Mycorrhiza, 2nd edn. Springer, Berlin Heidelberg New York, pp 373–389

  • Went F, Stark N (1968a) Mycorrhiza. Bioscience 18:1035–1039

    Google Scholar 

  • Went F, Stark N (1968b) The biological and mechanical role of soil fungi. Proc Natl Acad Sci USA 60:497–504

    Google Scholar 

Download references

Acknowledgements

This research was financed by COLCIENCIAS and Pontificia Universidad Javeriana (PUJ, Colombia). The authors are grateful to Carlos Parra for help in plant identification, and to A. Varela and the Population Ecology Lab at PUJ for facilitating sampling at Zipacón.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Aristizábal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aristizábal, C., Rivera, E.L. & Janos, D.P. Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp.. Mycorrhiza 14, 221–228 (2004). https://doi.org/10.1007/s00572-003-0259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0259-0

Keywords

Navigation