Skip to main content
Log in

Glycine metabolism in anaerobes

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Some strict anaerobic bacteria catalyze with glycine as substrate an internal Stickland reaction by which glycine serves as electron donor being oxidized by glycine-cleavage system or as electron acceptor being reduced by glycine reductase. In both cases, energy is conserved by substrate level phosphorylation. Except for the different substrate-activating proteins P B , reduction of sarcosine or betaine to acetyl phosphate involves inEubacterium acidaminophilum the same set of proteins as observed for glycine, e.g. a unique thioredoxin system as electron donor and an acetyl phosphate-forming protein P c interacting with the intermediarily formed Secarboxymethylselenoether bound to protein P A .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreesen JR (1994) Acetate via glycine: a different form of acetogenesis. In: Drake HL (Ed) Acetogenesis (pp 568–626). Chapman & Hall Inc., New York

    Google Scholar 

  • Andreesen JR, Schaupp A, Neurauter C, Brown A & Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose byClostridium thermoaceticum: effect of metals on growth, yield, enzymes, and the synthesis of acetate from CO2. J. Bacteriol. 114: 743–751

    Google Scholar 

  • Arkowitz RA & Abeles RH (1989) Identification of acetyl phosphate as the product of clostridial glycine reductase: evidence for an acyl enzyme intermediate. Biochemistry 28: 4639–4644

    Google Scholar 

  • Arkowitz RA & Abeles RH (1990) Isolation and characterization of a covalent selenocysteine intermediate in the glycine reductase system. J. Am. Chem. Soc. 112: 870–872

    Google Scholar 

  • Arkowitz RA & Abeles RH (1991) Mechanism of action of clostridial glycine reductase: isolation and characterization of a covalent acetyl enzyme intermediate. Biochemistry 30: 4090–4097

    Google Scholar 

  • Bader T, Rauschenbach P & Simon H (1982) On a hitherto unknown fermentation path of several amino acids by proteolytic clostridia. FEBS Lett. 140: 67–72

    Google Scholar 

  • Barker HA (1961) Fermentations of nitrogenous organic compounds. In: Gunsalus IC, Stanier RY (Eds) The bacteria, Vol II (pp 151–207). Academic Press, New York

    Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 50: 23–40

    Google Scholar 

  • Barker HA & Beck JV (1941) The fermentative decomposition of purines byClostridium acidi-urici andClostridium cylindrosporum. J. Biol. Chem. 141: 3–27

    Google Scholar 

  • Barker HA & Elsden SR (1947) Carbon dioxide utilization in the formation of glycine and acetic acid. J. Biol. Chem. 167: 619–620

    Google Scholar 

  • Barker HA, Ruben S & Beck JV (1940) Radioactive carbon as an indicator of carbon dioxide reaction. IV. The synthesis of acetic acid from CO2 byClostridium acidi-urici. Proc. Natl. Acad. Sci. (USA) 26: 477–482

    Google Scholar 

  • Barker HA, Volcani BE & Cardon BP (1948) Tracer experiments on the mechanism of glycine fermentation byDiplococcus glycinophilus. J. Biol. Chem. 173: 803–804

    Google Scholar 

  • Barnard GF & Akhtar M (1979) Mechanistic and stereochemical studies on the glycine reductase ofClostridium sticklandii. Eur. J. Chem. 99: 593–603

    Google Scholar 

  • Beuscher HU & Andreesen JR (1984)Eubacterium angustum sp.nov., a Gram-positive, anaerobic, non-sporeforming, obligate purine fermenting organism. Arch. Microbiol. 140: 2–8

    Google Scholar 

  • Blödorn B (1993) Isolierung eines 63 kDa-Proteins und vergleichende Charakterisierungen mit der Acetat-Kinase ausEubacterium acidaminophilum. Diploma thesis, University of Göttingen

  • Bourguignon J, Vauclare P, Merand V, Neuburger M & Douce R (1993) Glycine decarboxylasse complex from higher plants. Molecular cloning, tissue distribution and mass spectrometry analyses of the T-protein. Eur. J. Chem. 217: 377–386

    Google Scholar 

  • Breznak JA (1992) The genusSporomusa. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Vol 2 (pp 2014–2021). Springer Verlag, New York

    Google Scholar 

  • Britz ML & Wilkinson RG (1982) Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited. Can. J. Microbiol. 28: 291–300

    Google Scholar 

  • Brookfield DE, Green J, Ali ST, Machado RS & Guest JR (1991) Evidence for two protein-lipoylation activities inEscherichia coli. FEBS Lett. 295: 13–16

    Google Scholar 

  • Buckel W (1990) Amino acid fermentation: coenzyme B12-dependent and -independent pathways. In: Hauska G, Thauer R (Eds) The molecular basis of bacterial metabolism (pp 21–30). Springer Verlag, Berlin

    Google Scholar 

  • Cardon BP & Barker HA (1946) Two new amino-acid-fermenting bacteria,Clostridium propionicum andDiplococcus glycinophilus. J. Bacteriol. 52: 629–634

    Google Scholar 

  • Cardon BP & Barker HA (1947) Amino acid fermentations byClostridium propionicum andDiplococcus glycinophilus. Arch. Biochem. 12: 165–180

    Google Scholar 

  • Champion AB & Rabinowitz JC (1977) Ferredoxins and formyltetrahydrofolate synthetase: comparative studies withClostridium acidiurici, Clostridium cylindrosporum, and newly isolated anaerobic uric acid-fermenting strains. J. Bacteriol. 132: 1003–1020

    Google Scholar 

  • Claas JU (1991) Isolierung und Charakterisierung von Ferredoxin und Thioredoxin und deren Einbindung in den Elektronentransport vonEubacterium acidaminophilum. Diploma thesis, University of Göttingen

  • Cone JE, Del Rio RM & Stadtman TC (1977) Clostridial glycine reductase complex. Purification and characterization of the selenoprotein component. J. Biol. Chem. 252: 5337–5344

    Google Scholar 

  • Costilow RN (1977) Selenium requirement for the growth ofClostridium sporogenes with glycine as the oxidant in Stickland reaction. J. Bacteriol. 131: 366–368

    Google Scholar 

  • Csonka LN (1989) Physiological and genetic respones of bacteria to osmotic stress. Microbiol. Rev. 53: 121–147

    Google Scholar 

  • Dainty RH (1970) Purification and properties of threonine aldolase fromClostridium pasteurianum. Biochem. J. 117: 585–592

    Google Scholar 

  • Dienes L & Zamacnik PC (1952) Transformation of bacteria into L-forms by amino acids. J. Bacteriol. 64: 770–771

    Google Scholar 

  • Dietrichs D & Andrcesen JR (1990) Purification and comparative studies on dihydrolipoamide dehydrogenases from anaerobic glycine utilizing bacteriaPeptostreptococcus glycinophilus, Clostridium cylindrosporum, andClostridium sporogenes. J. Bacteriol. 172: 243–251

    Google Scholar 

  • Dietrichs D, Bahnweg M, Mayer F & Andreesen JR (1991a) Peripheral localization of the dihydrolipoaminde dehydrogenase in the purinolytic anaerobeClostridium cylindrosporum. Arch. Microbiol. 155: 412–414

    Google Scholar 

  • Dietrichs D, Meyer M, Rieth M & Andreesen JR (1991b) Interaction of selenoprotein Pa and the thioredoxin system, components of the NADPH-dependent reduction of glycine inEubacterium acidaminophilum andClostridium litorale. J. Bacteriol. 173: 5983–5991

    Google Scholar 

  • Dietrichs D, Meyer M, Schmidt B & Andreesen JR (1990) Purification of NADPH-dependent electron-transferring flavoproteins and N-terminal protein sequence data of dihydrolipoamide dehydrogenases from anaerobic, glycine-utilizing bacteria. J. Bacteriol. 172: 2088–2095

    Google Scholar 

  • Dürre P & Andreesen JR (1982a) Selenium-dependent growth and glycine fermentation byClostridium purinolyticum. J. Gen. Microbiol. 128: 1457–1466

    Google Scholar 

  • Dürre P & Andreesen JR (1982b) Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography. Anal. Biochem. 123: 32–40

    Google Scholar 

  • Dürre P & Andreesen JR (1983) Purine and glycine metabolism by purinolytic clostridia. J. Bacteriol. 154: 192–199

    Google Scholar 

  • Dürre P, Spahr R & Andreesen JR (1983) Glycine fermentation via glycine reductase inPeptococcus glycinophilus andPeptococcus magnus. Arch. Microbiol. 134: 127–135

    Google Scholar 

  • Eklund H, Gleason FK & Holmgren A (1991) Structural and functional relations among thioredoxins of different species. Proteins: Struct. Funct. Genet. 11: 13–28

    Google Scholar 

  • Elsden SR & Hilton MG (1979) Amino acid utilization patterns in clostridial taxonomy. Arch. Microbiol. 123: 137–141

    Google Scholar 

  • Fendrich C, Hippe H & Gottschalk G (1990)Clostridium halophilum sp. nov. andC. litorale sp. nov., an obligate halophilic and marine species degrading betaine in the Stickland reaction. Arch. Microbiol. 154: 127–132

    Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH & Lawless JG (1978) HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth. J. Mol. Evol 11: 293–311

    Google Scholar 

  • Finkelstein JD & Martin JJ (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J. Biol. Chem. 259: 9508–9513

    Google Scholar 

  • Foubert EL & Douglas HC (1948) Studies on the anaerobic micrococci. V. Taxonomic considerations. J. Bacteriol. 56: 25–34

    Google Scholar 

  • Fratini A, Powell BC & Rogers GE (1993) Sequence, expression, and evolutionary conservation of a gene encoding a glycine/tyrosine-rich keratin-associated protein of hair. J. Biol. Chem. 268: 4511–4518

    Google Scholar 

  • Freudenberg W & Andreesen JR (1989) Purification and partial characterization of the glycine decarboxylase multienzyme complex fromEubacterium acidaminophilum. J. Bacteriol. 171: 2209–2215

    Google Scholar 

  • Freudenberg W, Dietrichs D, Lebertz H & Andreesen JR (1989a) Isolation of an atypically small lipoamide dehydrogenase involved in the glycine decarboxylase complex fromEubacterium acidaminophilum. J. Bacteriol. 171: 1346–1354

    Google Scholar 

  • Freudenberg W, Mayer F & Andreesen JR (1989b) Immunocytochemical localization of proteins P1, P2, P3 of glycine decarboxylase, and of the selenoprotein PA of glycine reductase, all involved in anaerobic glycine metabolism ofEubacterium acidaminophilum. Arch. Microbiol. 152: 182–188

    Google Scholar 

  • Fryer TF & Mead GC (1979) Development of a selective medium for the isolation ofClostridium sporogenes and related organisms. J. Appl. Bacteriol. 47: 425–431

    Google Scholar 

  • Garcia GE & Stadtman TC (1991) Selenoprotein A component of the glycine reductase complex fromClostridium purinolyticum: nucleotide sequence of the gene shows that selenocysteine is encoded by UGA. J. Bacteriol. 173: 2093–2098

    Google Scholar 

  • Garcia GE & Stadtman TC (1992)Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing and expression in Escherichia coli. J. Bacteriol. 174: 7080–7089

    Google Scholar 

  • Gariboldi RT & Drake HL (1984) Glycine synthase of the purinolytic bacterium,Clostridium acidiurici. Purification of the glycine-CO2 exchange system. J. Biol. Chem. 259: 6085–6089

    Google Scholar 

  • Gauglitz U (1988) Anaerober mikrobieller Abbau von Kreatin, Kreatinin und N-Methylhydantoin. PhD thesis, University of Göttingen

  • Giesel H & Simon H (1983) On the occurrence of enoate and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation byPeptostreptococcus anaerobius. Arch. Microbiol. 135: 51–57

    Google Scholar 

  • Giffhorn S (1980) Verwertung von Methanol, Ethanol und Lactat durchClostridium formicoaceticum. Diploma thesis, University of Göttingen

  • Gleason FK & Holmgren A (1988) Thioredoxin and related proteins in procaryotes. FEMS Microbiol. Rev 54: 271–297

    Google Scholar 

  • Golovchenko NP, Belokopytov BF & Akimenko VK (1983) Threonine catabolism in the bacteriumClostridium sticklandii. Biochemistry (USSR) 47: 969–974

    Google Scholar 

  • Gottwald M, Andreesen JR, LeGall J & Ljungdahl LG (1975) Presence of cytochrome and menaquinone inClostridium formicoaceticum andClostridium thermoaceticum. J. Bacteriol. 122: 325–328

    Google Scholar 

  • Granderath K (1993) Charakterisierung der Formiat-Dehydrogenase und Aldehyd-Dehydrogenase als wolframhaltige Proteine vonEubacterium acidaminophilum. PhD thesis, University of Göttingen

  • Hammes W, Schleifer KH & Kandler O (1973) Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116: 1029–1053

    Google Scholar 

  • Heaton MP, Johnston RB & Thompson TL (1987) Controlled cell lysis and protoplast formation by enhancement of inhibitors of alanine racemase by glycine. Biochem. Biophys Res. Commun. 149: 576–579

    Google Scholar 

  • Heider J & Böck A (1993) Selenium metabolism in microorganisms. Adv. Microbial. Physiol. 35: 71–133

    Google Scholar 

  • Heider J, Baron C & Böck A (1992) Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into proteins. EMBO J. 11: 3759–3766

    Google Scholar 

  • Heijthuijsen JHFG & Hansen TA (1989a) Anaerobic degradation of betaine by marineDesulfobacterium strains. Arch. Microbiol. 152: 393–396

    Google Scholar 

  • Heijthiujsen JHFG & Hansen TA (1989b) Betaine fermentation and oxidation by marineDesulfuromonas strains. Appl. Environ. Microbiol. 55: 965–969

    Google Scholar 

  • van den Hende C, Oyaert W & Boukert TH (1963) Metabolism of glycine, alanine, valine, leucine and isoleucine by rumen bacteria. Res. Vet. Sci. 4: 382–389

    Google Scholar 

  • Hermann M, Knerr HJ, Mai N, Groß A & Kaltwasser H (1992) Creatinine and N-methylhydantoin degradation in two newly isolatedClostridium species. Arch. Microbiol. 157: 395–401

    Google Scholar 

  • Hormann K & Andreesen JR (1989) Reductive cleavage of sarcosine and betaine byEubacterium acidaminophilum via enzyme systems different from glycine reductase. Arch. Microbiol. 153: 50–59

    Google Scholar 

  • Kamlage B & Blaut M (1993) Isolation of a cytochrome-deficient mutant strain ofSporomusa sphaeroides not capable of oxidizing methyl groups. J. Bacteriol. 175: 3043–3050

    Google Scholar 

  • Kamlage B, Boelter A & Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in twoSporomusa species and their expression during growth on selected substrates. Arch. Microbiol. 159: 189–196

    Google Scholar 

  • Karlsson JL & Barker HA (1949) Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis byClostridium acidi-urici. J. Biol. Chem. 178: 891–902

    Google Scholar 

  • Kearny JJ & Sagers RD (1972) Formate dehydrogenase fromClostridium acidi-urici. J. Bacteriol. 109: 152–161

    Google Scholar 

  • Keller B, Sauer N & Lamb CJ (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 7: 3625–3633

    Google Scholar 

  • Klein SM & Sagers RD (1966a) Glycine metabolism. I. Properties of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine inPeptococcus glycinophilus. J. Biol. Chem. 241: 197–207

    Google Scholar 

  • Klein SM & Sagers RD (1966b) Glycine metabolism. II. Kinetic and optical studies on the glycine decarboxylase system fromPeptococcus glycinophilus. J. Biol. Chem. 241: 206–209

    Google Scholar 

  • Klein SM & Sagers RD (1967a) Glycine metabolism. III. A flavin-linked dehydrogenase associated with the glycine cleavage system inPeptococcus glycinophilus. J. Biol. Chem. 242: 297–300

    Google Scholar 

  • Klein SM & Sagers RD (1967b) Glycine metabolism. IV. Effect of borohydride reduction on the pyridoxal phosphate-containing glycine decarboxylase fromPeptococcus glycinophilus. J. Biol. Chem. 242: 301–305

    Google Scholar 

  • Koo SP & Booth IR (1994) Quantitative analysis of growth stimulation by glycine betaine inSalmonella typhimurium. Microbiology (London) 140: 617–621

    Google Scholar 

  • Lamark T, Styrvold OB & Strom AR (1992) Efflux of choline and glycine betaine from osmoregulating cells ofEscherichia coli. FEMS Microbiol. Lett 96: 149–154

    Google Scholar 

  • Lang H, Polster M & Brandsch R (1991) Rat liver dimethylglycine dehydrogenase. Flavinylation of the enzyme in hepatocytes in primary culture and characterization of a cDNA clone. Eur. J. Biochem. 198: 793–799

    Google Scholar 

  • Lebertz H (1984) Selenabhängiger Glycin-Stoffwechsel in anaeroben Bakterien und vergleichende Untersuchungen zur Glycin-Reduktase und zur Glycin-Decarboxylase. PhD thesis, University of Göttingen

  • Lebertz H & Andreesen JR (1988) Glycine fermentation byClostridium histolyticum. Arch. Microbiol. 150: 11–14

    Google Scholar 

  • Lee MJ & Zinder SH (1988) Isolation and characterization of a thermophilic bacterium which oxidzes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54: 124–129

    Google Scholar 

  • Lovitt RW, Morris JG & Kell DB (1987) The growth and nutrition ofClostridium sporogenes NCIB 8053 in defined media. J. Appl. Bacteriol. 62: 71–80

    Google Scholar 

  • Lübbers M & Andreesen JR (1993) Components of glycine reductase fromEubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein P A . Eur. J. Biochem. 217: 791–798

    Google Scholar 

  • Marmelak R & Quastel JH (1953) Amino acid interactions in strict anaerobes (Cl. sporogenes). Biochim. Biophys. Acta 12: 103–120

    Google Scholar 

  • Marthi B & Lighthart B (1990) Effects of betaine on enumeration of airborne bacteria. Appl. Environ. Microbiol. 56: 1286–1289

    Google Scholar 

  • Mead GC (1971) The amino acid-fermenting Clostridia. J. Gen. Microbiol. 67: 47–56

    Google Scholar 

  • Meyer M (1993) Beziehungen des Thioredoxin-Systems zur Glycin-, Sarkosin- und Betain-Reduktase in anaeroben, Aminosäure verwertenden Bakterien. PhD thesis, University of Göttingen

  • Meyer M, Dietrichs D, Schmidt B & Andreesen JR (1991) Thioredoxin elicits a new dihydrolipoamide dehydrogenase activity by interaction with the electron-transferring flavoprotein inClostridium litorale andEubacterium acidaminophilum. J. Bacteriol. 173: 1509–1513

    Google Scholar 

  • Molenaar D, Hagting A, Alkema H, Driessen AJM, & Konings WN (1993) Characteristics and osmoregulatory roles of uptake systems for proline and glycine betaine inLactococcus lactis. J. Bacteriol. 175: 5438–5444

    Google Scholar 

  • Möller B, Hippe H & Gottschalk G (1986) Degradation of various amine compounds by mesophilic clostridia. Arch. Microbiol. 145: 85–90

    Google Scholar 

  • Möller B, Oßmer R, Howard BH, Gottschalk G & Hippe H (1984)Sporomusa, a new genus of gram-negative anaerobic bacteria includingSporomusa sphaeroides spec. nov. andSporomusa ovata spec. nov. Arch. Microbiol. 139: 388–396

    Google Scholar 

  • Müller E, Fahlbusch K, Walther R & Gottschalk G (1981) Formation of N, N-dimethylglycine, acetic acid, and butyric acid from betaine byEubacterium limosum. Appl. Environ. Microbiol. 42: 439–445

    Google Scholar 

  • Murao S, Hinode Y, Matsumura E, Numata A, Kawai K, Ohishi H, Jin H, Oyama H & Shin T (1992) A novel laccase inhibitor, N-hydroxyglycine, produced byPenicillium citrinum YH-31. Biosci. Biotech. Biochem. 56: 987–988

    Google Scholar 

  • Nagase M & Matsuo T (1982) Interactions between amino-acid-degrading bacteria and methanogenic bacteria in anaerobic digestion. Biotechnol. Bioeng. 24: 2227–2239

    Google Scholar 

  • Naumann E, Hippe H & Gottschalk G (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by aClostridium sporogenes — Methanosarcinabarkeri coculture. Appl. Environ. Microbiol. 45: 474–483

    Google Scholar 

  • Newmann EB, D'Ari & Lin RT (1992) The leuchine-Lrp regulon inEscherichia coli: a global response in search of a raison d'etre. Cell 68: 617–619

    Google Scholar 

  • Nisman B (1954) The Stickland reaction. Bacteriol. Rev. 18: 16–42

    Google Scholar 

  • Okamura-Ikeda K, Ohmura Y, Fujiwara K & Motakawa Y (1993) Cloning and nucleotide sequence of the gcv operon encoding theEscherichia coli glycine-cleavage system. Eur. J. Biochem. 216: 539–548

    Google Scholar 

  • Oppermann FB & Steinbüchel (1994) Identification and molecular characterization of the aco genes encoding thePelobacter carbinolicus acetoin dehydrogenase enzyme system. J. Bacteriol. 176: 469–485

    Google Scholar 

  • Oren A (1990) Formation and breakdown of glycine betaine and trimethylamine in hypersaaline environments. Antonie van Leeuwenhoek 58: 291–298

    Google Scholar 

  • Phelps TJ & Zeikus JG (1984) Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol. 48: 1088–1095

    Google Scholar 

  • Pinsent J (1954) The need of selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenase group of bacteria. Biochem. J. 57: 10–16

    Google Scholar 

  • van Poelje PD & Snell EE (1990) Pyruvoyl-dependent enzymes. Annu. Rev. Biochem. 59: 29–59

    Google Scholar 

  • Porter DH, Cook RJ & Wagner C (1985) Enzymatic properties of dimethylglycine dehydrogenase and sarcosine dehydrogenase from rat liver. Arch. Biochem. Biophys 243: 396–407

    Google Scholar 

  • Rhodes D & Hanson AD (1993) Quarternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 44: 357–384

    Google Scholar 

  • Richarme G (1989) Purification of a new dihydrolipoamide dehydrogenase fromEscherichia coli. J. Bacteriol. 171: 6580–6585

    Google Scholar 

  • Rieth M (1987) Untersuchungen zur selenabhängigen Glycinreduktase ausEubacterium acidaminophilum. PhD thesis, University of Göttingen

  • Robinson JR, Klein SM & Sagers RD (1973) Glycine metabolism. Lipoic acid as the prosthetic group in the electron transfer protein P2 fromPeptococcus glycinophilus. Biol. Chem. 248: 5319–5323

    Google Scholar 

  • Schiefer-Ullrich H & Andreesen JR (1985)Peptostreptococcus barnesae sp. nov., a Gram-positive, anaerobic, obligately purine utilizing coccus from chicken feces. Arch. Microbiol. 143: 26–31

    Google Scholar 

  • Schiefer-Ullrich H, Wagner R, Dürre P & Andreesen JR (1984) Comparative studies on physiology and taxonomy of obligately purinolytic clostridia. Arch. Microbiol. 138: 345–353

    Google Scholar 

  • Schirch V & Strong WB (1989) Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch. Biochem. Biophys. 269: 371–380

    Google Scholar 

  • Schleicher A (1990) Anaerober Abbau von Kreatinin und Kreatin unter Beteiligung von Reduktase-Reaktionen. Diploma thesis, University of Göttingen

  • Schräder T & Andreesen JR (1992) Purification and characterization of protein Pc, a component of glycine reductase fromEubacterium acidaminophilum. Eur. J. Biochem. 206: 79–85

    Google Scholar 

  • Schwartz AC, Quecke W & Brenschede (1979) Inhibition by glycine of the catabolic reduction of proline inClostridium sticklandii: evidence on the regulation of amino acid reduction. Z. Allg. Microbiol. 19: 211–220

    Google Scholar 

  • Seto B (1980) The Stickland reaction. In: Knowles CJ (Ed) Diversity in bacterial respiratory systems, Vol II (pp 49–64). CRC Press, Boca Raton

    Google Scholar 

  • Sliwkowski MX & Stadtman TC (1987) Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex. J. Biol. Chem. 262: 4899–4904

    Google Scholar 

  • Sliwkowski MX & Stadtman TC (1988a) Selenoprotein A of the clostridial glycine reductase complex: purification and amino acid sequence of the selenocysteine-containing peptide. Proc. Natl. Acad. Sci. (USA) 85: 368–371

    Google Scholar 

  • Sliwkowski MX & Stadtman TC (1988b) Selenium-dependent glycine reductase: differences in physicochemical properties and biological activities of selenoprotein A components isolated fromClostridium sticklandii andClostridium purinolyticum. Biofactor. 1: 293–296

    Google Scholar 

  • Stadtman TC (1962) Studies on the enzymic reduction of amino acids. V. coupling of a DPNH-generating system to glycine reduction. Arch. Biochem. Biophys. 99: 36–44

    Google Scholar 

  • Stadtman TC (1965) Electron transport proteins ofClostridium sticklandii. In: San Pietro A (Ed) Non-heme-iron proteins, role in energy conservation (pp 439–445) Antioch Press, Yellow Springs

  • Stadtman TC (1966) Glycine reduction to acetate and ammonia: identification of ferredoxin and another low molecular weight acidic protein as components of the reductase system. Arch. Biochem. Biophys. 113: 9–19

    Google Scholar 

  • Stadtman TC (1978) Selenium-dependent clostridial glycine reductase. Meth. Enzymol. 53: 373–382

    Google Scholar 

  • Stadtman TC (1989) Clostridial glycine reductase Protein C, the acetyl group acceptor catalyzes the arsenate-dependent decomposition of acetyl phosphate. Proc. Natl. Acad. Sci. (USA) 86: 7853–7856

    Google Scholar 

  • Stadtman TC & Davis JN (1991) Glycine reductase protein C. Properties and characterization of its role in the reductive cleavage of Se-carboxymethylselenoprotein A. J. Biol. Chem. 266: 22147–22153

    Google Scholar 

  • Stadtman TC & Elliott P (1956) A new ATP-forming reaction: the reductive deamination of glycine. J. Am. Chem. Soc. 78: 2020–2021

    Google Scholar 

  • Stadtman TC, Elliott P & Tiemann L (1958) Studies on the enzymic reduction of amino acids. III. Phosphate esterification coupled with glycine reduction. J. Biol. Chem. 231: 961–973

    Google Scholar 

  • Stadtman TC & White FH (1954) Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J. Bacteriol. 67: 651–657

    Google Scholar 

  • Stams AJM & Hansen TA (1984) Fermentation of glutamate and other compounds byAcidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch. Microbiol. 137: 329–337

    Google Scholar 

  • Stams AJM, Hansen TA & Skyring GW (1985) Utilization of amino acids as energy substrates by two marineDesulfovibrio strains. FEMS Microbiol. Ecol. 31: 11–15

    Google Scholar 

  • Steiert JG, Rolfes RJ, Zalkin H & Stauffer GV (1990a) Regulation of theEscherichia coli gly A gene by the pur R gene product. J. Bacteriol. 172: 3799–3803

    Google Scholar 

  • Steiert PS, Stauffer LT & Stauffer GV (1990b) The lpd gene product functions as the L protein in theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 172: 6142–6144

    Google Scholar 

  • Stickland LH (1934) The chemical reaction by whichCl. sporogenes obtains its energy. Biochem. J. 28: 1746–1759

    Google Scholar 

  • Stickland LH (1935a) Studies in the metabolism of the strict anaerobes (GenusClostridium) II. The reduction of proline byCl. sporogenes. Biochem. J. 29: 288–290

    Google Scholar 

  • Stickland LH (1935b) Studies in the metabolism of the strict anaerobes (GenusClostridium) III. The oxidation of alanine byCl. sporogenes. IV. The reduction of glycine byCl. sporogenes. Biochem. J. 29: 889–898

    Google Scholar 

  • Szulmajster J (1958) Bacterial fermentation of creatinine. I. Isolation of N-methyl-hydantoin. J. Bacteriol. 75: 633–639

    Google Scholar 

  • Szulmajster J (1960) Le carbamyl-phosphate, intermediaire dans la degradation de la creatinine per des extraits enzymatique d'Eubacterium sarcosinogenum. Biochim. Biophys. Acta 44: 173–175

    Google Scholar 

  • Szulmajster J & Gardiner RC (1960) Enzymatic formation of polyphosphate in an anaerobic bacterium. Biochim. Biophys. Acta 39: 165–167

    Google Scholar 

  • Szulmajster J & Kaiser P (1960) Etude d'une nouvelle espece anaerobie:Eubacterium sarcosinogenum nov. sp. Ann. Inst. Pasteur. 98: 774–777

    Google Scholar 

  • Tanaka H & Stadtman TC (1979) Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components. J. Biol. Chem. 254: 447–452

    Google Scholar 

  • Tanaka K & Pfennig N (1988) Fermentation of 2-methoxyethanol byAcetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149: 181–187

    Google Scholar 

  • Thauer, RK, Jungermann K & Decker K (1977) Energy conservation in chemotro-phic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Turner DC & Stadtman TC (1973) Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys. 154: 366–381

    Google Scholar 

  • Tziaka C (1987) Untersuchungen zur Charakterisierung von Stämmen der GattungenPeptococcus undPeptostreptococcus. PhD thesis, University of Göttingen

  • Uhde A (1990) Wachstumsphysiologische Untersuchungen zum Abbau von Aminosäuren und mögliche Funktion eines elektronentransferierenden Flavoproteins beiClostridium sticklandii. Diploma thesis, University of Göttingen

  • Vanden Boom TJ, Reed KE & Cronan JE (1991) Lipoic acid metabolism inEscherichia coli: isolation of null mutants defective in lipoic acid biosynthesis, molecular cloning and characterization of the E. coli lip locus, and identification of the lipolyated protein of the glycine cleavage system. J. Bacteriol. 173: 6411–6420

    Google Scholar 

  • Venugopalan V (1980) Influence of growth conditions on glycine reductase ofClostridium sporogenes. J. Bacteriol. 141: 386–388

    Google Scholar 

  • Vogels GD & van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403–468

    Google Scholar 

  • Waber JL & Wood HG (1979) Mechanism of acetate synthesis from CO2 byClostridium acidi-urici. J. Bacteriol. 140: 468–478

    Google Scholar 

  • Wagner M (1994) Isolierung und Charakterisierung der Threonin-Dehydrogenase ausClostridium sticklandii. Diploma thesis, University of Göttingen

  • Wagner R & Andreesen JR (1987) Accumulation and incorporation of185W-tungsten into proteins ofClostridium acidiurici andClostridium cylindrosporum. Arch. Microbiol. 147: 295–299

    Google Scholar 

  • Wagner R, Cammack R & Andreesen JR (1984) Purification and characterization of xanthine dehydrogenase fromClostridium acidiurici grown in the presence of selenium. Biochim. Biophys. Acta 791: 63–74

    Google Scholar 

  • Wang Q, Wu J, Friedberg D, Plakto J & Calvo JM (1994) Regulation of theEscherichia coli lrp gene. J. Bacteriol. 176: 1831–1839

    Google Scholar 

  • Williams CH (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase — a family of flavoenzyme transhydroge-nases. In: Müller F (Ed) Chemistry and biochemistry of flavoenzymes, Vol 3 (pp 121–211). CRC Press, Boca Raton

    Google Scholar 

  • Wilson RL & Stauffer GV (1994) DNA sequence and characterization of GcvA, a LysR family regulatory protein for theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 176: 2862–2868

    Google Scholar 

  • Wilson RL, Stauffer LT & Stauffer GV (1993a) Roles of the GevA and PurR proteins in negative regulation of theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 175: 5129–5134

    Google Scholar 

  • Wilson RL, Steiert PS & Stauffer GV (1993b) Positive regulation of theEscherichia coli glycine cleavage enzyme system. J. Bacteriol. 175: 902–904

    Google Scholar 

  • Winter J, Schindler F & Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures ofClostridium sporogenes. FEMS Microbiol. Ecol. 45: 153–161

    Google Scholar 

  • Woods DD (1936) Studies in the metabolism of the strict anaerobes (GenusClostridium). V. Further experiments on the coupled reactions between pairs of amino-acids induced byCl. sporogenes. Biochem. J. 30: 1934–1946

    Google Scholar 

  • Wood HG & Ljungdahl LG (1991) Autotrophic character of the acetogenic bacteria. In: Shively JM, Barton LL (Eds) Variations in autotrophic life (pp 201–250). Academic Press, London

    Google Scholar 

  • Wright DE & Hungate RE (1967a) Amino acid concentrations in rumen fluid. Appl. Microbiol. 15: 148–151

    Google Scholar 

  • Wright DE & Hungate RE (1967b) Metabolism of glycine by rumen microorganisms. Appl. Microbiol. 15: 152–157

    Google Scholar 

  • Zhilina TN & Zavarzin GA (1990) Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev 87: 315–321

    Google Scholar 

  • Zindel U, Freudenberg W, Rieth M, Andreesen JR, Schnell J & Widdel F (1988)Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. Arch. Microbiol. 150: 254–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreesen, J.R. Glycine metabolism in anaerobes. Antonie van Leeuwenhoek 66, 223–237 (1994). https://doi.org/10.1007/BF00871641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871641

Key words

Navigation