Skip to main content

Oil Palm (Elaeis guineensis)

  • Chapter
  • First Online:
Genetic Improvement of Tropical Crops

Abstract

Oil palm (Elaeis guineensis) breeding is described with respect to modern challenges facing the oil palm industry. Elaeis guineensis is native to Africa, but now rings the globe as a tropical commodity oil crop. A brief history of the development of the oil palm crop is given to provide a perspective on problems, challenges and breeding opportunities. Basic information is given on oil palm biology, especially reproductive biology and genetics as these are fundamental in determining the breeding methods that can be applied and developed. Since conventional breeding is constrained by the availability of genetic variation, a section is provided on germplasm collection and gene conservation. Current target traits for oil palm, and their underlying genetic controls are listed along with methods for their selection (phenotypic nursery and field trials and genotypic laboratory screens). Basic techniques in crossing (pollen collection, female bunch isolation, pollination, harvesting and seed germination) are illustrated New developments in breeding such as the potential for F1 hybrids, wide hybridisation (e.g. with the related S. American species, E. oleifera), the use of genomic selection (exploiting genome sequence data) and advances in tissue culture are described. A forward vision discusses the potential to exploit emerging biotechnologies for crop improvement including novel traits for mechanical harvesting and specialty oil production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberlenc-Bertossi F, Noirot M, Duval Y (1999) BA enhances the germination of oil palm somatic embryos derived from embryogenic suspension cultures. Plant Cell Tissue Organ Cult 56(1):53–57

    Article  CAS  Google Scholar 

  • Adam H, Jouannic S, Escoute J et al (2005) Reproductive developmental complexity in the African oil palm (Elaeis guineensis). Am J Bot 92:1836–1852

    Article  PubMed  Google Scholar 

  • Adam H, Jouannic S, Orieux Y et al (2007) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 58(6):1254–1259

    Article  CAS  Google Scholar 

  • Adam H, Collin M, Richaud F et al (2011) Environmental regulation of sex determination in oil palm: current knowledge and insights from other species. Ann Bot 108(8):1529–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alang ZC (1982) Some physiological effects of the commercial heat treatment of oil palm (Elaeis guineensis) seeds. In: Pushparajah E, Chew PS (eds) The oil palm in agriculture in the eighties, vol 1. Incorp. Soc. Planters, Kuala Lumpur, pp 207–222

    Google Scholar 

  • Al-Obaidi JR, Mohd-Yusuf Y, Razali N et al (2014) Identification of proteins of altered abundance in oil palm infected with Ganoderma boninense. Int J Mol Sci 15(3):5175–5192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarado A, Escobar R, Peralta F et al (2007) Compact seeds and clones and their potential for high density planting. ASD Oil Palm Paper 31:1–8

    Google Scholar 

  • Ariffin D, Idris AS, Singh G (2000) Status of Ganoderma in oil palm. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma: disease of perennial crops. CABI Publishing, Oxfordshire, pp 49–68

    Chapter  Google Scholar 

  • Arifin AA, Ai TY (1989) The effect of handling subsequent quality of crude palm oil. In: Proceeding 1989 PORIM international palm oil development conference, Kuala Lumpur 5-9 September 1989. Palm oil research institute of Malaysia, pp 482–485

    Google Scholar 

  • Bado S, Forster BP, Nielen S et al (2015) Plant mutation breeding: current progress and future assessment. In: Janick J (ed) Plant breeding reviews, vol 39. Wiley-Blackwell, New Jersey, pp 23–88

    Google Scholar 

  • Barcelos E, de Almeida RS, Cunha RNV et al (2015) Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6:190

    Article  PubMed  PubMed Central  Google Scholar 

  • Basiron Y (2007) Palm oil production through sustainable plantations. Eur J Lipid Sci Tech 109:289–295

    Article  CAS  Google Scholar 

  • Beirnaert A, Vanerweyen R (1941) Contribution à l’étude génétique et biométrique des variétés d’Elaeis guineensis Jacquin. INEAC Sér Sci 27:1–101

    Google Scholar 

  • Berger KG (1983) Production of palm oil from fruit. J Am Oil Chem Soc 62(2):206–210

    Article  Google Scholar 

  • Billotte N, Marseillac N, Risterucci AM et al (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.) Theor App Genet 110:754–765

    Article  CAS  Google Scholar 

  • Orion Biosains (2016) Shell, vir, mantled, Selangor https://www.orionbiosains.com/contact. Accessed 7 June 2016

  • Blaak G, Sparnaij LD, Menendez T (1963) Breeding and inheritance in the oil palm (Elaeis guineensis jacq): part II methods of bunch quality analysis. J W Afr Inst Oil Palm Res:146–155

    Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME et al (1922) A haploid mutant in the jimson weed, Datura stramonium. Science 55:646–647

    Article  CAS  PubMed  Google Scholar 

  • Breton F, Rahmaningsih M, Lubis Z et al (2009) Early screening test: a routine work to evaluate resistance/susceptibility level of oil palm progenies to basal stem rot disease. In: MPOB International Palm Oil Congress (PIPOC 2009), Kuala Lumpur, 9-12 November 2009. MPOB, p 1–11.

    Google Scholar 

  • Breure CJ (1982) Factors affecting yield and growth of oil palm tenera in West New Britain. Oleagineux 37(5):213–223

    CAS  Google Scholar 

  • Breure CJ, Menendez T, Powel MS (1990) The effect of planting density on the yield components of oil palm (Elaeis guineensis). Exp Agric 26(1):117–124

    Article  Google Scholar 

  • Brown J, Caligari PDS (2008) An introduction to plant breeding. Wiley-Blackwell, New Jersey

    Book  Google Scholar 

  • Cadena T, Prada F, Perea A et al (2013) Lipase activity, mesocarp oil content, and iodine value in oil palm fruits of Elaeis guineensis, Elaeis oleifera, and the interspecific hybrid O×G (E. oleifera × E. guineensis). J Sci Food Agric 93:674–680. doi:10.1002/jsfa.5940

    Article  CAS  PubMed  Google Scholar 

  • Chase SS (1949) Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines. Genetics 34:328–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chase SS (1952) Production of homozygous diploids of maize from monoploids. Agron J 44:263–267

    Article  Google Scholar 

  • Chin CW (1982) Segregation of fertility, fruit forms and early yield performance of selected sibbed and outcrossed fertiliser pisifera progenies. In: Pushparajah E, Chew PS (eds) The oil palm in agriculture in the eighties, vol 1. Incorporated Society Planters, Kuala Lumpur, pp 63–68

    Google Scholar 

  • Chin CW (1988) Outlook on fertile pisifera breeding. In: Halim Hassan A et al (eds) Proceedings 1987 international oil palm conference “Progress and prospects”. Palm Oil Research Institute of Malaysia, Kuala Lumpur, pp 107–111

    Google Scholar 

  • Chin CW (1993) Progress and prospects of oleifera hybrids and backcrosses in breeding. In: Basiron T et al (eds) Proc. 1991 PORIM international palm oil conference – agriculture. Palm Oil Research Institute, Malaysia, pp 557–563

    Google Scholar 

  • Chin CW (1995) Felda’s experience with fertile pisifera breeding. In: Jalani BS et al (eds) Proceedings 1993 PORIM International Palm Oil congress – Agriculture. Palm Oil Research Institute Malaysia, Kuala Lumpur, pp 489–501

    Google Scholar 

  • Cochard B, Noiret JM, Boudouin L (1993) Second cycle reciprocal recurrent selection (rss) in oil palm, Elaeis Guineensis Jacq. Result of Deli x La mé hybrid test. In: Proceeding 1993 PORIM international Congress “Update and Vision”, Kuala Lumpur, 20–25 September 1993

    Google Scholar 

  • Cochard R, Durand-Gasselin T, Adon B (2000) Oil palm genetic resource in the cote d’ivore – composition, assessment and use. Paper presented at International Symposium Oil Palm Genetic Resources and Utilization. Malaysia Palm Oil Board, Kuala Lumpur, 8–10 June 2000

    Google Scholar 

  • Cochard B, Adon B, Rekima S et al (2009) Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genet Genomes. 2009 5(3):493–504

    Article  Google Scholar 

  • Cock J, Donough CR, Oberthur T et al (2014) Increasing palm oil yields by measuring oil recovery efficiency from the field to the mill. Available via researchgate. https://www.researchgate.net/profile/Christopher_Donough/publications. Accessed 15 Mar 2016

  • Coors JG, Pandey S (1999) The genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America, Wisconsin

    Google Scholar 

  • Corley RHV (1983) Potential productivity of tropical perennial crops. Exp Agric 19:217–237. doi:10.1017/S0014479700022742

    Article  Google Scholar 

  • Corley RHV (1998) What is the upper limit to oil extraction ratio? In: Henson RIE, Jalani BS (Eds). Proceedings 1996 International conference ‘Oil and kernel production in oil palm – a global perspective’ – Palm Oil Research Institute Malaysia, Kuala Lumpur, pp 256–269

    Google Scholar 

  • Corley RHV, Gray BS (1976) Growth and morphology. In: Corley RHV, Hardon JJ, Wood BJ (eds) Oil palm research: developments in crop science 1. Elsevier, Amsterdam, pp 7–21

    Google Scholar 

  • Corley RHV, Lee CH (1992) The physiological basis for genetic improvement of oil palm in Malaysia. Euphytica 60(3):179–184

    Google Scholar 

  • Corley RHV, Tinker PB (2003) The oil palm, 4th edn. Wiley-Blackwell, New Jersey

    Book  Google Scholar 

  • Corley RHV, Wooi KC, Wong CY (1979) Progress with vegetative propagation of oil palm. Planter 55(641):377–380

    Google Scholar 

  • Crone GR (1937) The voyages of Cadamosto and other documents on Western Africa in the second half of the fifteenth century. Hakluyt Society, London, p 80

    Google Scholar 

  • Cros D, Denis M, Bouvet JM et al (2015) Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genomics 16:651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crow JH (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dauqan E, Sani HA, Abdullah A et al (2011) Vitamin E and beta carotene composition in four different vegetable oils. Am J App Sci 8(5):407–412

    Article  CAS  Google Scholar 

  • De Poerck RA (1950) Contributions a l’étude du palmier a huile African Elaeis guineensis Jacq. Oleagineux 5:623–662

    Google Scholar 

  • De Touchet B, Duval Y, Pannetier C (1991) Plant regeneration from embryogenic suspension cultures of oil palm (Elaeis guineensis Jacq.) Plant Cell Rep 10(10):529–532

    Article  PubMed  Google Scholar 

  • Din MA & Rajanaidu N (2000) Evaluation of Elaeis oleifera, interspecific hybrids and backcrosses. Paper presented at international Symposium ‘Oil palm genetic resources and utilisation’ 8–10 June, Malaysian Palm Oil board, Kuala Lumpur

    Google Scholar 

  • Dransfield J, Uhl NW (1998) Flowering plant-monocotyledons: alismatanae and commelinanae (except graminae). In: Kubitski K (ed) Palmae. Springer-Verlag, Berlin, pp 306–389

    Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB et al (2005) A new phylogenetic classification of the palm family, Arecaceae. Kew Bull 60(4):559–569

    Google Scholar 

  • Dumortier F, Konimor J (1999) Selection and breeding progress at Dami OPRS, Papua New Guinea. In: Rajanaidu N, Jalani BS (eds) Proceedings 1996 seminar ‘sourcing of oil palm planting materials for local and overseas joint ventures’. Palm Oil Research Institute, Malaysia, pp 142–170

    Google Scholar 

  • Dumortier F, van Amstel H, Corley RHV (1992) Oil palm breeding at Binga, Zaire, 1970–1990. Unilever Plantations, London

    Google Scholar 

  • Dunwell JM, Wilkinson MJ, Nelson SPC et al (2010) Production of haploids and doubled haploids in oil palm. BMC Plant Bio 10:218–243

    Article  CAS  Google Scholar 

  • Durand-Gasselin T, Duval Y, Baudouin L, Maheran AB, Konan K, Noiret JM (1993) Description and degree of the mantled flowering abnormality in oil palm (Elaeis guineensis Jacq) clones produced using the orstom-CIRAD procedure. In: Rao V, Henson IE, Rajanaidu N (ed). Proceeding 1993 ISOPB International Symposium on Recent Developments in Oil Palm Tissue Culture and Biotechnology. Kuala Lumpur, 24–25 Sept 1993, pp 48–63

    Google Scholar 

  • Durand-Gasselin T, Hayun S, Jacquemard JC et al (2011) Palm oil yield potential of oil palm (Elaeis guineensis) seeds developed in a network by CIRAD and its partners. TDG ISOPB Veleur des Semences Cirad UK

    Google Scholar 

  • Duval Y, Engelmann F, Durand-Gasselin T (1995) Somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: somatic embryogenesis and synthetic seed I. Springer, Berlin, pp 335–352

    Chapter  Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nature Rev Genet 2:69–73

    Article  CAS  PubMed  Google Scholar 

  • Endress PK (2011) Angiosperm ovules: diversity, development, evolution. Ann Bot 107:1465–1489

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar CR (1980) An improved oil palm depulper for single bunch lots. Planter 56(657):540–548

    Google Scholar 

  • Escobar R (2004) Strategies in production of oil palm compact seeds and clones. ASD Oil Palm Paper 27:1–12

    Google Scholar 

  • Flood J (2006) A review of Fusarium wilt of oil palm caused by Fusarium oxysporum f. sp elaeidis. Am Phytopathol Soc 96(6):660–662

    Article  Google Scholar 

  • Flood J, Mepsted R (1990) Vascular wilt of oil palm – a potential problem for Malaysia? Planter 66(776):581–585

    Google Scholar 

  • Flood J, Hasan Y, Turner PD et al (2000) The spread of Ganoderma from infective sources in the field and its implications for management of the disease in oil palm. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma diseases of perennial crops. CABI Publishing, Surrey, pp 101–112

    Chapter  Google Scholar 

  • Foreign Agriculture Service/USDA (2015) Palm oil: world supply and distribution. In: Oilseeds: world market and trade. http://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. Accessed 22 Feb 2016

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. In: Janick J (ed) Plant breeding reviews, vol 25. Wiley, Oxford, pp 57–88

    Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U et al (2012) Mutant phenotyping and pre-breeding in barley. In: Shu QY, Nakagawa H, Forster BP (eds) Plant mutation breeding and biotechnology. CAB International and FAO, Dundee, pp 327–346

    Chapter  Google Scholar 

  • Geiger HH, Gordillo GA (2010) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Handbook of plant breeding: cereals. Springer, Stuttgart, pp 157–181. 10/1007/978-0-387-72297-9

    Google Scholar 

  • Gibon V, Greyt WD, Kellens M (2007) Palm oil refining. Eur J Lipid Sci Tech 109:315–335

    Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guitierrez LF, Sanchez OJ, Cardona CA (2009) Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry. Bioresour Technol 100(3):1227–1237

    Article  CAS  Google Scholar 

  • Hanower J, Pannetier C (1982) In vitro vegetative propagation of the oil palm, Elaeis guineensis Jacq. In: Plant tissue culture 1982: proceedings, 5th International Congress of Plant Tissue and Cell Culture, Tokyo, 11–16 July 1982

    Google Scholar 

  • Hardon JJ (1970) Inbreeding in populations of the oil palm (Elaeis guineensis Jacq.) and its effect on selection. Oleagineux 25:449–456

    Google Scholar 

  • Hardon JJ, Turner PD (1967) Observations on natural pollination in commercial plantings of oil palm (Elaeis guineensis) in Malaya. Exp Agric 3(2):105–116

    Article  Google Scholar 

  • Hardon JJ, Corley RHV, Lee CH (1987) Breeding and selecting the oil palm. In: Abbott AJ, Atkin RK (eds) Improving vegetatively propagated crops. Academic, London, pp 63–81

    Google Scholar 

  • Hartley CWS (1988) The oil palm, 3rd edn. Longman, London

    Google Scholar 

  • Ho YW, Tan CC, Soh AC et al (2009) Biotechnological approaches in producing oil palm planting material—a success story. Int J Oil Palm 6:86–93

    Google Scholar 

  • Hubert DF, Sekou D (2004) Status on oil palm vascular wilt. In: Proceeding of the International Conference on Pest and Diseases of Importance to the Oil Palm Industry, Kuala Lumpur, 18–19 May 2004, pp 30–36

    Google Scholar 

  • Idris AS, Kushairi A, Ismail S et al (2004) Selection for partial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res 16(2):12–18

    Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M et al (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109:19166–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iswandar HE, Dunwell JM, Forster BP et al (2010) Doubled haploid ramets via embryogenesis of haploid tissue cultures. In: Proceeding on Advances in Oil Palm Tissue Culture, Indonesia 29 May 2010, pp 100–104

    Google Scholar 

  • Jones LH (1974) Propagation of clonal oil palms by tissue culture. Oil Palm News 17:1–8

    Google Scholar 

  • Jones LH (1989) Prospects for biotechnology in oil palm (Elaeis guineensis) and coconut (Cocos nucifera) improvement. Biotech Gen Eng Rev 7:281–296

    Article  Google Scholar 

  • Jones LH (1997) The effect of leaf pruning and other stresses on sex determination in oil palm and their representation by a computer simulation. J Theo Bio 187:241–260

    Article  Google Scholar 

  • Junaidah J, Kushairi, Jones B et al (2011) Innovation for oil extraction method using nmr in bunch analysis. Paper presented at international seminar on Breeding for Sustainability Oil Palm. Joint organised by International Society for Oil Palm Breeder (ISOPB) and Malaysian Palm Oil Board (MPOB), Kuala Lumpur, 18 Nov 2011, pp 1–18

    Google Scholar 

  • Kajale LB, Ranade SG (1953) The embryo sac of Elaeis guineensis Jacq: a reinvestigation. J Ind Bot Soc 32:110–107

    Google Scholar 

  • Kimber G, Riley R (1963) Haploid angiosperms. Bot Rev 29:480–531

    Article  Google Scholar 

  • Konan KE, Durand-Gasselin T, Kouadio YJ et al (2010) In vitro conservation of oil palm somatic embryos for 20 years on a hormone-free culture medium: characteristics of the embryogenic cultures, derived plantlets and adult palms. Plant Cell Rep 29(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Kosugi A, Tanaka R, Magara K et al (2010) Ethanol and lactic acid production using sap squeezed from old oil palm trunk felled for replanting. J Biosci Bioeng 110(3):322–325

    Article  CAS  PubMed  Google Scholar 

  • Kumar SK, Sparjanbabu DS (2013) Haploid breeding in palms – a brief review. Adv Crop Sci Tech 1:113. doi:10.4172/2329-8863.1000113

    Article  Google Scholar 

  • Li J, Xin Y, Yuan L (2009) Hybrid rice technology development: ensuring China’s food security. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Longin CFH, Mühleisen J, Maurer HP et al (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 124:1087–1096

    Article  Google Scholar 

  • Luyindula N, Corley RHV, Mantantu N (2005) A comparison of the Deli dumpy and pobe dwarf short-stemmed oil palms and their outcrossed progenies. J Oil Palm Res 17:152–159

    Google Scholar 

  • Maizura I, Kushairi A, Mohd Din A et al (2008) PS13: breeding populations selected for low lipase. MPOB Information Series 425

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP et al (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Masani MY, Parveez GK (2008) Development of transformation vectors for the production of potentially high oleate transgenic oil palm. Electron J Biotechnol 11(3):1–9

    Google Scholar 

  • Mekhilef S, Singh S, Saidur R (2011) A review on palm oil biodiesel as a source of renewable fuel. Renew Sust Energ Rev 15(4):1937–1949

    Article  CAS  Google Scholar 

  • Menendez T, Blaak G (1964). Plant breeding division. In: 12th Annual Report West African Institute Oil Palm Research 49–75, Benin City

    Google Scholar 

  • Mienanti D, Sitorus AC, Forster BP et al (2009) Chromosome doubling of oil palm (Elaeis guineensis Jacq.) haploids. In: Proceedings of PIPOC 2009, Kuala Lumpur, 9–12 Nov 2009, AP46, pp 948–953

    Google Scholar 

  • Mohd Din A, Rajanaidu N, Jalani B (2000) Performance of Elaeis oleifera from Panama, Costarica, Columbia and Honduras in Malaysia. J Palm Oil Res 12(1):71–80

    Google Scholar 

  • Montoya C, Lopes R, Flori A et al (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortés and oil palm (Elaeis guineensis Jacq.) Tree Genet Genomes 9:1207–1225

    Article  Google Scholar 

  • Montoya C, Cochard B, Flori A et al (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortes. PLoS ONE 9(5):e95412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morcillo F, Cros D, Billotte N (2013) Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat Commun 4:2160. doi:10.1038/ncomms3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nagi J, Ahmed SK, Nagi F (2008) Palm biodiesel an alternative green renewable energy demands of the future. ICCBT 7:79–94

    Google Scholar 

  • Nasution O, Rusfiandi R, Sitorus AC et al (2009) Cytological studies of pollen development in oil palm (Elaeis guineensis Jacq.). In: Proceedings of PIPOC 2009, Kuala Lumpur, 9–12 Nov 2009, AP47, pp 954–961

    Google Scholar 

  • Nasution O, Sitorus AC, Nelson SPC et al (2013) A high-throughput flow cytometry method for ploidy determination in oil palm. J Oil Palm Res 25:265–271

    CAS  Google Scholar 

  • Nelson SPC, Juhyana Y, Sitepu B et al (2006) Future mechanisation – the role of the breeder. Int Oil Palm Conf Bali 2006:1–19

    Google Scholar 

  • Nelson SPC, Wilkinson MJ, Dunwell JM (2009) Breeding for high productivity lines via haploid technology. In: Proceedings of the 2009 International Palm Oil Congress – Agriculture, Biotechnology & Sustainability Conference. MPOB, Bangi, 9–12 Nov 2009, pp 203–225

    Google Scholar 

  • Ngado-Ebongue GF, Eha CE, Ntsomboh-Ntsefong G et al (2013) Breeding oil palm (Elaeis guineensis) for Fusarium wilt disease tolerance: an overview research program and seed production potentialities in Cameroon. Inter J Agric Sci 3(5):513–520

    Google Scholar 

  • Ntsomboh-Ntsefong GN, Goldima M, Aurelie NN et al (2015) Vascular wilt disease tolerance status of some oil palm progenies in relation to local strain of Fusarium. Inter J Curr Res Biosci Plant Biol 2(8):111–122

    Google Scholar 

  • Oboh BO (1993) The development of short stemmed oil palm 1 – the Elaeis oleifera approach. In: Basiron Y et al (eds) Proceedings 1991 PORIM International Palm Oil Conference – Agriculture. Palm Oil Research Institute Malaysia, Kuala Lumpur, pp 492–496

    Google Scholar 

  • Okwuagwu CO (2011) The genetic base of the NIFOR oil palm breeding programme. Nigerian Institute for Oil Palm Research

    Google Scholar 

  • Okyere-Boateng G, Dwarko DA, Kaledzi PD, Nuertey BN (2008) Collection, conservation and evaluation of the disappearing oil palm (Elaeis guineensis J) landraces in Ghana. Int J Pure Appl Sci 1(3):18–31

    Google Scholar 

  • Opsomer JK (1956) Les premières descriptions de palmier à huile Elaeis guineensis Jacq. Bull Séances Acad R Soc Colon Outre Mer 2:253–272

    Google Scholar 

  • Pamin K (1988) A hundred and fifty years of oil palm development in Indonesia: from the Bogor Botanical Garden to the industry. In: Jatmika A et al (eds) Proceedings of 1998 International Oil Palm Conference ‘Commodity of the past, today and the future’. Indonesian Oil Palm Research Institute, Medan, pp 3–23

    Google Scholar 

  • Pamin K, Lubis RA, Kusnadi TT et al (1990) Yield potential of planting material and reassessment of oil palm breeding program in Indonesia. In: Proceeding of International Society for Oil Palm Breeders (ISOPB), Phuket, 29–30 Oct 1990, pp 11–23

    Google Scholar 

  • Parveez GK, Bahariah B, Ayub NH et al (2015) Production of polyhydroxybutyrate in oil palm (Elaeis guineensis Jacq.) mediated by microprojectile bombardment of PHB biosynthesis genes into embryogenic calli. Front Plant Sci 6:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Piarpuzan D, Quinten JA, Cardona A (2011) Empty fruit bunch from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenergy 35(3):1130–1137

    Article  CAS  Google Scholar 

  • Pierik RLM (1987) In vitro culture of higher plants. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Pooni HS, Cornish MA, Kearsey MJ et al (1989) The production of superior lines and second cycle hybrids by inbreeding and selection. Elaeis 1:17–30

    Google Scholar 

  • Prina AR, Landau AM, Pacheco MG (2012) Chimeras and mutant gene transmission. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI International and FAO, Dundee, pp 181–189

    Chapter  Google Scholar 

  • Priwiratama H, Djuhyana J, Nelson SPC et al (2010) Progress of oil palm breeding for novel traits: late abscission, virescens and long bunch stalk. Paper presented at international oil palm conference, Yogyakarta, 1–3 June 2010

    Google Scholar 

  • Pye O, Bhattacharya J (2013) The palm oil controversy in Southeast Asia: a transnational perspective. ISEAS Publishing, Singapore, p 283

    Google Scholar 

  • Rabechault H, Guénin G, Ahée J (1970) Studies on the in vitro culture of oil palm embryos: VDL A comparison of different nutrient media. Oleagineux 25:519–524

    CAS  Google Scholar 

  • Rajanaidu N, Jalani BS (1994) Oil palm genetic resources collection, evaluation, utilization and conservation. Presented at PORIM Colloquium on Oil Palm Genetic Resources, Kuala Lumpur, 13 Sept 1994

    Google Scholar 

  • Rajanaidu N, Rohani O, Jalani BS (1997) Oil palm clones: current status and prospects for commercial production. Planter 73(853):163–184

    Google Scholar 

  • Rankine I, Fairhust TH (1999) Management of phosphorus, potassium and magnesium in mature oil palm. Better Crops Inter 13(1):10–15

    Google Scholar 

  • Rao V, Soh AC, Corley RHV et al (1983) A critical reexamination of the method of bunch quality analysis in oil palm breeding, PORIM Occasional Paper. Palm Oil Research Institute of Malaysia, Kuala Lumpur, 28p

    Google Scholar 

  • Rao V, Gomez M, Chayawat N et al (2001) Some influence oil/bunch, OER and KER. In: Proceeding of The 2001 PIPOC International Palm Oil Congress (Agriculture), Selangor. 20–22 Aug 2001, pp 167–191

    Google Scholar 

  • Rees AR (1965) Evidence of the African origin of the oil palm. Principles 9:30–36

    Google Scholar 

  • Reyes PA, Ochoa JC, Montoya C et al (2015) Development and validation of a bi-directional allele-specific PCR tool for differentiation in nurseries of Dura, Tenera, and Pisifera oil palm. Agron Colomb 33:5–10

    Article  Google Scholar 

  • Richardson DL, Alvarado A (2003) ASD oil palm germplasm from Nigeria. ASD Oil Palm Pap 26:1–32

    Google Scholar 

  • Rival A, Beule T, Barre P et al (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq.) tissue cultures and seed-derived plants. Plant Cell Rep 16:884–887

    Article  CAS  Google Scholar 

  • Rosenquist EA (1984) Notes on inbreeding in the oil palm. Oil palm breeders meeting, Unifield T.C. Ltd. Mimeograph

    Google Scholar 

  • Rosenquist EA (1985) The genetic base of oil palm breeding populations. International Workshop on Oil Palm Germplasm and Utilisation, Kuala Lumpur, 26–27 Mar 1985

    Google Scholar 

  • Rutgers AAL, Blommendaal HN, Van Heurn FC, Heusser C, Mass JGJA, Tampolsky C (1922) Investigation of oil palm. Ruygrok & Co, Batavia

    Google Scholar 

  • Sambanthamurthi R, Kalyana S, Tan Y (2000) Chemistry and biochemistry of palm oil. Prog Lipid Res 39:507–558

    Article  CAS  PubMed  Google Scholar 

  • Sapey E, Adusei-Fosu K, Agyei-Dwarko D et al (2012) Collection of oil palm (Elaeis guineensis Jacq) germplasm in the northern region of Ghana. Asian J Agric Sci 4(25):325–328

    Google Scholar 

  • Sayer J, Ghazoul J, Nelson P et al (2012) Oil palm expansion transforms tropical landscapes and livelihoods. Glob Food Secur 1:114–119

    Article  Google Scholar 

  • Schroeder MT, Becker EM, Skibsted LH (2006) Molecular mechanism of anti-oxidant synergism of tocotrienol and carotenoids in palm oil. J Agric Food Chem 54(9):3445–3453

    Article  CAS  PubMed  Google Scholar 

  • Setiawati U, Rahmaningsih M, Breton F et al (2010) Screening of sumatra bioscience progenies for ganoderma partial resistance in field and nursery trial. Paper presented at international oil palm conference, Yogyakarta, 1–3 June 2010

    Google Scholar 

  • Sheil D, Casson A, Meijaard E et al (2009) The impacts and opportunities of oil palm in Southeast Asia: what do we know and what do we need to know? CIFOR, Bogor

    Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI International and FAO, Dundee, p 608

    Book  Google Scholar 

  • Shuit SH, Tan KT, Lee KT (2009) Oil palm biomass as a sustainable energy source: Malaysian case study. Energy 34:1225–1235

    Article  CAS  Google Scholar 

  • Siew WL (2002) Palm oil. In: Gunstone FD (ed) Vegetable oil in food technology: composition, properties and uses. Wiley-Blackwell, New Jersey, pp 25–58

    Google Scholar 

  • Singh R, Ong-Abdullah M, Low ETL et al (2013a) Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature 500(7462):335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low ET, Ooi LC et al (2013b) The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500(7462):340–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Low ET, Ooi LC et al (2014) The oil palm virescens gene controls fruit colour and encodes a R2R3-MYB. Nat Commun 5:4106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith WK, Thomas JA (1973) The isolation and in vitro cultivation of cells of Elaeis guineensis. Oleagineux 28(3):123–127

    Google Scholar 

  • Soh AC (1986) Expected yield increase with selected oil palm clones from current D x P seedling materials and its implications on clonal propagation, breeding and ortet selection. Oléagineux 41:51–56

    Google Scholar 

  • Soh AC, Kee KK, Goh KJ (2006) Research and innovation towards sustainable palm oil production. J Sci Technol Trop 2:77–95

    Google Scholar 

  • Soh AC, Choo KW, Yuk WH et al (2009) Oil palm. In: Vollmann J, Rajean I (eds) Oil crops, handbook of plant B SHU QY, FORSTER BP and NAKAGAWA. 2012. Plant mutation breeding and biotechnology. CABI International and FAO, Dundee, p 608

    Google Scholar 

  • Soon RBF, Hang HW (2001) Oil palm response to N, P, K and Mg fertilizer on two major soil type in Sabah. In: Proceeding of the PIPOC Palm Oil Congress (Agriculture), Kuala Lumpur, 20–22 Aug 2001, pp 244–259

    Google Scholar 

  • Sparnaaij LD, Menendez T, Blaak G (1963) Breeding and inheritance in the oil palm (Elaeis guineensis). Part I: the design of a breeding program. J W Afr Inst Oil Palm Res 4:126–155

    Google Scholar 

  • Srisawat T, Kanchanapoom K, Pattanapanyasat K et al (2005) Flow cytometric analysis of oil palm: a preliminary analysis for cultivars and genomic DNA alteration. Songklanakarin J Sci Technol 27:645–652

    Google Scholar 

  • Staritsky G (1970) Tissue culture of the oil palm (Elaeis guineensis Jacq.) as a tool for its vegetative propagation. Euphytica 19(3):288–292

    Article  Google Scholar 

  • Sterling F, Alvarado A (2002) Historical account of ASD’s oil palm germplasm collection. ASD Oil Palm Pap 24:1–16

    Google Scholar 

  • Sunilkumar K, Mathur RK, Sparjanbabu DS et al (2015) Evaluation of interspecific oil palm hybrids for dwarfness. J Plant Crops 43(1):29–34

    Google Scholar 

  • Syed RA, Law IH, Corley RHV (1982) Insect pollination of oil palm: introduction, establishment and pollinating efficiency of Elaeidobius kamerunicus in Malaysia. Planter 58:547–561

    Google Scholar 

  • Tampubolon FH, Daniel C, Ochs R (1989) Oil palm response to nitrogen and phosphate fertilizer in Sumatra. In: Proceeding of PORIM International Palm Oil Conference, Kula Lumpur, 5–9 Sept, pp 419–428

    Google Scholar 

  • Tan YC, Yeoh KA, Wong MY et al (2013) Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense. J Plant Physiol 170:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Li X, Chen PX et al (2015) Characterization of fatty acid, carotenoid, tocopherol/tocotrienol compositions and anti-oxidant activities in seed of three Chenopodium quinoa Willd. genotype. J Agric Food Chem 171:502–508

    Article  CAS  Google Scholar 

  • Taniputra B, Lubis AU, Pamin K et al (1987) Progress of oil palm industry in Indonesia in the last fifteen years (1971–1985). In: Hassan H et al (eds) Proceeding of international oil palm conference – progress and prospects, Kuala Lumpur, 29 June-1 July 1987. pp. 27–35

    Google Scholar 

  • Teixeira JB, Söndahl MR, Nakamura T et al (1995) Establishment of oil palm cell suspensions and plant regeneration. Plant Cell Tissue Organ Cult 40(2):105–111

    Article  Google Scholar 

  • Tilbrook K, Gebbie L, Schenk PM et al (2011) Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops. Plant Biotechnol J 9:958–969

    Article  CAS  PubMed  Google Scholar 

  • Touraev A, Forster BP, Mohan Jain S (2009) Advances in haploid production in higher plants. Springer, Dordrecht

    Book  Google Scholar 

  • Tranbarger TJ, Dussert S, Joët T et al (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156(2):564–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troyer AF (1991) Breeding corn for the export market. Proceedings of the 26th Annual Corn and Sorghum Research Conference. Am Seed Trade Assoc 46:165–176

    Google Scholar 

  • Tuo Y, Koua HK, Hala N (2011) Biology of Elaeidobius kamerunicus and Elaeidobius plagiatus (Coleoptera: Curculionidae) main pollinators of oil palm in West Africa. Eur J Sci Res 3:426–432

    Google Scholar 

  • Turnbull N, de Franqueville H, Breton F et al (2014) Breeding methodology to select oil palm planting material partially resistant to Ganoderma boninense. Paper presented at the 5th quadrennial International Oil Palm Conference, Bali, 21 June 2014

    Google Scholar 

  • Turner PD (1981) Oil palm disease and disorders. Oxford University Press, Kuala Lumpur

    Google Scholar 

  • Ukai Y, Nakagawa H (2012) Strategies and approaches in mutant population development for mutant selection in seed propagated crops. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI International and FAO, Dundee, pp 209–221

    Chapter  Google Scholar 

  • Urtuvia V, Villegas P, Gonzales M et al (2014) Bacterial production of biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213

    Article  CAS  PubMed  Google Scholar 

  • Virdiana I, Flood J, Sitepu B et al (2011) Integrated disease management to reduce future ganoderma infection during oil palm replanting. In: Proceeding of the PIPOC 2011 International Palm Oil Congress (Agriculture, Biotechnology and Sustainability), Kuala Lumpur 15–17 Nov 2011, pp 130–134

    Google Scholar 

  • Vollmann J, Rajean I (eds) (2010) Oil crops. Handbook of plant breeding. Springer, New York

    Google Scholar 

  • Wening S, Wilkinson MJ, Djuhjana J et al (2009) Genetic relationship studies of Sumatra bioscience oil palm germplasm using ISSR and AFLP profiles. In: Proceedings of PIPOC 2009, Kuala Lumpur, 9–12 Nov 2009, pp 903–912

    Google Scholar 

  • Wening S, Wilkinson MJ Djuhjana J et al (2011) Genetic diversity of commercial oil palm seed production parents. Pin: proceedings of PIPOC 2011, Kuala Lumpur, 15–17 Nov 2011, pp 193–197

    Google Scholar 

  • Wening S, Croxford AE, Ford CS et al (2012a) Ranking the value of germplasm: new oil palm (Elaeis guineensis) breeding stocks as a case study. Ann Appl Biol 160:145–156

    Article  Google Scholar 

  • Wening S, Fillianti H, Prasetyo JHH et al (2012b) Homozygosity of parental palm used in single seed descent programmes. Oil Palm Bull 65:1–5

    Google Scholar 

  • Whitehead ADRA, Chapman GP (1962) Twinning and haploidy in Cocos nucifera. Nature 195:1228–1229

    Article  Google Scholar 

  • Zeven AC (1965) Oil palm groves in southern Nigeria. J W Afric Inst 1965

    Google Scholar 

  • Zhang Y, Sun W, Wang H et al (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresour Technol 147:307–314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This chapter was composed by members of Verdant Bioscience’s Breeding and Biotechnology teams; the authors acknowledge inputs and comments from all colleagues in agronomy, crop protection, land surveys and marketing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Forster .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forster, B.P. et al. (2017). Oil Palm (Elaeis guineensis). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_8

Download citation

Publish with us

Policies and ethics