Skip to main content

Advertisement

Log in

Soil microbes and plant fertilization

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

With respect to the adverse effects of chemical fertilization on the environment and their related expenses, especially when overused, alternative methods of fertilization have been suggested and tested. For example, the combined use of chemical fertilization with organic fertilization and/or biological fertilization is among such methods. It has been indicated that the use of organic fertilization with chemical fertilization is a suitable method of providing crop plants with adequate amount of nutrients, while environmentally and economically appropriate. In this article, the importance of soil microbes to the ecosystem is reviewed, with particular emphasis on the role of plant growth-promoting rhizobacteria, arbuscular mycorrhizal fungi, and endophytic bacteria in providing necessary nutrients for plant growth and yield production. Such microbes are beneficial to plant growth through colonizing plant roots and inducing mechanisms by which plant growth increases. Although there has been extensive research work regarding the use of microbes as a method of fertilizing plants, it is yet a question how the efficiency of such microbial fertilization to the plant can be determined and increased. In other words, how the right combination of chemical and biological fertilization can be determined. In this article, the most recent advances regarding the effects of microbial fertilization on plant growth and yield production in their combined use with chemical fertilization are reviewed. There are also some details related to the molecular mechanisms affecting the microbial performance and how the use of biological techniques may affect the efficiency of biological fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR, Miransari M (2010) Plant growth promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288

    Article  Google Scholar 

  • Adesemoye A, Kloepper J (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecol 58:921–929

    Article  CAS  Google Scholar 

  • Artursson V, Jansson JK (2003) Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Appl Environ Microbiol 69:6208–6215

    Article  CAS  Google Scholar 

  • Artursson V, Finlay R, Jansson J (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2010) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  Google Scholar 

  • Benizri E, Amiaud B (2005) Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol Biochem 37:2055–2064

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  Google Scholar 

  • Berg G, Smalla K (2008) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  CAS  Google Scholar 

  • Böhme L, Böhme F (2006) Soil microbiological and biochemical properties affected by plant growth and different long-term fertilization. Europ J Soil Biol 42:1–12

    Article  Google Scholar 

  • Bonfante P (2003) Plants, mycorrhizal fungi, and endobacteria: a dialog among cells and genomes. Biol Bulletin 204:215–220

    Article  CAS  Google Scholar 

  • Canbolat MY, Bilen S, Cakmakci R, Sahin F, Aydin A (2006) Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol Fert Soils 42:350–357

    Article  CAS  Google Scholar 

  • Carlier E, Rovera M, Rossi J, Rosas SB (2008) Improvement of growth, under field conditions, of wheat inoculated with Pseudomonas chlororaphis subsp. aurantiaca SR1. World J Microbiol Biotechnol 24:2653–2658

    Article  Google Scholar 

  • Chebotar VK, Makarova NM, Shaposhnikov AI, Kravchenko LV (2009) Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Appl Biochem Microbiol 45:419–423

    Article  CAS  Google Scholar 

  • Cheng W, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    Article  CAS  Google Scholar 

  • Choi O, Kim J, Kim J-G, Jeong Y, Moon J, Park C, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B161. Plant Physiol 146:657–668

    Article  CAS  Google Scholar 

  • Compant S, van der Heijden M, Sessitsch A (2010) Climate change effects on beneficial plant microorganism interactions. FEMS Microbiol Ecol 73:197–214

    CAS  Google Scholar 

  • Cruz A, Hamel C, Hanson K, Selles F, Zentner R (2009) Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem. Plant Soil 315:173–184

    Article  CAS  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  Google Scholar 

  • Elcoka E, Kantar F, Sahin F (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Google Scholar 

  • Emmerling C, Schloter M, Hartmann A, Kandeler E (2002) Functional diversity of soils organisms—a review of recent research activities in Germany. J Plant Nutr Soil Sci 165:408–420

    Article  CAS  Google Scholar 

  • Flessa H, Ruser R, Dörsch P, Kamp T, Jimenez MA, Munch JC, Beese F (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric Ecosys Environ 91:175–189

    Article  CAS  Google Scholar 

  • George T, Gregory P, Hocking P, Richardson A (2008) Variation in root associated phosphatase activities in wheat contributes to the utilization of organic P substrates in vitro, but does not explain differences in the P-nutrition when grown in soils. Environ Exp Bot 64:239–249

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DDJ (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Press, Dordrecht, pp 239–262

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Han H, Lee K (2005) Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Res J Agric Biol Sci 1:216–221

    Google Scholar 

  • Harrier LA (2001) The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot 52:469–478

    CAS  Google Scholar 

  • He K, Nukada H, Urakami T, Murphy MP (2003) Antioxidant and prooxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological system. Biochem Pharmacol 65:67–74

    Article  CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter HA (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  Google Scholar 

  • Jalili F, Khavazi K, Pazira E, Nejati A, Asadi Rahmani H, Rasuli Sadaghiani H, Miransari M (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674

    Article  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plantmicrobe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  Google Scholar 

  • Kumazawa T, Sato K, Seno H, Ishii A, Suzuki O (1995) Levels of pyrroloquinoline quinone in various foods. Biochem J 307:331–333

    CAS  Google Scholar 

  • Liao M, Hocking P, Dong B, Delhaize E, Richardson A, Ryan P (2008) Variation in early phosphorus-uptake efficiency among wheat genotypes grown on two contrasting Australian soils. Aust J Agric Res 59:157–166

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos JL (ed) Pseudomonas, vol 1. Kluwer Academic/Plenum Publishers, New York, pp 403–430

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Luo S, Wan Y, Xiao X, Guo H, Chen L, Xi Q, Zeng G, Liu C, Chen J (2011) Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation. Appl Microbiol Biotechnol 89:1637–1644

    Article  CAS  Google Scholar 

  • Lynch J (2005) Root architecture and nutrient acquisition. In: BassiriRad H (ed) Nutrient acquisition by plants: an ecological perspective. Springer, Berlin, pp 147–183

    Chapter  Google Scholar 

  • Ma J, Li XL, Xu H, Han Y, Cai ZC, Yagi K (2007) Effects of nitrogen fertilizer and wheat straw application on CH4 and N2O emissions from a paddy rice field. Aust J Soil Res 45:359–367

    Article  CAS  Google Scholar 

  • Martinez-Romero E, Wang ET (2000) Sesbania herbacea–Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. herbaces nodulating rhizobia in different environments. Microb Ecol 41:25–32

    Google Scholar 

  • Miller S, Liu J, Allan D, Menzhuber C, Fedorova M, Vance C (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606

    Article  CAS  Google Scholar 

  • Miransari M (ed) (2011a) Soil nutrients. Nova, New York. ISBN 978-1-61324-785-3

    Google Scholar 

  • Miransari M (2011b) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2010) Wheat (Triticum aestivum L.) grain N uptake as affected by soil total and mineral N, for the determination of optimum N fertilizer rates for wheat production. Comm Soil Sci Plant Anal 41:1644–1653

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011a) Development of a soil N-test for fertilizer requirements for corn (Zea mays L.) production in Quebec. Comm Soil Sci Plant Anal 42:50–65

    Article  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2011b) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 3:287–295

    Article  Google Scholar 

  • Miransari M, Smith D (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)-Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Europ J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Nicol GW, Glover A, Prosser JI (2003) The impact of grassland management on archaeal community structure in upland pasture rhizosphere. Environ Microbiol 5:152–162

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Mercel Dekker, New York, pp 1–18

    Google Scholar 

  • Principe A, Alvarez F, Castro M, Zachi L, Fischer S, Mori G, Jofr E (2007) Biocontrol and PGPR features in native strains isolated from saline soils of Argentina. Curr Microbiol 55:314–322

    Article  CAS  Google Scholar 

  • Qin S, Xing K, Jiang J-H, Xu L-H, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  Google Scholar 

  • Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104:41–60

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  CAS  Google Scholar 

  • Richardson A, Peter A, Hocking P, Simpson R, George T (2009) Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci 60:124–143

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  Google Scholar 

  • Rovira AD (1959) Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation. Plant Soil 11:53–64

    Article  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles emissions promote growth in Arabidopsis. Proc Nat Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334

    CAS  Google Scholar 

  • Sasaki T, Yamomoto Y, Ezaki B, Katsuhara M, Ahn S, Ryan P, Delhaize E, Matsumoyo H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    Article  CAS  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  Google Scholar 

  • Stites TE, Mitchell AE, Rucker RB (2000) Physiological importance of quinoenzymes and the O-quinone family of cofactors. J Nutr 130:719–727

    CAS  Google Scholar 

  • Sziderics A, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202

    Article  CAS  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Letters 254:34–40

    Article  CAS  Google Scholar 

  • Ton J, de Vos M, Robben C, Buchala A, Métraux J, van Loon L, Pieterse C (2002) Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29:11–21

    Article  CAS  Google Scholar 

  • Verhagen B, Bas W, Verhagen W, Glazebrook J, Zhu T, Chang H, van Loon L, Pieterse C (2003) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microb Interact 17:895–908

    Article  Google Scholar 

  • Vessey KV (2003) Plant growth promoting rhizobacteria as biofertlizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Warembourg FR, Estelrich HD (2001) Plant phenology and soil fertility effects on below-ground carbon allocation for an annual (Bromus madritensis) and a perennial (Bromus erectus) grass species. Soil Biol Biochem 33:1291–1303

    Article  CAS  Google Scholar 

  • Wouterlood M, Cawthray G, Scanlon T, Lambers H, Veneklaas E (2004a) Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. New Phytol 162:745–753

    Article  CAS  Google Scholar 

  • Wouterlood M, Cawthray G, Turner S, Lambers H, Veneklaas E (2004b) Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 261:1–10

    Article  CAS  Google Scholar 

  • Yang J, Kloepper J, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trend Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Zabihi HR, Savaghebi GR, Khavazi K, Ganjali A, Miransari M (2010) Pseudomonas bacteria and phosphorous fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under greenhouse and field conditions. Acta Physiol Plant 33:145–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miransari, M. Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92, 875–885 (2011). https://doi.org/10.1007/s00253-011-3521-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3521-y

Keywords

Navigation