Skip to main content
Log in

Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Protected cropping systems have been adopted by the UK industry to improve fruit quality and extend the current season. Further manipulation of season, alongside consideration of climate change scenarios, requires an understanding of the processes controlling fruit ripening. Ripening stages were scored from May to July across different years and environments from a raspberry mapping population. Here the interest was in identifying QTLs for the overall ripening process as well as for the time to reach each stage, and principal coordinate analysis was used to summarise the ripening process. Linear interpolation was also used to estimate the time (in days) taken for each plot to reach each of the stages assessed. QTLs were identified across four chromosomes for ripening and the time to reach each stage. A MADS-box gene, Gene H and several raspberry ESTs were associated with the QTLs and markers associated with plant height have also been identified, paving the way for marker assisted selection in Rubus idaeus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  PubMed  CAS  Google Scholar 

  • Atkinson CJ, Taylor L, Taylor JM, Lucas AS (1998) Temperature and irrigation effects on the cropping, development and quality of Cox’s Orange Pippin and Queen Cox apples. Sci Hort 75:59–81

    Article  Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, Colombo L (2008) AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. Plant J 54:1037–1048

    Article  CAS  Google Scholar 

  • Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008) Involvement of the MADS-Box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol 147:2054–2069

    Article  PubMed  CAS  Google Scholar 

  • Darnell RL, Cantliffe DJ, Kirschbum DS, Chandler CK (2003) The physiology of flowering in strawberry. Hort Rev 28:349–352

    Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Genstat (2007) Genstat for Windows Release 10.2. VSN International Ltd, Hemel Hempstead, Hertfordshire

    Google Scholar 

  • Graham J, Squire GR, Marshall B, Harrison RE (1997) Spatially-dependent genetic diversity within and between colonies of wild raspberry Rubus idaeus detected using RAPD markers. Mol Ecol 6:272–281

    Article  Google Scholar 

  • Graham J, Marshall B, Squire G (2003) Genetic differentiation over a spatial environmental gradient in wild Rubus idaeus populations. New Phytol 157:667–675

    Article  Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749

    Article  PubMed  CAS  Google Scholar 

  • Graham J, Smith K, Tierney I, MacKenzie K, Hackett CA (2006) Mapping gene H controlling cane pubescence in raspberry and its association with resistance to cane botrytis and spur blight, rust and cane spot. Theor Appl Genet 112:818–831

    Article  PubMed  CAS  Google Scholar 

  • Hein I, Williamson S, Russell J, Powell W (2005) Isolation of high molecular weight DNA suitable for BAC library construction from woody perennial soft-fruit species. BioTechniques 38:69–71

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540

    Article  PubMed  CAS  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  PubMed  CAS  Google Scholar 

  • Jennings DL (1987) Raspberries and blackberries: their breeding diseases and growth. Academic Press, London

    Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Kassim A, Poette J, Paterson A, Zait D, McCallum S, Woodhead M, Smith K, Hackett C, Graham J (2009) Environmental and seasonal influences on red raspberry anthocyanin antioxidant contents and identification of QTL. Mol Nut Food Res 53. doi:10.1002/mnfr.200800174

  • Klejnot J, Lin C (2004) A CONSTANS experience brought to light. Science 303:965–966

    Article  PubMed  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colourful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Lang GA (1987) Dormancy a new universal terminology. HortScience 22:817–820

    Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  PubMed  CAS  Google Scholar 

  • Måge F (1975) Dormancy in buds of red raspberry. Meldinger fra Norges Landbruskshøgskole 54:1–25

    Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  • Marshall B, Harrison RE, Graham J, McNicol JW, Wright G, Squire G (2001) Spatial trends of phenotypic diversity between colonies of wild raspberry Rubus idaeus. New Phytol 151:671–682

    Article  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R, Hedley PE, Taylor MA (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE (2003) Molecular and physiological mechanisms of bud dormancy regulation. Acta Hort 618:437–453

    CAS  Google Scholar 

  • Peitersen AK (1921) Blackberries of New England-genetic status of the plants. Bull Vermont Agricult Exper St 218:1–34

    Google Scholar 

  • Ruperti B, Cattivelli L, Pagni S, Ramina A (2002) Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). J Exp Bot 53:429–437

    Article  PubMed  CAS  Google Scholar 

  • Serce S, Hancock JF (2005) The temperature and photoperiod of regulation of flowering and runnering in the strawberries Fragaria chiloensis, F. virginiana, and F. x ananassa. Sci Hort 103:167–177

    Article  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12:358–367

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  PubMed  CAS  Google Scholar 

  • Tan FC, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17

    Article  CAS  Google Scholar 

  • Tani E, Polidoros AN, Tsaftaris AS (2007) Characterization and expression analysis of FRUITFUL and SHATTERPROOF-like genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27:649–659

    PubMed  CAS  Google Scholar 

  • Tapia-Lopez R, Garcia-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, Kim S, Acevedo F, Pelaz S, Alvarez-Buylla ER (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146:1182–1192

    Article  PubMed  CAS  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison–Wesley, Reading

    Google Scholar 

  • Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P (2003) SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15:1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V., Wageningen, Netherlands

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, Netherlands

    Google Scholar 

  • Verelst W, Twell D, de Folter S, Immink R, Saedler H, Münster T (2007) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8:R249

    Article  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (Rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Wang XL, Chen YP, Yu DY (2008) Expression of the MADS-box gene GmAGL15 in seed development of soybean. Acta Agronomica Sinica 34:330–332

    CAS  Google Scholar 

  • Weller JI, Wiggans GR, VanRaden PM, Ron M (1996) Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-trait experiment. Theor Appl Geneti 92:998–1002

    Article  Google Scholar 

  • Williamson B, Jennings DL (1992) Resistance to cane and foliar diseases in red raspberry (Rubus idaeus) and related species. Euphytica 63:59–70

    Article  Google Scholar 

  • Woodhead M, Russell J, Squirrell J, Hollingsworth M, Cardle L, Ramsay L, Gibby M, Powell W (2003) Development of EST-SSRs from the alpine lady-fern, Athyrium distentifolium. Mol Ecol Notes 3:287–290

    Article  CAS  Google Scholar 

  • Woodhead M, Smith K, Williamson S, Cardle L, Mazzitelli L, Graham J (2008) Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breeding 22:555–563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by The Scottish Government and HortLINK. The authors thank the SCRI sequencing and genotyping service and John Bradshaw for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Graham.

Additional information

Communicated by H. Nybom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, J., Hackett, C.A., Smith, K. et al. Mapping QTLs for developmental traits in raspberry from bud break to ripe fruit. Theor Appl Genet 118, 1143–1155 (2009). https://doi.org/10.1007/s00122-009-0969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0969-6

Keywords

Navigation