Skip to main content

Syntrophy in Methanogenic Degradation

  • Chapter
  • First Online:
(Endo)symbiotic Methanogenic Archaea

Part of the book series: Microbiology Monographs ((MICROMONO,volume 19))

Abstract

This chapter deals with microbial communities of bacteria and archaea which closely cooperate in methanogenic degradation and perform metabolic functions in this community that neither one of them could carry out alone. The methanogenic degradation of fatty acids, alcohols, most aromatic compounds, amino acids, and others is performed in partnership between fermenting bacteria and methanogenic Archaea. The energy available in these processes is very small, attributing only fractions of an ATP unit per reaction run to every partner. The biochemical strategies taken include in most cases reactions of substrate-level phosphorylation combined with various kinds of reversed electron transport systems in which part of the gained ATP is reinvested into thermodynamically unfavorable electron transport processes. Altogether, these systems represent fascinating examples of energy efficiency at the lowermost energy level that allows microbial life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aklujkar M, Haveman SA, DiDonato R, Chertkov O, Han CS, Land ML, Brown P, Lovley DR (2012) The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. BMC Genomics 13:690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison MJ (1970) Nitrogen metabolism in rumen microorganisms. In: Phillipson AT (ed) Physiology and digestion and metabolism in the ruminant. Oriel Press, Stockfield, pp 456–473

    Google Scholar 

  • Allison MJ, Bryant MP (1963) Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria. Arch Biochem Biophys 101:269–277

    Article  CAS  PubMed  Google Scholar 

  • Alperin MJ, Hoehler TM (2009) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. thermodynamic and physical constraints. Am J Sci 309:869–957

    Article  CAS  Google Scholar 

  • Amos DA, McInerney MJ (1990) Growth of Syntrophomonas wolfei on unsaturated short chain fatty acids. Arch Microbiol 154:31–36

    Article  CAS  Google Scholar 

  • Andreesen JR (1994) Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek 66:223–237

    Article  CAS  PubMed  Google Scholar 

  • Andreesen JR (2004) Glycine reductase mechanism. Curr Opin Chem Biol 8:454–461

    Article  CAS  PubMed  Google Scholar 

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genus Clostridium. In: Minton NP, Clarke DC (eds) Clostridia. Plenum Press, New York, pp 27–62

    Chapter  Google Scholar 

  • Baena S, Fardeau M-L, Labat M, Ollivier B, Garcia J-L, Patel BKC (1998) Aminobacterium colombiense, gen. nov., sp. nov., an amino-acid degrading anaerobe isolated from anaerobic sludge. Anaerobe 4:241–250

    Article  CAS  PubMed  Google Scholar 

  • Baena S, Fardeau M-L, Ollivier B, Labat M, Thomas P, Garcia J-L, Patel BKC (1999a) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49:975–982

    Article  CAS  PubMed  Google Scholar 

  • Baena S, Fardeau M-L, Woo THS, Ollivier B, Labat M, Patel BKC (1999b) Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, “Selenomonas acidaminophila” and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila, gen. nov., sp. nov., comb. nov. Int J Syst Bacteriol 49:969–974

    Article  CAS  PubMed  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40

    Article  CAS  PubMed  Google Scholar 

  • Beaty PS, Wofford NQ, McInerney MJ (1987) Separation of Syntrophomonas wolfei from Methanospirillum hungatei in syntrophic cocultures by using percoll gradients. Appl Environ Microbiol 53:1183–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Boiangiu CD, Jayamani E, Brügel D, Herrmann G, Kim J, Forzi L, Hedderich R, Vgenopolou I, Pierik AJ, Steuber J, Buckel W (2005) Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J Mol Microbiol Biotechnol 10:105–119

    Article  CAS  PubMed  Google Scholar 

  • Boll M, Kung JW, Ermler U, Martins BM, Buckel W (2016) Fermentative cyclohexane carboxylate formation in Syntrophus aciditrophicus. J Mol Microbiol Biotechnol 26:165–179

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, Harris HMB, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E, Peyret P, Gribaldo S, O’Toole PW, Brugère JF (2012) Genome sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194:6944–6945. https://doi.org/10.1128/JB.01867-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugère JF, Gribaldo S (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5(10):1769–1780. https://doi.org/10.1093/gbe/evt128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breznak JA, Kane MD (1990) Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Rev 7(3–4):309–313

    Article  CAS  PubMed  Google Scholar 

  • Brune A (2007) Microbiology: woodworker’s digest. Nature 450:487–488

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP (1977) Microbiology of the rumen. In: Stevenson MJ (ed) Duke’s physiology of domestic animals, 9th edn. Cornell University Press, Itaca, pp 287–304

    Google Scholar 

  • Bryant MP (1979) Microbial methane production – theoretical aspects. J Anim Sci 48:193–201

    Article  CAS  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol 59:20–31

    Article  CAS  PubMed  Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckel W (2001a) Unusual enzymes involved in five ways of glutamate fermentation. Appl Microbiol Biotechnol 57:263–273

    Article  CAS  PubMed  Google Scholar 

  • Buckel W (2001b) Sodium ion-translocating decarboxylases. Biochem Biophys Acta 1505:15–27

    CAS  PubMed  Google Scholar 

  • Buckel W, Barker HA (1974) Two pathways of glutamate fermentation by anaerobic bacteria. J Bacteriol 117:1248–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rotaru AE, Shrestha PM (2014) Promoting Interspecies Electron Transfer with Biochar. Sci Rep 4:5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng G, Plugge CM, Roelofsen W, Houwen FP, Stams AJM (1992) Selenomonas acidaminovorans sp.nov., a versatile thermophilic proton-reducing anaerobe able to grow by the decarboxylation of succinate to propionate. Arch Microbiol 157:169–175

    CAS  Google Scholar 

  • Cherepanov DA, Mulkidjanian AY, Junge W (1999) Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett 449:1–6

    Article  CAS  PubMed  Google Scholar 

  • Conklin A, Stensel HD, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78:486–496

    Article  CAS  PubMed  Google Scholar 

  • Conway de Macario E, Macario AJL (2018) Methanogenic archaea in humans and other vertebrates. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, Berlin, pp 103–119

    Google Scholar 

  • Costa E, Perez J, Kreft JU (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14:213–219

    Article  CAS  PubMed  Google Scholar 

  • Crable BR, Sieber JR, Mao X, Alvarez-Cohen L, Gunsalus RP, Ogorzalek Loo RR, Nguyen H, McInerney MJ (2016) Membrane complexes of Syntrophomonas wolfei involved in syntrophic butyrate degradation and hydrogen formation. Front Microbiol 7:1795. https://doi.org/10.3389/fmicb.2016.01795

    Article  PubMed  PubMed Central  Google Scholar 

  • De Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67:1800–1804

    Article  PubMed  PubMed Central  Google Scholar 

  • De Bok FAM, Luijten MLGC, Stams AJM (2002) Biochemical evidence for formate transfer in syntrophic propionate oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Bok FAM, Harmsen JM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., cocultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int J Syst Evol Microbiol 55:1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Stams AJM (1995) Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1:35–39

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994a) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in co- and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Cheng G, Stams AJM (1994b) Butyrate oxidation by Syntrophospora bryantii in coculture with different methanogens and in pure culture with pentenoate as electron acceptor. Appl Microbiol Biotechnol 42:647–652

    Article  CAS  Google Scholar 

  • Eichler B, Schink B (1986) Fermentation of primary alcohols and diols, and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch Microbiol 143:60–66

    Article  Google Scholar 

  • Engelbrecht S, Junge W (1997) ATP synthase: a tentative structural model. FEBS Lett 414:485–491

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, MSM J, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MS, Kartal B (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci U S A 113:12792–12796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang HHP, Chui HK, Li YY (1995) Microstructural analysis of UASB granules treating brewery wastewater. Water Sci Technol 31:129–135

    Article  Google Scholar 

  • Felchner-Zwirello M, Winter J, Gallert C (2013) Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl Microbiol Biotechnol 97:9193–9205

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T, Finlay BJ (2018) Free-living protozoa with endosymbiotic methanogens. In: Hackstein JHP (ed) (Endo)symbiotic methanogens. Springer, Berlin, pp 1–11

    Google Scholar 

  • Ferry JG (1992) Methanogenesis: ecology, physiology, biochemistry & genetics. Chapman & Hall, New York

    Google Scholar 

  • Fuchs G (2008) Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125:82–99

    Article  CAS  PubMed  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds – from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Graentzdoerffer A, Rauh D, Pich A, Andreesen JR (2003) Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol 179:116–130

    Article  CAS  PubMed  Google Scholar 

  • Grotenhuis JTC, Smit M, Plugge CM, Xu YS, Van Lammeren AAM, Stams AJM, Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol 57:1942–1949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harmsen HJM, Akkermans ADL, Stams AJM, de Vos WM (1996) Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Appl Environ Microbiol 62:2163–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, de Vos WM, Stams AJM (1998) Description of Syntrophobacter fumaroxidans sp.nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387

    Article  CAS  PubMed  Google Scholar 

  • Haroon MF, Hu SH, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan ZG, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    Article  CAS  PubMed  Google Scholar 

  • Hattori S, Galushko AS, Kamagata Y, Schink B (2005) Operation of the CO dehydrogenase/acetyl-CoA pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum. J Bacteriol 187:3471–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazlewood GP, Nugent JHA (1978) Leaf fraction 1 protein as a nitrogen source for the growth of a proteolytic rumen bacterium. J Gen Microbiol 106:369–371

    Article  CAS  Google Scholar 

  • He Z, Zhang Q, Feng Y, Luo H, Pan X, Gadd GM (2018) Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. Sci Total Environ 610–611:759–768

    Article  PubMed  CAS  Google Scholar 

  • Healy JB, Young LY (1978) Catechol and phenol degradation by a methanogenic population of bacteria. Appl Environ Microbiol 35(1):216–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Hobson PN, Wallace RJ (1982) Microbial ecology and activities in the rumen. Crit Rev Microbiol 9:253–320

    Article  CAS  PubMed  Google Scholar 

  • Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum thermopropionicum gen. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735

    CAS  PubMed  Google Scholar 

  • Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum propionicicum sp nov., an anaerobic, mesophilic, obligately syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 57:1487–1492

    Article  PubMed  Google Scholar 

  • Ingham CJ, Sprenkels A, Bomer JG, Molenaar D, van den Berg A, van Hycklama Vlieg JET, de Vos WM (2007) A highly subdivided microbial growth chip constructed on a porous ceramic support. Proc Natl Acad Sci U S A 46:18217–18222

    Article  Google Scholar 

  • Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate methabolism of Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 88:181–198

    Article  CAS  Google Scholar 

  • Kaden J, Galushko AS, Schink B (2002) Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178:53–58

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Kletzin A, Heimerl T, Flechsler J, van Niftrik L, Rachel R, Klingl A (2015) Cytochromes c in archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 6:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K (2008) The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res 18:442–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer DR, Nienhuis-Kuiper HE, Hansen TA (1988) Ethanol dissimilation in Desulfovibrio. Arch Microbiol 150:552–557

    Article  CAS  Google Scholar 

  • Kröger A, Biel S, Simon J, Gross R, Unden G, Lancaster CRD (2002) Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochim Biophys Acta 1553:23–38

    Article  PubMed  Google Scholar 

  • Laso-Perez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow HH, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539:396–401

    Article  CAS  PubMed  Google Scholar 

  • Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen WH, Dolfing J, Li D, Zhang Y, Zeng H, Chu W, Lee PH (2018) A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour Technol 247:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Lever MA, Rogers K, Karyn L, Lloyd KG, Overmann J, Schink B, Thauer RK, Hoehler TM, Jørgensen BB (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Ecol 39:688–728

    Article  CAS  Google Scholar 

  • Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl coenzyme a (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ Microbiol 17:1533–1547

    Article  PubMed  CAS  Google Scholar 

  • Limam RD, Chouari R, Mazéas L, Wu TD, Li T, Grossin-Debattista J, Guerquin-Kern J-L, Saidi M, Landoulsi A, Sghir A, Bouchez T (2014) Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose. Microbiol Open 3:157–167. https://doi.org/10.1002/mbo3.144

    Article  CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic and ecological diversity of methanogenic archaea. In: Wiegel J, Maier MJ, Adams MW (eds) Incredible anaerobes: from physiology to genomics to fuels, vol 1125. Annals of the New York Academy of Sciences, New York, pp 171–189

    Google Scholar 

  • Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterisation of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov, sp. nov. and Syntrophobacter wolinii. Int J Syst Bacteriol 49:545–556

    Article  CAS  PubMed  Google Scholar 

  • Liu FH, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  • Losey NA, Mus F, Peters JW, Le HM, McInerney MJ (2017) Syntrophomonas wolfei uses an NADH-dependent, ferredoxin-independent [FeFe]-hydrogenase to reoxidize NADH. Appl Environ Microbiol 83:e01335-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovley DR (2017) Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol 71:643–664

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26(3):152–157

    Article  CAS  Google Scholar 

  • Manzoor S, Muller B, Niazi A, Schnurer A, Bongcam-Rudloff E (2015) Working draft genome sequence of the mesophilic acetate oxidizing bacterium Syntrophaceticus schinkii strain Sp3. Stand Genomic Sci 10:99. https://doi.org/10.1186/s40793-015-0092-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzoor S, Bongcam-Rudloff E, Schnurer A, Muller B (2016) Genome-guided analysis and whole transcriptome profiling of the mesophilic syntrophic acetate oxidising bacterium Syntrophaceticus schinkii. PLoS One 11:e0166520. https://doi.org/10.1371/journal.pone.0166520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–U146

    Article  CAS  PubMed  Google Scholar 

  • McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–415

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Article  CAS  Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInerney MJ, Stams AJM, Boone DR (2005) Genus Syntrophobacter. In: Staley JT, Boone DR, Brenner DJ, de Vos P, Garrity GM, Goodfellow M, Krieg NR, Rainey FA, Schleifer KH (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 1021–1027

    Chapter  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. In: Wiegel J, Maier MJ, Adams MW (eds) Incredible anaerobes: from physiology to genomics to fuels, vol 1125. Annals of the New York Academy of Sciences, New York, pp 58–72

    Google Scholar 

  • Meijer WG, Nienhuis-Kuiper ME, Hansen TA (1999) Fermentative bacteria from estuarine mud: phylogenetic position of Acidaminobacter hydrogenoformans and description of a new type of Gram-negative, propionigenic bacterium as Propionibacter pelophilus gen. nov., sp. nov. Int J Syst Bacteriol 49:1039–1044

    Article  CAS  PubMed  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964

    Article  CAS  PubMed  Google Scholar 

  • Meulepas RJ, Jagersma CG, Khadem AF, Stams AJ, Lens PN (2010) Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol 87:1499–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montag D, Schink B (2016) Biogas process parameters--energetics and kinetics of secondary fermentations in methanogenic biomass degradation. Appl Microbiol Biotechnol 100:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Mountfort DO, Bryant MP (1982) Isolation and characterization of an anaerobic syntrophic benzoate-degrading bacterium from sewage sludge. Arch Microbiol 133:249–256

    Article  CAS  Google Scholar 

  • Müller N, Stingl U, Griffin BM, Schink B (2008) Dominant sugar utilizers in sediment of Lake Constance depend on syntrophic cooperation with methanogenic partner organisms. Environ Microbiol 10:1501–1511

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Schleheck D, Schink B (2009) Involvement of NADH:acceptor oxidoreducase and butyryl-CoA dehydrogenase in reversed electron transport during syntrophic butyrate oxidation by Syntrophomonas wolfei. J Bacteriol 191:6167–6177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Scherag FD, Pester M, Schink B (2015) Bacillus stamsii sp. nov., a facultatively anaerobic sugar degrader that is numerically dominant in freshwater lake sediment. Syst Appl Microbiol 38:379–389

    Article  PubMed  CAS  Google Scholar 

  • Nagase M, Matsuo T (1982) Interaction between amino-acid degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol Bioeng 24:2227–2239

    Article  CAS  PubMed  Google Scholar 

  • Nakano MM, Dailly YP, Zuber P, Clark DP (1997) Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol 179:6749–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanninga HJ, Gottschal JC (1985) Amino acid fermentation and hydrogen transfer in mixed cultures. FEMS Microbiol Ecol 31:261–269

    Article  CAS  Google Scholar 

  • Nanninga HJ, Drenth WJ, Gottschal JC (1987) Fermentation of glutamate by Selenomonas acidaminophila, sp. nov. Arch Microbiol 147:152–157

    Article  CAS  Google Scholar 

  • Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  CAS  PubMed  Google Scholar 

  • Oehler D, Poehlein A, Leimbach A, Müller N, Daniel R, Gottschalk G, Schink B (2012) Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 13:723. https://doi.org/10.1186/1471-2164-13-723 URL http://www.biomedcentral.com/1471-2164/13/723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orcutt B, Meile C (2008) Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences 5:1587–1599

    Article  CAS  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Article  CAS  PubMed  Google Scholar 

  • Pelletier E, Kreymeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Paslier DL (2008) “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol 190:2572–2579. https://doi.org/10.1128/JB.01248-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. sp. nov., a new anaerobic, sulfur-reducing acetate-oxidizing bacterium. Arch Microbiol 110:3–12

    Article  CAS  PubMed  Google Scholar 

  • Philipp B, Schink B (2012) Different strategies in anaerobic biodegradation of aromatic compounds: nitrate reducers versus strict anaerobes. Environ Microbiol Rep 4:469–478. https://doi.org/10.1111/j.1758-2229.2011.00304

    Article  CAS  PubMed  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  CAS  PubMed  Google Scholar 

  • Platen H, Janssen PH, Schink B (1994) Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions. FEMS Microbiol Lett 122:27–32

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Stams AJM (2005) Syntrophism among Clostridiales. In: Duerre P (ed) Handbook on Clostridia. CRC Press, Boca Raton, pp 769–784

    Google Scholar 

  • Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate-oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76

    Article  CAS  Google Scholar 

  • Plugge CM, Zoetendal EG, Stams AJM (2000) Caloramator coolhaasii, sp. nov. a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Bacteriol 50:1155–1161

    Article  CAS  Google Scholar 

  • Plugge CM, van Leeuwen JM, Hummelen T, Balk M, Stams AJM (2001) Elucidation of the pathways of catabolic glutamate conversion in three thermophilic anaerobic bacteria. Arch Microbiol 176:29–36

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Balk M, Zoetendal EG, Stams AJM (2002a) Gelria glutamica, gen. nov., sp. nov., a thermophilic obligate syntrophic glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52:401–406

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Balk M, Stams AJM (2002b) Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic syntrophic propionate-oxidizing spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399

    Article  CAS  PubMed  Google Scholar 

  • Plugge CM, Henstra AM, Worm P, Swarts DC, Paulitsch-Fuchs AH, Scholten JCM, Lykidis A, Lapidus AL, Goltsman E, Kim E, McDonald E, Rohlin L, Crable BR, Gunsalus RP, Stams AJM, McInerney MJ (2012) Complete genome sequence of Syntrophobacter fumaroxidans strain MPOBT. Stand Genomic Sci 10:91–106

    Article  CAS  Google Scholar 

  • Qiu YL, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74:2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. PNAS 105:10654–10658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy CA, Bryant MP, Wolin MJ (1972a) Characteristics of S organism isolated from Methanobacillus omelianskii. J Bacteriol 109:539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy CA, Bryant M, Wolin MJ (1972b) Ferredoxin- and nicotinamide adenine dinucleotide-dependent H2 production from ethanol and formate in extracts of S organism isolated from Methanobacillus omelianskii. J Bacteriol 110:126–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy CA, Bryant MP, Wolin MJ (1972c) Ferredoxin-dependent conversion of acetaldehyde to acetate and H2 in extracts of S organism. J Bacteriol 110:133–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437. https://doi.org/10.1038/nature12352

    Article  CAS  PubMed  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu FH, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014a) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7(1):408–415

    Article  CAS  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014b) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80(15):4599–4605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy F, Samain E, Dubourgier HC, Albagnac G (1986) Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145:142–147

    Article  CAS  Google Scholar 

  • Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707

    Article  CAS  PubMed  Google Scholar 

  • Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301

    Article  CAS  Google Scholar 

  • Schink B (1989) Mikrobielle Lebensgemeinschaften in Gewässersedimenten. Naturwissenschaften 76:364–372

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Stams AJM (2002) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York, p 25

    Google Scholar 

  • Schink B, Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G et al (eds) Granular anaerobic sludge; microbiology and technology. Pudoc, Wageningen, pp 5–17

    Google Scholar 

  • Schink B, Zeikus JG (1982) Microbial ecology of pectin decomposition in anoxic lake sediments. J Gen Microbiol 128:393–404

    CAS  Google Scholar 

  • Schink B, Montag D, Keller A, Müller N (2017) Hydrogen or formate – alternative key players in methanogenic degradation. Environ Microbiol Rep 9:189–202

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Müller N, Schink B, Schleheck D (2013) A proteomic view at the biochemistry of syntrophic butyrate oxidation in Syntrophomonas wolfei. Plos One. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0056905

  • Schmidt A, Frensch M, Schleheck D, Schink B, Müller N (2014) Degradation of acetaldehyde and its precursors by Pelobacter carbinolicus and P. acetylenicus. PLoS One 9(12):e115902. https://doi.org/10.1371/journal.pone.0115902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnürer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

    Article  PubMed  Google Scholar 

  • Schnürer A, Svensson BH, Schink B (1997) Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiol Lett 154:331–336

    Article  Google Scholar 

  • Schöcke L, Schink B (1997) Energetics of methanogenic benzoate degradation by Syntrophus gentianae in syntrophic coculture. Microbiology 143:2345–2351

    Article  PubMed  Google Scholar 

  • Schöcke L, Schink B (1999) Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Arch Microbiol 171:331–337

    Article  Google Scholar 

  • Scholten JCM, Culley DE, Brockman FJ, Wu G, Zhang W (2007) Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun 5:48–54

    Article  CAS  Google Scholar 

  • Schut GJ, Adams MW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779

    Article  CAS  PubMed  Google Scholar 

  • Shresta PM, Rotaru AE (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol. https://doi.org/103389/fmicb.2014.00237

  • Shrestha PM, Rotaru AE, Aklujkar M, Liu F, Shrestha M, Summers ZM, Malvankar N, Flores DC, Lovley DR (2013) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5(6):904–910

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, Gunsalus RP, McInerney MJ (2010) The genome of Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301

    CAS  PubMed  Google Scholar 

  • Sieber JR, Le H, McInerney MJ (2014) The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 16:177–188

    Article  CAS  PubMed  Google Scholar 

  • Sieber JR, Crable BR, Sheik CS, Hurst GB, Rohlin L, Gunsalus RP, McInerney MJ (2015) Proteomic analysis reveals metabolic and regulatory systems involved the syntrophic and axenic lifestyle of Syntrophomonas wolfei. Front Microbiol 6:115. https://doi.org/10.3389/fmicb.2015.00115

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa DZ, Smidt H, Alves MM, Stams AJM (2007) Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol 57:609–615

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66:271–294

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Hansen TA (1984) Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov., sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate reducing and methanogenic bacteria. Arch Microbiol 137:329–337

    Article  CAS  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, van Dijk J, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stickland LH (1934) The chemical reaction by which Cl. sporogenes obtains its energy. Biochem J 28:1746–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140:387–390

    Article  CAS  Google Scholar 

  • Stieb M, Schink B (1986) Anaerobic degradation of isovalerate by a defined methanogenic coculture. Arch Microbiol 144:291–295

    Article  CAS  Google Scholar 

  • Stieb M, Schink B (1989) Anaerobic degradation of isobutyrate by methanogenic enrichment cultures and by a Desulfococcus multivorans strain. Arch Microbiol 151:126–132

    Article  CAS  Google Scholar 

  • Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Szewzyk U, Schink B (1989) Degradation of hydroquinone, gentisate, and benzoate by a fermenting bacterium in pure or defined mixed culture. Arch Microbiol 151:541–545

    Article  CAS  Google Scholar 

  • Tarlera S, Muxi L, Soubes M, Stams AJM (1997) Caloramator proteoclasticus sp. nov., a moderately thermophilic anaerobic proteolytic bacterium. Int J Syst Bacteriol 47:651–656

    Article  CAS  PubMed  Google Scholar 

  • Tewes FJ, Thauer RK (1980) Regulation of ATP synthesis in glucose fermenting bacteria involved in interspecies hydrogen transfer. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. G Fischer, Stuttgart, pp 97–104

    Google Scholar 

  • Thauer RK (2011) Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14:292–299

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbe 1984: prokaryotes and eukaryotes part II. Cambridge University Press, Cambridge, pp 123–168

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MS, Stams AJ (2017) Reverse methanogenesis and respiration in methanotrophic archaea. Archaea 2017:1654237. https://doi.org/10.1155/2017/1654237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treude T, Orphan V, Knittel K, Gieseke A, House CH, Boetius A (2007) Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea. Appl Environ Microbiol 73:2271–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentine DL, Reeburgh VS, Blanton DC (2000) A culture apparatus for maintaining H2 at sub-nanomolar concentrations. J Microbiol Methods 39:243–251

    Article  CAS  PubMed  Google Scholar 

  • Van Kuijk BLM, Stams AJM (1996) Purification and characterization of malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB. FEMS Microbiol Lett 144:141–144

    Article  PubMed  Google Scholar 

  • Van Kuijk BLM, Schlösser E, Stams AJM (1998) Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB. Arch Microbiol 169:346–352

    Article  PubMed  Google Scholar 

  • van Lingen HJ, Plugge CM, Fadel JG, Kebreab E, Bannink A, Dijkstra J (2016) Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS One 11:10. https://doi.org/10.1371/journal.pone.0161362

    Article  CAS  Google Scholar 

  • Van Lingen HJ, Edwards JE, Vaidya JD, van Gastelen S, van den Bogert B, Saccenti E, Bannink A, Smidt H, Plugge CM, Dijkstra J (2017) Diurnal dynamics of gaseous and dissolved metabolites and microbiota composition in the bovine rumen. Front Microbiol 8:425

    PubMed  PubMed Central  Google Scholar 

  • Vervoort Y, Gutiérrez Linares A, Roncoroni M, Liu C, Steensels J, Verstrepen KJ (2017) High-throughput system-wide engineering and screening for microbial biotechnology. Curr Opin Biotechnol 46:120–125

    Article  CAS  PubMed  Google Scholar 

  • Viggi CC, Rosetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48(13):7536–7543

    Article  CAS  Google Scholar 

  • Walker CB, He Z, Yang ZK, Ringbauer JA Jr, Zhou J, Voordouw G, Wall JD, Hazen TC, Arkin AP, Stahl DA (2009) The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J Bacteriol 191:5793–5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallrabenstein C, Schink B (1994) Evidence of reversed electron transport involved in syntrophic butyrate and benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch Microbiol 162:136–142

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–U315

    Article  CAS  PubMed  Google Scholar 

  • Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Luke C, Reimann J (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8:941–955

    Article  CAS  PubMed  Google Scholar 

  • Widdel F, Rouviere PE, Wolfe RS (1988) Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150:477–481

    Article  CAS  Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worm P, Stams AJM, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157:280–289

    Article  CAS  PubMed  Google Scholar 

  • Worm P, Koehorst JJ, Visser M, Sedano-Núñez VT, Schaap PJ, Plugge CM, Sousa DZ, Stams AJM (2014) A genomic view on syntrophic versus non-syntrophic lifestyle in anaerobic fatty acid degrading communities. Biochim Biophys Acta 1837:2004–2016

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Liu X, Dong X (2006) Syntrophomonas cellicola sp. nov., a spore-forming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335

    Article  CAS  PubMed  Google Scholar 

  • Zehnder AJB (1978) Ecology of methane formation. In: Mitchell R (ed) Water pollution microbiology, vol 2. Wiley, London, pp 349–376

    Google Scholar 

  • Zhang C, Liu X, Dong X (2004) Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu X, Dong X (2005) Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Xu J, Yang G, Zhuang L (2014) Methanogenesis affected by the co-occurrence of iron(III)oxides and humic substances. FEMS Microbial Ecol 88:107–120

    Article  CAS  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Müller, N., Timmers, P., Plugge, C.M., Stams, A.J.M., Schink, B. (2018). Syntrophy in Methanogenic Degradation. In: Hackstein, J. (eds) (Endo)symbiotic Methanogenic Archaea. Microbiology Monographs, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-98836-8_9

Download citation

Publish with us

Policies and ethics