Skip to main content

QTL Mapping and Marker Assisted Breeding in Rubus spp.

  • Chapter
  • First Online:
Raspberry

Abstract

Recent developments in genetics and genomics have advanced research in all crops including soft fruit species. Molecular markers which detect genome-wide variability in both protein coding and non-coding regions have enabled genetic mapping studies to move beyond linkages between simple morphological traits (Jennings 1967a, 1988; Ourecky 1975; Crane and Lawrence 1931; Keep 1968) to linkage maps containing numerous genetic markers which can be utilised in marker assisted breeding. Until recently, mapping in blackberry and other Rubus species has lagged behind that of red raspberry due to their more complex genetic make-up and lesser economic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes. Proc R Soc Lond B Biol Sci 227:2451–2457

    Article  Google Scholar 

  • Anthony VM, Williamson B, Jennings DL, Shattock RC (1986) Inheritance of resistance to yellow rust (Phragmidium rubi-idaei) in red raspberry. Ann Appl Biol 109:365–374

    Article  Google Scholar 

  • Antonius-Klemola K (1999) Molecular markers in Rubus(Rosaceae) research and breeding. J Hortic Sci Biotech 74(2):149–160

    Article  CAS  Google Scholar 

  • Barritt BH, Crandall PC, Bristow PR (1979) Breeding for root rot resistance in red raspberry. J Am Soc Hortic Sci 104:92–94

    Google Scholar 

  • Bassil N, Gilmore B, Hummer K, Weber C, Dossett M, Agunga R, Rhodes E, Mockler T, Scheerens JC, Filichkin S, Lewers K, Peterson M, Finn CE, Graham J, Lee J, Fernandez-Fernandez F, Fernandez G, Yun SJ, Perkins-Veazie P (2014) Genetic and developing genomic resources in black raspberry. In: Garder SE (ed) II International Symposium on Biotechnology of Fruit Species, vol 1048, pp 19–24

    Google Scholar 

  • Beekwilder J, Jonker H, Meesters P, Hall RD, van der Meer IM, de Vos RCH (2005) Antioxidants in raspberry: on-line analysis links antioxidant activity to a diversity of individual metabolites. J Agric Food Chem 53(9):3313–3320

    Article  CAS  PubMed  Google Scholar 

  • Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense-mechanisms. New Phytol 127:617–633

    Article  CAS  PubMed  Google Scholar 

  • Birch ANE, Fenton B, Malloch G, Jones AT, Phillips MS, Harrower BE, Woodford JAT, Catley MA (1994) Ribosomal spacer length variability in the large raspberry aphid, Amphorophora idaei(Aphidinae: Macrosiphini). Insect Mol Biol 3:239–245

    Article  CAS  PubMed  Google Scholar 

  • Birch ANE, Jones AT, Fenton B, Malloch G, Geoghegan I, Gordon SC, Hillier J, Begg G (2002) Resistance-breaking aphid biotypes: constraints to sustainable control through plant breeding. Acta Hortic 587:315–317

    Article  Google Scholar 

  • Birch ANE, Begg GS, Squire GR (2011) How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J Exp Bot 62:321–3261

    Article  CAS  Google Scholar 

  • Briggs JB (1965) The distribution, abundance and genetic relationships of four strains of Rubusaphid (Amphorophora rubi (Kalt.)) in relation to raspberry breeding. J Hortic Sci 40:109–117

    Google Scholar 

  • Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA, Chagne D, Buck EJ, Gardiner SE (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125(2):311–327

    Article  CAS  PubMed  Google Scholar 

  • Bushakra JM, Krieger C, Deng D, Stephens MJ, Allan AC, Storey R, Symonds VV, Stevenson D, McGhie T, Chagne D, Buck EJ, Gardiner SE (2013) QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 126(3):847–865

    Article  CAS  PubMed  Google Scholar 

  • Bushakra JM et al (2015) A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag (4) conferring resistance to the aphid Amphorophora agathonica. Theor Appl Genet 128(8):1631–1646

    Article  PubMed  Google Scholar 

  • Cao K, Cui L, Zhou X, Ye L, Zou Z, Deng S (2015) Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front Plant Sci 6:1213

    Article  PubMed  Google Scholar 

  • Castañeda-Ovando A, Pacheco-Hernández ML, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  CAS  Google Scholar 

  • Castillo NRF, Reed BM, Graham J, Fernández-Fernández F, Bassil NV (2010) Microsatellite markers for raspberry and blackberry. J Am Soc Hortic Sci 135:271–278

    Google Scholar 

  • Castro P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primocane-fruiting and thornless tratits of tetraploid blackberry. Theor Appl Genet 126:2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Gols R, Benrey B (2015) Crop domestication and its impact on naturally selected trophic interactions. Ann Rev Entomol 60:35–58

    Article  CAS  Google Scholar 

  • Cheng GW, Breen PJ (1992) Cell count and size in relation to fruit size among strawberry cultivars. J Am Soc Hortic Sci 117(6):946–995

    Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Crane MB, Lawrence WJC (1931) Inheritance of sex, colour and hairiness in the raspberry, Rubus idaeus L. J Genet 24:243–255

    Article  Google Scholar 

  • Daubeny HA, Crandall PC, Eaton GW (1967) Crumbliness in the red raspberry with special reference to the ‘Sumner’ variety. Proc Am Soc Hortic Sci 9:224–230

    Google Scholar 

  • Daubeny HA, Freeman JA, Stace-Smith R (1978) The occurrence and some effects of raspberry bushy dwarf virus in red raspberry. J Am Soc Hortic Sci 103:519–522

    Google Scholar 

  • Dobson P, Graham J, Stewart D, Brennan R, Hackett CA, McDougall GJ (2012) Over-seasons analysis of quantitative trait loci affecting phenolic content and antioxidant capacity in raspberry. J Ag Food Chem 60(21):5360–5366

    Article  CAS  Google Scholar 

  • Dossett M, Finn CE (2010) Identification of resistance to the large raspberry aphid in black raspberry. J Am Soc Hortic Sci 135:438–444

    Google Scholar 

  • Dossett M, Bassil NV, Lewers KS, Finn CE (2012) Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers. Genet Resour Crop Evol 59:849–1865

    Article  CAS  Google Scholar 

  • Duncan JM, Kennedy DM, Seemuller E (1987) Identities and pathogenicities of Phytophthoraspp. causing root rot of red raspberry. Plant Pathol 36:276–289

    Article  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) Snapshot control of flowering in Arabidopsis. Cell 141:3

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knapp E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G et al (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94:169–191

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ, Katzir N (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-seq-based high-resolution QTL and eQTL mapping. Plant J 94:169–191

    Article  PubMed  CAS  Google Scholar 

  • Gordon SC, Williamson B, Graham J (2006) Current and future control for major arthropod and fungal diseases of red raspberry (Rubus idaeus) in Europe. In: Dris R (ed) Crops – growth, quality and biotechnology. WFL Publishers, Helsinki, pp p925–p950

    Google Scholar 

  • Gotame TP, Cullen DW, Graham J, Hedley PE, Smith K, Morris J, Andersen L, Petersen KK (2014) Effect of short term high temperature exposure on gene expression in raspberry cultivars. J Hortic Sci Biotechnol 89:532–541

    Article  Google Scholar 

  • Graham J, Jennings N (2009) Raspberry breeding. In: Jain SM, Priyadarshan PM (eds) In: breeding plantation tree crops: temperate species. Springer+Business Media, LLC, New York, pp 233–248

    Chapter  Google Scholar 

  • Graham J, Smith K, Woodhead M, Russell JR (2002) Development and use of simple sequence repeat SSR markers in Rubus species. Mol Ecol Notes 2:250–252

    Article  CAS  Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgensen L, Hackett CA, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Smith K, Tierney I, MacKenzie K, Hackett C (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botyritis and spur blight, rust and cane spot. Theor Appl Genet 112:818–831

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, Hein I, McCallum S (2009) Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, MacKenzie K, Tierney I, Cooke DEL, Bayer M, Jennings N (2011) Towards an understanding of the nature of resistance to Phytophthora root rot in red raspberry: is it mainly root vigour? Theor Appl Genet 123:585–601

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Hackett CA, Smith K, Karley A, Mitchell C, Roberts H, O’Neill T (2014) Genetic and environmental regulation of plant architectural traits and opportunities for pest and disease control in raspberry. Ann Appl Biol 165(3):318–328

    Article  Google Scholar 

  • Graham J, Smith K, McCallum S, Hedley P, Cullen D, Dolan A, Milne L, McNicol J, Hackett C (2015) Towards an understanding of crumbly fruit in red raspberry. Springerplus 4:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–117

    Article  Google Scholar 

  • Harrison RE, McNicol RJ, Cooke DEL, Duncan JM (1998) Recent developments in Phytophthora fragaria var rubiresearch at the Scottish Crop Research Institute. Acta Hortic 505:327–340

    Google Scholar 

  • Harrison RE, Brennan RM, Morel S, Hunter EA, Muir DD (1999) Genotypic, environmental and processing effects on the sensory character of Rubusand Ribes. Acta Hortic 505:23–31

    Google Scholar 

  • Hokanson SC (2001) SNiPs, chips, BACs, and YACs: are small fruits part of the party mix? Hortscience 36(5):859–871

    Google Scholar 

  • Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Zhou XF, Cao FB, Xia B, Zou YB (2015) No-tillage effect on rice yield in China: a meta-analysis. Field Crops Res 183:126–137

    Article  Google Scholar 

  • Iannetta PPM (1998) Multidisciplinary approaches and the improvement of fruit quality in red raspberry (Rubus idaeus L.). SCRI Annual Report 99–103

    Google Scholar 

  • Innes PJ, Tan DKY, Van Ogtrop F, Amthor JS (2015) Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agric For Meteorol 208:95–107

    Article  Google Scholar 

  • Jennings DL (1962) Some evidence on the influence of the morphology of raspberry canes upon their ability to be attacked by certain fungi. Hort Res 1:100–111

    Google Scholar 

  • Jennings DL (1967a) Balanced lethals and polymorphism in Rubus idaeus. Heredity 22:465–479

    Article  Google Scholar 

  • Jennings DL (1967b) Observations on some instances of partial sterility in red raspberry cultivars. Hort Res 7:116–122

    Google Scholar 

  • Jennings DL (1982) Further evidence on the effect of gene H, which confers cane hairiness, on resistance to raspberry diseases. Euphytica 31:953–956

    Article  Google Scholar 

  • Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic, London

    Google Scholar 

  • Jennings DL, Brydon E (1989) Further studies on breeding for resistance to Leptosphaeria coniothyrium in red raspberry and related species. Ann Appl Biol 115:499–506

    Article  Google Scholar 

  • Jennings DL, Carmichael E (1980) Anthocyanin variation in the genus Rubus. New Phytol 84:505–513

    Article  CAS  Google Scholar 

  • Jennings N, Dolan A (2014) Rubus: blackberry, raspberry and loganberry. In: George RAT (ed) Diseases of temperate horticultural plants. Wallingford, Oxon, CABI, pp 21–51

    Google Scholar 

  • Jennings DL, Williamson B (1982) Resistance to Botrytis cinerea in canes of Rubus idaeus and some related species. Ann Appl Biol 100:375–381

    Article  Google Scholar 

  • Jibran R, Dzierzon H, Bassil N, Bushakra JM, Edger PP, Sullivan S, Finn CE, Dossett M, Vining KJ, VanBuren R, Mockler TC, Liachko I, Davies KM, Foster TM, Chagné D (2018) Chromosome-scale scaffolding of the black raspberry (Rubus occidentalis L.) genome based on chromatin interaction data. Hort Res 5:8

    Google Scholar 

  • Jones AT (2002) Important virus diseases of Ribes, their diagnosis, detection and control. Acta Hortic 585:279–285

    Google Scholar 

  • Jones AT, McGavin WJ, Birch ANE (2000) Effectiveness of resistance genes to the large raspberry aphid, Amphorophora idaei Börner, in different raspberry (Rubus idaeus L.) genotypes and under different environmental conditions. Ann Appl Biol 136:107–113

    Article  CAS  Google Scholar 

  • Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett CA, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of quantitative traits loci (QTL). Mol Nutr Food Res 53:625–634

    CAS  PubMed  Google Scholar 

  • Keep E (1968) Inheritance of resistance to powdery mildew Sphaerotheca macularis (Fr.) Jaczewski in the red raspberry Rubus idaeus L. Euphytica 17:417–438

    Article  Google Scholar 

  • Keep E (1989) Breeding red raspberry for resistance to diseases and pests. Plant Breed Rev 6:245–321

    Google Scholar 

  • Keep E, Knight RL (1967) A new gene from Rubus occidentalis L. for resistance to strains 1, 2, and 3 of the Rubus aphid, Amphorophora rubi Kalt. Euphytica 16:209–214

    Article  Google Scholar 

  • Keep E, Knight VH, Parker JH (1977) Rubus coreanus as donor of resistance to cane diseases and mildew in red raspberry breeding. Euphytica 26:505–510

    Article  Google Scholar 

  • Knight VH (1991) Use of salmonberry, Rubus spectabilis Pursh., in red raspberry breeding. J Hortic Sci 66:575–581

    Article  Google Scholar 

  • Knight RL, Keep E (1958) Developments in soft fruit breeding at East Malling. Rep East Malling Res Stn 1957:62–67

    Google Scholar 

  • Knight RL, Keep E, Briggs JB (1959) Genetics of resistance to Amphorophora rubi (Kalt.) in the raspberry. I. The gene A1 from Baumforth A. J Genet 56:261–280

    Article  Google Scholar 

  • Knight RL, Briggs JB, Keep E (1960) Genetics of resistance to Amphorophora rubi (Kalt.) in the raspberry. II. The gene A 2 – A 7 from the American variety, Chief. Genet Res 1:319–331

    Article  Google Scholar 

  • Koricheva J, Nykanen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:E64–E75

    Article  PubMed  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lightle DM, Dossett M, Backus EA, Lee JC (2012) Location of the mechanism of resistance to Amphorophora agathonica (Hemiptera: Aphididae) in red raspberry. J Econ Entomol 105(4):1465–1470

    Google Scholar 

  • Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H (2011) Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet 122:225–238

    Article  CAS  PubMed  Google Scholar 

  • Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281:22190–22199

    Article  CAS  PubMed  Google Scholar 

  • Marinova D, Ribarova F (2007) HPLC determination of carotenoids in Bulgarian berries. J Food Compos Anal 20:370–374

    Article  CAS  Google Scholar 

  • Martinoia E, Massonneau A, Frangne N (2000) Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SD, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • McCallum S, Woodhead M, Hackett CA, Kassim A, Paterson A, Graham J (2010) Genetic and environmental effects influencing fruit colour. Theor Appl Genet 121:611–627

    Article  CAS  PubMed  Google Scholar 

  • McDougall GJ, Stewart D (2012) Berries and health: a review of the evidence. Food and Health Innovation Service report. p 1–20

    Google Scholar 

  • McKenzie K, Williamson S, Smith K, Woodhead M, McCallum S, Graham J (2015) Characterisation of the Gene H region in red raspberry: exploring its role in cane morphology, disease resistance, and timing of fruit ripening. J Hortic 2:3

    Google Scholar 

  • Mitchell C, Johnson SN, Gordon SC, Birch ANE, Hubbard SF (2010) Combining plant resistance and a natural enemy to control Amphorophora idaei. BioControl 55:321–327

    Article  Google Scholar 

  • Moles AT, Westoby M (2000) Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90:517–524

    Article  Google Scholar 

  • Molina-Bravo R, Fernandez GE, Sosinski BR (2014) Quantitative trait locus analysis of tolerance to temperature fluctuations in winter, fruit characteristics, flower color, and prickle-free canes in raspberry. Mol Breed 33(2):267–280

    Article  CAS  Google Scholar 

  • Morris ML, Heisey PW (2003) Estimating the benefits of plant breeding research: methodological issues and practical challenges. Agric Econ 29:241–252

    Article  Google Scholar 

  • Murant AF, Jennings DL, Chambers J (1973) The problem of crumbly fruit in raspberry nuclear stocks. Hortic Res 13:49–54

    Google Scholar 

  • Oliviusson P, Salaj J, Hakman I (2001) Expression pattern of transcripts encoding water channel-like proteins in Norway spruce (Picea abies). Plant Mol Biol 46:289–299

    Article  CAS  PubMed  Google Scholar 

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Ourecky DK (1975) Advances in fruit breeding. Purdue University Press, West Lafayette

    Google Scholar 

  • Paterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J (2013) Environmental and seasonal influences on red raspberry flavour volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet 126:33–48

    Article  CAS  PubMed  Google Scholar 

  • Pattison JA, Wilcox WF, Weber CA (2004) Assessing the resistance of red raspberry (Rubus idaeus L.) genotypes to Phytophthora fragariae var. rubiin hydroponic culture. Hortscience 39:1553–1556

    Google Scholar 

  • Pattison JA, Samuelian SK, Weber CA (2007) Inheritance of Phytophthora root rot resistance in red raspberry determined by generation means and molecular linkage analysis. Theor Appl Genet 115:225–236

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D’Amore M (1992) Environmental and economic costs of pesticide use. Bioscience 42:750–760

    Article  Google Scholar 

  • Pimentel D, Wilson C, McCullum C, Huang R, Dwen P, Flack J, Tran Q, Saltman T, Cliff B (1997) Economic and environmental benefits of biodiversity. BioScience 47:747–757

    Article  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    Article  CAS  PubMed  Google Scholar 

  • Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251

    Article  Google Scholar 

  • Raluca RA, Pamfil D, Graham J (2006) Mapping resistance of red raspberry (Rubus idaeus subsp. idaeus) to viral diseases – leaf spot (RLSV) and vein chlorosis (RVCV) on the genetic linkage map. USAMV-CN 63:318–319

    Google Scholar 

  • Sargent DJ, Fernández-Fernández F, Rys A, Knight VH, Simpson DW, Tobutt KR (2007) Mapping of A 1 conferring resistance to the aphid Amphorophora idaei and dw (dwarfing habit) in red raspberry using AFLP and microsatellite markers. BMC Plant Biol 7:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seeműller E, Duncan JM, Kennedy DM, Riedel M (1986) Phytophthora sp. als Ursache einer Wurzelfäule an Himbeere. Nachrit Deutsch Pflanzenschutz 38:17–21

    Google Scholar 

  • Seo E, Yu J, Ryu KH, Lee MM, Lee I (2011) WEREWOLF, a regulator of root hair pattern formation, controls flowering time through the regulation of FT mRNA stability. Plant Physiol 156:1867–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon S, Rühl M, de Montaigu A, Wötzel S, Coupland G (2015) Evolution of CONSTANS regulation and function after gene duplication produced a photoperiodic flowering switch in the Brassicaceae. Mol Biol Evol 32(9):2284–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson CG, Cullen DW, Hackett CA, Smith K, Hallett PD, McNicol J, Woodhead M, Graham J (2017) Mapping and expression of genes associated with raspberry fruit ripening and softening. Theor Appl Genet 130:557–572

    Article  CAS  PubMed  Google Scholar 

  • Smart L, Moskal W, Cameron K, Bennett A (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42:686–693

    Article  CAS  PubMed  Google Scholar 

  • Song J, Angel A, Howard M, Dean C (2012) Vernalisation-a cold induced epigenetic switch. J Cell Sci 125:3723–3373

    Article  CAS  PubMed  Google Scholar 

  • Sønsteby A, Myrheim U, Heiberg N, Heide OM (2009) Production of high yielding red raspberry long canes in a Northern climate. Sci Hortic 121:289–297

    Article  Google Scholar 

  • Stafne ET, Clark JR, Weber CA, Graham J, Lewers KS (2005) Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J Am Soc Hortic Sci 130:722–728

    CAS  Google Scholar 

  • Stephens MJ, Alspach PA, Beatson RA, Winefield C, Buck EJ (2012) Genetic parameters and development of a selection index for breeding red raspberries for processing. J Am Soc Hortic Sci 137(4):236–242

    CAS  Google Scholar 

  • Stewart D, McDougall GJ, Sungurtas J, Verrall S, Graham J, Martinussen I (2007) Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement. Mol Nutr Food Res 51:645–651

    Article  CAS  PubMed  Google Scholar 

  • VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87:535–547

    Google Scholar 

  • Wang SY, Chen CT, Wang CY (2009) The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem 112:676–684

    Article  CAS  Google Scholar 

  • Ward JA, Bhangoo J, Fernandez-Fernandez F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson B, Jennings DL (1986) Common resistance in red raspberry to Botrytis cinerea and Didymella applanata, two pathogens occupying the same ecological niche. Ann Appl Biol 109(3):581–593

    Article  Google Scholar 

  • Williamson B, Jennings DL (1992) Resistance to cane and foliar diseases in red raspberry (Rubus idaeus) and related species. In: Breeding for disease resistance. Springer Netherlands, New York, pp 59–70

    Google Scholar 

  • Williamson B, Jennings DL (1996) Common resistance in red raspberry to Botrytis cinereaand Didymella applanata, two pathogens occupying the same ecological niche. Ann Appl Biol 109:581–593

    Article  Google Scholar 

  • Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham J (2008) Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breed 22:555–563

    Article  CAS  Google Scholar 

  • Woodhead M, Weir A, Smith K, McCallum S, MacKenzie K, Graham J (2010) Functional markers for red raspberry. J Am Soc Hortic Sci 135:418–427

    Google Scholar 

  • Woodhead M, Weir A, Smith K, McCallum S, Jennings N, Hackett CA, Graham J (2013) Identification of QTLs for cane splitting in red raspberry (Rubus idaeus). Mol Breed 31:111–122

    Article  Google Scholar 

  • Yoshida K, Toyama-Kato Y, Kameda K, Kondo T (2003) Sepal colour variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode. Plant Cell Physiol 44:262–268

    Article  CAS  PubMed  Google Scholar 

  • Zait D (2010) Environmental and genetic influences on flavour characters in red raspberry (Rubus idaeus). PhD thesis. University of Strathclyde, Scotland

    Google Scholar 

  • Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan McCallum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCallum, S., Simpson, C., Graham, J. (2018). QTL Mapping and Marker Assisted Breeding in Rubus spp.. In: Graham, J., Brennan, R. (eds) Raspberry. Springer, Cham. https://doi.org/10.1007/978-3-319-99031-6_8

Download citation

Publish with us

Policies and ethics