Skip to main content

Effect of UV-B Radiation on Leguminous Plants

  • Chapter
  • First Online:
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 22))

Abstract

Sun is the primary source of energy for photosynthetic life on Earth. Ultraviolet-B (UV-B, 315–280 nm) radiation is a natural constituent of solar light reaching Earth’s surface due to the thinning of stratospheric ozone (O3) layer. Many studies have shown the harmful effects of UV-B on morphological, biochemical and physiological responses of plants. After the successful implementation of the Montreal protocol, this problem is now resolved up to some extent, as O3 concentration is not showing a decreasing trend in the stratosphere. However, under recent climate changing scenarios, the presence of water vapors in the stratosphere could degrade the O3 layer as suggested by recent reports. Beside, four new ozone depleting substances, previously not included under Montreal protocol, i.e. CFC-112a (CF2ClCCl3), CFC-112 (CFCl2CFCl2), CFC-113a (CF3CCl3) and HCFC-133a (CF3CH2Cl), have been detected in the atmosphere. This may led to more penetration of UV-B causing adverse effects on growth, physiology and yield of many agricultural crops in the future.

This chapter presents an overview on the effects of ultraviolet-B (UV-B) radiation on leguminous plants. The findings were carried out under natural as well as artificial conditions from 0–50 kJ m−2 day−1 simulating about 0–62 % depletion in stratospheric O3 layer. Most reports show the negative impact of UV-B on various parameters of legumes. Contrary to this, lower UV-B doses are beneficial in some cases. Effect of UV-B not only varied with different legumes, but also varied among the cultivars of same species. Significant reductions in total biomass, up to 93 %, photosynthesis, up to 90 %, and yield up to 62 % have been recorded in various studies. However, about 300 % increments have been noticed for UV-B absorbing compounds, which might be the protective mechanism adopted by the plants against UV-B. Earlier reviews on plants responses against UV-B are generally focussed on the above ground changes in plants. As legume-rhizobia-mycorrhiza are related symbiotically with legumes, so UV-B effect above ground on plants might be responsible for the below ground disturbances as UV-B is unable to penetrate the soil. Therefore in the present review, the above ground responses of legumes against UV-B is linked with the below ground changes. Studies reported reduction of about 62 % in nodulation, 78 % in nitrogenase activity, 31 % in nitrate reductase activity, 67 % in nitrite reductase activity and 76 % in leghaemoglobin content with various UV-B doses. On the other hand, UV-B exclusion studies have shown significant increments in parameters related to nitrogen metabolism. Singnificant negative impacts of UV-B were also reported on microbial biomass of rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal SB (2007) Increased antioxidant activity in Cassia seedlings under UV-B radiation. Biol Plant 51:157–160. doi:10.1007/s10535-007-0030-z

    Article  CAS  Google Scholar 

  • Agrawal SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Saf 72:610–618. doi:10.1016/j.ecoenv.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  • Agrawal SB, Rathore D (2007) Changes in oxidative stress defense in wheat (Triticum aestivum L.) and mung bean (Vigna radiata L.) cultivars grown with or without mineral nutrients and irradiated by supplemental ultraviolet-B. Environ Exp Bot 59:21–27. doi:10.1016/j.envexpbot.2005.09.009

    Article  CAS  Google Scholar 

  • Agrawal M, Agrawal SB, Krizek DT, Kramer GF, Lee EH, Mirecki RM, Rowland RA (1991) Physiological and morphological responses of snap bean plants to ozone stress as influenced by pretreatment with UV-B radiation. In: Abrol YP, Govindjee, Wattal PN, Ort DR, Gnanam A, Teramura AH (eds), Impact of global climatic changes on photosynthesis and plant productivity. Proceedings of the Indo-US Workshop, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp 133–146

    Google Scholar 

  • Agrawal SB, Rathore D, Singh A (2004) Effect of supplemental ultravoilet-B and mineral nutrients on growth, biomass allocation and yield of wheat (Triticum aestivum L.). Trop Ecol 45:315–325

    Google Scholar 

  • Agrawal SB, Rathore D, Singh A (2006) Combined effects of enhanced ultraviolet-B radiation and mineral nutrients on growth, biomass accumulation and yield characteristics of two cultivars of Vigna radiata L. J Environ Biol 27:55–60

    CAS  PubMed  Google Scholar 

  • Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. In: Jacquot J (ed) Advances in Botanical Research. Academic, Burlington, pp. 47–86. doi:10.1016/S0065-2296(10)52003-2

    Google Scholar 

  • Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344. doi:10.1046/j.1365-3040.2001.00778.x

    Article  CAS  Google Scholar 

  • Allen DJ, McKee IF, Farage PK, Baker NR (1997) Analysis of the limitation to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B. Plant Cell Environ 20:633–640. doi:10.1111/j.1365-3040.1997.00093.x

    Article  CAS  Google Scholar 

  • Allen DJ, Nogues S, Baker NR (1998) Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J Exp Bot 49:1775–1788. doi:10.1093/jxb/49.328.1775

    CAS  Google Scholar 

  • Allen DJ, Nogues S, Morison JIL, Greenslade PD, McLeod AR, Baker NR (1999) A 30 % increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field. Glob Chang Biol 2:235–244. doi:10.1046/j.1365-2486.1999.00227.x

    Article  Google Scholar 

  • Al-Oudat M, Baydoun SA, Mohammad A (1998) Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) and broad beans (Vicia faba) under field conditions. Environ Exp Bot 40:11–16. doi:10.1016/S0098-8472(98)00014-8

    Article  Google Scholar 

  • Ambasht NK, Agrawal M (2003) Interactive effects of ozone and ultraviolet-B singly and in combination on physiological and biochemical characteristics of soybean plants. J Plant Biol 30:37–45

    Google Scholar 

  • Anderson JA, Wilmouth DM, Smith JB, Sayres DS (2012) Increased risk of ozone loss from convectively injected water vapor. Science 337:835–839. doi:10.1126/science.1222978

    Article  CAS  PubMed  Google Scholar 

  • Arora N, Skoog F, Allen ON (1959) Kinetin-induced pseudonodules on tobacco roots. Am J Bot 46:610–613. doi:10.2307/2439306

    Article  CAS  Google Scholar 

  • Aysan E, Demir S (2009) Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum, Biovar phaseoli Against Sclerotinia sclerotiorum (Lib.) de bary in the common bean (Phaseolus vulgaris L.). J Plant Pathol 8:74–78. doi:10.3923/ppj.2009.74.78

    Article  Google Scholar 

  • Azcoń-Aguilar C, Azcoń R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 27:235–237. doi:10.1038/279325a0

    Google Scholar 

  • Babajide PA, Olabode OS, Akanbi WB, Olatunji OO, Ewetola EA (2008) Influence of composted Tithonia-biomass and N-Mineral fertilizer on soil physico-chemical properties and performance of Tomato (Lycopersicon lycopersicum). Res J Agron 2:101–106

    Google Scholar 

  • Badenoch-Jones J, Summons RE, Rolfe BG, Letham DS (1984) Phytohormones, Rhizobium mutants, and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J Plant Growth Regul 3:23–39

    Article  CAS  Google Scholar 

  • Balakrishnan V, Ravindran KC, Venkatesan K, Karuppusamy S (2005) Effect of UV-B supplemental radiation on growth and biochemical characteristics in crotalaria juncea L. Seedlings. Elec J Env Agric Food Chem 4:1125–1131

    CAS  Google Scholar 

  • Ballaré CL, Barnes PW, Flint SD (1995) Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedlings: I. The photoreceptor. Physiol Plant 93:584–592. doi:10.1111/j.1399-3054.1995.tb05105.x

    Article  Google Scholar 

  • Bano A, Harper JE (2002) Plant growth regulators and phloem exudates modulate root nodulation of soybean. Funct Plant Biol 29:1299–1307. doi:10.1071/FP02031

    Article  CAS  Google Scholar 

  • Bano A, Harper JE, Auge RM, Neuman DS (2002) Changes in phytohormone levels following inoculation of two soybean lines differing in nodulation. Funct Plant Biol 29:965–974. doi:10.1071/PP01166

    CAS  Google Scholar 

  • Barber J, Nield J, Morris EP, Zheleva D, Hankamer B (1997) The structure, function and dynamics of photosystem two. Physiol Plant 100:817–827. doi:10.1111/j.1399-3054.1997.tb00008.x

    Article  CAS  Google Scholar 

  • Barea JM, Azcoń R, Azcoń-Aguilar C (2002) Mycorhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw Int J G 81:343–351. doi:10.1023/A:1020588701325

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. doi:10.1093/jxb/eri197

    Article  CAS  PubMed  Google Scholar 

  • Barnes PW, Ballare CL, Caldwell MM (1996) Photomorphogenic effects of UV-B radiation on plants: consequences for light competition. J Plant Physiol 148:15–20. doi:10.1016/S0176-1617(96)80288-4

    Article  CAS  Google Scholar 

  • Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29:107–129. doi:10.1146/annurev.ge.29.120195.000543

    Article  CAS  PubMed  Google Scholar 

  • Basiouny FM (1986) Sensitivity of corn, oats, peanuts, rice, rye, sorghum, soybean and tobacco to UV-B radiation under growth chamber conditions. J Agron Crop Sci 157:31–35. doi:10.1111/j.1439-037X.1986.tb00043.x

    Article  Google Scholar 

  • Bassman JH, Robberecht R, Edwards GE (2001) Effects of enhanced UV-B radiation on growth and gas exchange in Populus deltoides. Int J Plant Sci 162:103–110. doi:10.1086/317901

    Article  Google Scholar 

  • Bassman JH, Edwards GE, Robberecht R (2002) Long term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglas-fir. New Phytol 154:107–120

    Article  CAS  Google Scholar 

  • Bauer P, Ratet P, Crespi MD, Schultze M, Kondorosi A (1996) Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and Msenod 12A expression in alfalfa roots. Plant J 10:91–105

    Article  CAS  Google Scholar 

  • Benthlenfalvay GJ, Newton WE (1991) Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. In: Keisicr DL, Cregan PK (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp. 349–354. doi:10.1007/978-94-011-3336-4_74

    Chapter  Google Scholar 

  • Boot KJM, Van Brussel AAN, Tak T, Spaink HP, Kijne JW (1999) Lipochitin oligosaccharides from Rhizobium leguminosarum bv. viciae reduce auxin transport capacity in Vicia sativa subsp. nigra roots. Mol Plant Microbe Interact 12:839–844. doi:http://dx.doi.org/10.1094/MPMI.1999.12.10.839

  • Bornman JF (1989) Target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobio 4:145–158. doi:10.1016/1011-1344(89)80001-6

    Article  CAS  Google Scholar 

  • Bornman JF, Vogelman TC (1991) Effect of UV-B radiation on leaf optical properties measured with fiber optics. J Exp Bot 41:547–554. doi:10.1093/jxb/42.4.547

    Article  Google Scholar 

  • Britt AB (1996) DNA damage and repair in higher plants. Annu Rev Plant Physiol 47:75–100. doi:10.1146/annurev.arplant.47.1.75

    Article  CAS  Google Scholar 

  • Brosche M, Strid A (2003) Molecular events following perception of UV-B radiation by plants. Physiol Plant 117:1–10. doi:10.1034/j.1399-3054.2003.1170101.x

    Article  CAS  Google Scholar 

  • Brownlee C, Duddidge JA, Maliban A, Read D (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilation and water transport. Plant Soil 71:433–443. doi:10.1007/BF02182684

    Article  Google Scholar 

  • Caba JM, Centeno ML, Fernańdez B, PM G, Ligero F (2000) Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a super nodulation mutant and the wild type. Planta 211:98–104

    Article  CAS  PubMed  Google Scholar 

  • Caldwell CR (1993) Ultraviolet-induced photodegradation of cucumber (Cucumis sativus L.) microsomal and soluble protein tryptophanyl residues in vitro. Plant Physiol 101:–953

    Google Scholar 

  • Caldwell MM (1997) Alterations in competitive balance. In: Lumsden P (ed) Plants and UV-B: responses to environmental change. Cambridge University Press, Cambridge, pp. 305–315

    Chapter  Google Scholar 

  • Caldwell MM, Flint SD (1994) Solar ultraviolet radiation and ozone layer change: implications for crop plants. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yield. ASA-CSSA-SSSA, Madison, WI

    Google Scholar 

  • Caldwell MM, Robberecht R, Flint SD (1983) Internal filters: prospects for UV acclimation in higher plants. Physiol Plant 58:445–450. doi:10.1111/j.1399-3054.1983.tb04206.x

    Article  CAS  Google Scholar 

  • Caldwell MM, Teramura AT, Tevini M (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4:363–367. doi:10.1016/0169-5347(89)90100-6

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Flint SD, Searles PS (1994) Spectral balance and UV-B sensitivity of soybean: a field experiment. Plant Cell Environ 17:267–276. doi:10.1111/j.1365-3040.1994.tb00292.x

    Article  Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M, Bornman JF, Bjorn LO, Kulandaivellu G (1995) Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio 24:166–173

    Google Scholar 

  • Caldwell MM, Ballaré CL, Bornman JF, Flint SD, Björn LO, Teramura AH, Kulandaivelu G, Tevini M (2003) Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobio S 2:29–38

    Article  CAS  Google Scholar 

  • Cardoso IM, Boddington C, Janssen BH, Oenema O, Kuyper TW (2003) Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agrofor Syst 58:33–43. doi:10.1023/A:1025479017393

    Article  Google Scholar 

  • Cen YP, Bornmann JF (1990) The response of bean plants to UV-B radiation under different irradiances of background visible light. J Exp Bot 41:1489–1495. doi:10.1093/jxb/41.11.1489

    Article  Google Scholar 

  • Cen YP, Bornman JF (1993) The effect of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiol Plant 87:249–255. doi:10.1111/j.1399-3054.1993.tb01727.x

    Article  CAS  Google Scholar 

  • Chabot S, Bel-Rhlid T, Chenevert R, Piche Y (1992) Hyphae growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker and Hall, by the activity of structurally specific flavonoid compounds under CO2 enriched conditions. New Phytol 122:461–467. doi:10.1111/j.1469-8137.1992.tb00074.x

    Article  CAS  Google Scholar 

  • Charbonneau GA, Newcomb W (1985) Growth regulators in developing effective root nodules of the garden pea (Pisum sativum L.). Biochem Physiol Pflanz 180:667–681. doi:10.1016/S0015-3796(85)80028-7

    Article  CAS  Google Scholar 

  • Chiariello N, Hickman JC, Mooney HA (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217:941–943. doi:10.1126/science.217.4563.941

    Article  CAS  PubMed  Google Scholar 

  • Chimphango SBM, Musil CF, Dakora FD (2003a) Effects of UV-B radiation on plant growth, symbiotic function and concentration of metabolites in three tropical grain legumes. Funct Plant Biol 30:309–318. doi:10.1071/FP02160

    Article  CAS  Google Scholar 

  • Chimphango SBM, Musil CF, Dakora FD (2003b) Response of purely symbiotic and NO3-fed nodulated plants of Lupinus luteus and Vicia atropurpurea to ultraviolet-B radiation. J Exp Bot 54:1771–1784. doi:10.1093/jxb/erg190

    Article  CAS  PubMed  Google Scholar 

  • Chimphango SBM, Musil CF, Dakora FD (2004) Impact of increased ultraviolet-B radiation due to stratospheric ozone depletion on N2 fixation in traditional African commercial legumes. S Afr J Bot 70:790–796. doi:10.1016/S0254-6299(15)30181-2

    Article  CAS  Google Scholar 

  • Chimphango SBM, Musil CF, Dakora FD (2012) Alteration in the mineral nutrition of purely symbiotic and nitrate-fed nodulated legumes exposed to elevated UV-B radiation. J Plant Nutr 35:1–20

    Article  CAS  Google Scholar 

  • Cho M-J, Harper JE (1993) Effect of abscisic acid application on root isoflavonoid concentration and nodulation of wild-type and nodulation mutant soybean plants. Plant Soil 153:145–149. doi:10.1007/BF00010552

    Article  CAS  Google Scholar 

  • Choudhary KK, Agrawal SB (2014a) Cultivar specificity of tropical mung bean (Vigna radiata L.) to elevated ultraviolet-B: changes in antioxidative defense system, nitrogen metabolism and accumulation of jasmonic and salicylic acids. Environ Exp Bot 99:122–132. doi:10.1016/j.envexpbot.2013.11.006

    Article  CAS  Google Scholar 

  • Choudhary KK, Agrawal SB (2014b) Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.). Ecotoxicol Environ Saf 100:178–187. doi:10.1016/j.ecoenv.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  • Choudhary KK, Agrawal SB (2015a) Effect of elevated ultraviolet-B on four tropical soybean cultivars: quantitative and qualitative aspects with special emphasis on gas exchange, chlorophyll fluorescence, biomass and yield. Acta Physiol Plant 37. doi:10.1007/s11738-015-1780-4

  • Choudhary KK, Agrawal SB (2015b) Assessment of fatty acid profile and seed mineral nutrients of two soybean (Glycine max L.) cultivars under elevated ultraviolet-B: role of ROS, pigments and antioxidants. Photochem Photobiol 92(1):134–143. doi:10.1111/php.12544

    Article  PubMed  CAS  Google Scholar 

  • Choudhary KK, Pandey D, Agrawal SB (2013) Deterioration of rhizospheric soil health due to elevated ultraviolet-B. Arch Agron Soil Sci 59:1419–1437. doi:10.1080/03650340.2012.713473

    Article  CAS  Google Scholar 

  • Chouhan S, Chauhan K, Kataria S, Guruprasad KN (2008) Enhancement in leghemoglobin content of root nodules by exclusion of UV-A and UV-B radiation in soybean. J Plant Biol 51:132–138. doi:10.1007/BF03030722

    Article  CAS  Google Scholar 

  • Cooper JB, Long SR (1994) Morphogenetic rescue of Rhizobium meliloti nodulation mutants by trans-zeatin secretion. Plant Cell 6:215–225. doi:http://dx.doi.org/10.1105/tpc.6.2.215

  • Correia CM, Areal ELV, Torres-Pereira MS, Torres-Pereira JMG (1998) Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions. I. Growth and morphological aspects. Field Crop Res 59:81–89. doi:10.1016/S0378-4290(98)00102-6

    Article  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol 48:355–381. doi:10.1146/annurev.arplant.48.1.355

    Article  CAS  Google Scholar 

  • D’Agostino IB, Kieber JJ (1999) Phosphorelay signal transduction: the emerging family of plant response regulators. Trends Biochem Sci 24:452–456. doi:10.1016/S0968-0004(99)01465-6

    Article  PubMed  Google Scholar 

  • Dakora FD (1995) Plant flavonoids: biological molecules for useful exploitation. Aust J Plant Physiol 22:7–99. doi:10.1071/PP9950087

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. doi:10.1023/A:1020809400075

    Article  CAS  Google Scholar 

  • Dangar TK, Basu PS (1984) Seasonal changes and metabolism of plant hormones in root nodules of Lens sp. Biol Plant 26:253–259. doi:10.1007/BF02902904

    Article  CAS  Google Scholar 

  • Dangar TK, Basu PS (1987) Studies on plant growth substances, IAA metabolism and nitrogenase activity in root nodules of Phaseolus aureus Roxb. var. mungo. Biol Plant 29:350–354. doi:10.1007/BF02886613

    Article  CAS  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the development of plants growing in drying soil. Annu Rev Plant Physiol 42:55–76. doi:10.1146/annurev.pp.42.060191.000415

    Article  CAS  Google Scholar 

  • Day TA, Neale PJ (2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Annu Rev Ecol Syst 33:371–396. doi:10.1146/annurev.ecolsys.33.010802.150434

    Article  Google Scholar 

  • Day TA, Vogelmann TC (1995) Alterations in photosynthesis and pigment distribution in pea leaves following UV-B exposure. Physiol Plant 94:433–440. doi:10.1111/j.1399-3054.1995.tb00950.x

    Article  CAS  Google Scholar 

  • Deckmyn G, Impens I (1995) UV-B increases the harvest index of bean (Phaseolus vulgaris L.). Plant Cell Environ 18:1426–1433. doi:10.1111/j.1365-3040.1995.tb00204.x

    Article  Google Scholar 

  • Deckmyn G, Martens C, Impens I (1994) The importance of the ratio UV-B/photosynthetic active radiation (PAR) during leaf development as determining factor of plant sensitivity to increased UV-B irradiance: effects on growth, gas exchange and pigmentation of bean plants (Phaseolus vulgaris cv. Label). Plant Cell Environ 17:295–301. doi:10.1111/j.1365-3040.1994.tb00295.x

    Article  Google Scholar 

  • Demir S, Akkopru A (2007) Using arbuscular mycorrhizal fungi (AMF) for biocntrol of soil borne fungal pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Howarth Press, USA, pp. 17–37

    Google Scholar 

  • Dickson S, Smith SE, Smith FA (1999) Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: in flow and flux of phosphate across the symbiotic interface. New Phytol 144:173–181. doi:10.1046/j.1469-8137.1999.00494.x

    Article  CAS  Google Scholar 

  • Dillenburg LR, Sullivan JH, Teramura AH (1995) Leaf expansion and development of photosynthetic capacity and pigments in Liquidambar styraciflua (Hamamelidaceae) of UV-B radiation. Am J Bot 82:878–885

    Article  CAS  Google Scholar 

  • Dullaart J, Duba LI (1970) Presence of gibberellin-like substances and their possible role in auxin bioproduction in root nodules and roots of Lupinus luteus L. Acta Bot Neerl 19:877–883. doi:10.1111/j.1438-8677.1970.tb00191.x

    Article  CAS  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. P Natl Acad Sci USA 92:11312–11316

    Article  CAS  Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274. doi:10.1016/S1360-1385(97)86349-2

    Article  Google Scholar 

  • Fedorova EE, Zhiznevskaya GY, Kalibernaya ZV, Artemenko EN, Izmailov SF, Gus’kov AV (2000) IAA metabolism during development of symbiosis between Phaseolus vulgaris and Rhizobium phaseoli. Russ J Plant Physiol 47:203–206

    CAS  Google Scholar 

  • Feng H, An L, Chen T, Qiang W, Xu S, Xiao M, Wang W, Cheng G (2003) The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (δ 13C) of two soybean cultivars (Glycine max) under field conditions. Environ Exp Bot 49:1–8. doi:10.1016/S0098-8472(02)00043-6

    Article  CAS  Google Scholar 

  • Ferguson BJ, Mathesius U (2003) Signalling interactions during nodule development. J Plant Growth Regul 22:47–72. doi:10.1007/s00344-003-0032-9

    Article  CAS  Google Scholar 

  • Flint SD, Jordan PW, Caldwell MM (1985) Plant protective response to enhanced UV-B radiation under field conditions: leaf optical properties and photosynthesis. Photochem Photobiol 41:95–99. doi:10.1111/j.1751-1097.1985.tb03454.x

    Article  CAS  Google Scholar 

  • Foucher F, Kondorosi E (2000) Cell cycle regulation in the course of nodule organogenesis in Medicago. Plant Mol Biol 43:773–786. doi:10.1023/A:1006405029600

    Article  CAS  PubMed  Google Scholar 

  • Francis R, Read J (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56. doi:10.1038/307053a0

    Article  CAS  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420-1428. doi:http://dx.doi.org/10.1104/pp.103.030049

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743. doi:10.1038/nature01387

    Article  CAS  PubMed  Google Scholar 

  • Galatro A, Simontacchi M, Puntarulo S (2001) Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiol Plant 113:564–570. doi:10.1034/j.1399-3054.2001.1130416.x

    Article  CAS  Google Scholar 

  • Galston AW (1959) Gibberellins and nodulation. Nature 183:545. doi:10.1038/183545a0

    Article  CAS  PubMed  Google Scholar 

  • Garcıá-Ruiz R, Ochoa V, MB H, JA C (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol Biochem 40:2137–2145. doi:10.1016/j.soilbio.2008.03.023

    Article  CAS  Google Scholar 

  • Ghosh S, Verma NK (2006) Growth and mycorrhizal dependency of Acacia mangium Willd. inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic soil. New For 3:75–81. doi:10.1007/s11056-004-4763-7

    Article  Google Scholar 

  • Giller YE (1991) UV-B effect on the development of photosynthetic apparatus, growth and productivity of higher plants. In: Abrol YP, Wattal PW, Ort DR, Gnanam A, Teramura AH (eds) Impact of Global Climatic Changes on Photosynthesis and Plant Productivity Proceedings of the Indo-US Workshop. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, pp. 77–93

    Google Scholar 

  • Gitz DC, Lui-Gitz L, Britz SJ, Sullivan JH (2005) Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse grown soybean (Glycine max) cultivars. Environ Exp Bot 53:343–355. doi:10.1016/j.envexpbot.2004.04.005

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolin MC, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997. doi:10.1111/j.1399-3054.1997.tb00027.x

    Article  CAS  Google Scholar 

  • Gonzalez R, Paul ND, Percy K, Ambrose M, McLaughlin CK, Barnes JD, Areses M, Wellburn AR (1996) Responses to ultraviolet-B radiation (280–315 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol Plant 98:852–860. doi:10.1111/j.1399-3054.1996.tb06695.x

    Article  CAS  Google Scholar 

  • Gonzalez R, Mepsted R, Wellburn AR, Paul ND (1998a) Non-photosynthetic mechanisms of growth reduction in pea (Pisum sativum L.) exposed to UV-B radiation. Plant Cell Environ 21:23–32. doi:10.1046/j.1365-3040.1998.00243.x

    Article  CAS  Google Scholar 

  • Gonzalez R, Wellburn AR, Paul ND (1998b) Dose responses of two pea lines to ultraviolet-B radiation (280–315 nm). Physiol Plant 104:373–378. doi:10.1034/j.1399-3054.1998.1040312.x

    Article  CAS  Google Scholar 

  • González EM, Gálvez L, Arrese-Igor C (2001) Abscisic acid induces a decline in nitrogen fixation that involves leghaemoglobin, but is independent of sucrose synthase activity. J Exp Bot 52:285–293. doi:10.1093/jexbot/52.355.285

    Article  PubMed  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35. doi:10.1016/j.agee.2005.09.009

    Article  Google Scholar 

  • Greenberg BM, Wilson MI, Gerhardt KE, Wilson KE (1996) Morphological and physiological responses of Brassica napus to ultraviolet-B radiation: photomodification of ribulose-1,5-bisphosphate carboxylase/oxygenase and potential acclimation processes. J Plant Physiol 148:78–85. doi:10.1016/S0176-1617(96)80297-5

    Article  CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for MYB transactivation of a high-pI α-amylase gene promoter. Plant Cell 7:1879–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamel C, Barrantes-Cartin U, Furlan V, Smith DL (1991) Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138:33–40. doi:10.1007/BF00011805

    Article  CAS  Google Scholar 

  • Harrison M (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol 50:361–389. doi:10.1146/annurev.arplant.50.1.361

    Article  CAS  Google Scholar 

  • He J, Huang LK, Chow WS, Whitecross MI, Anderson JM (1993) Effects of supplementary ultraviolet-B radiation on rice and pea plants. Aust J Plant Physiol 20:129–142. doi:10.1071/PP9930129

    Article  Google Scholar 

  • He J, Huang LK, Chow WS, Whitecross MI, Anderson JM (1994) Responses of rice and pea plants to hardening with low doses of ultraviolet-B radiation. Aust J Plant Physiol 21:563-574. doi:http://dx.doi.org/10.1071/PP9940563

  • Heap AJ, Newman EI (1980) Links between roots by hyphae of vesicular-arbuscular mycorrhizas. New Phytol 85:169–171. doi:10.1111/j.1469-8137.1980.tb04457.x

    Article  Google Scholar 

  • Hirsch AM, Fang Y (1994) Plant hormones and nodulation: what’s the connection? Plant Mol Biol 26:5–9. doi:10.1007/BF00039514

    Article  CAS  PubMed  Google Scholar 

  • Holmes MG (1997) Action spectra for UV-B effects on plants: monochromatic approaches for analyzing plant responses. In: Lumsden PJ (ed) Plants and UV-B: responses to environmental change society for experimental biology, Seminar series 64. Cambridge University Press, Cambridge

    Google Scholar 

  • Hopkins L, Bond MA, Tobin AK (2002) Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf wheat (Triticum aestivum L. cv Maris Huntsman). Plant Cell Environ 25:617–624. doi:10.1046/j.1365-3040.2002.00834.x

    Article  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26:290–300. doi:10.1007/s00344-007-9017-4

    Article  CAS  Google Scholar 

  • Huang LK, He J, Chow WS, Whitecross MI, Anderson JM (1993) Responses of detached rice leaves (Oryza sativa L.) to moderate supplementary ultraviolet-B radiation allow early screening for relative sensitivity to ultraviolet-B irradiation. Aust J Plant Physiol 20:285–297. doi:10.1071/PP9930285

    Article  Google Scholar 

  • Izaguirre MM, Scopel AL, Baldwin IT, CL B (2003) Convergent responses to stress. Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora. Plant Physiol 132:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain VK, Dhingra GK, Ambrish K (1999) Changes in productivity and biomass partitioning in field grown mung bean with response to supplementary UV-B radiation. In: Srivastava GC, Singh K, Pal M (eds) Plant physiology for sustainable agriculture. Pointer publishers, Jaipur, pp. 301–308

    Google Scholar 

  • Jansen MAK (2002) Ultraviolet-B radiation effects on plants: induction of morphogenic responses. Physiol Plant 116:423–429. doi:10.1034/j.1399-3054.2002.1160319.x

    Article  CAS  Google Scholar 

  • Jansen MAK, Van den Noort RE (2000) Ultraviolet-B radiation induces complex alterations in stomatal behaviour. Physiol Plant 110:189–194. doi:10.1034/j.1399-3054.2000.110207.x

    Article  CAS  Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131–135. doi:10.1016/S1360-1385(98)01215-1

    Article  Google Scholar 

  • Jayakumar M, Amudha P, Kulandaivelu G (2004) Effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities in Phaseolus mungo L. J Plant Biol 47:105–110. doi:10.1007/BF03030639

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. doi:10.1007/s00374-002-0546-5

    Google Scholar 

  • Jelenska J, Deckert J, Kondorosi E, Legocki AB (2000) Mitotic B-type cyclins are differentially regulated by phytohormones and during yellow lupine nodule development. Plant Sci 150:29–39. doi:10.1016/S0168-9452(99)00158-2

    Article  CAS  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431. doi:10.1146/annurev.arplant.59.032607.092953

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258. doi:10.1093/aob/mch135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Zurdo JI, Frugier F, Crespi MD, Kondorosi A (2000) Expression profiles of 22 novel molecular markers for organogenetic pathways acting in alfalfa nodule development. Mol Plant Microbe Interact 13:96–106. doi:http://dx.doi.org/10.1094/MPMI.2000.13.1.96

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162. doi:10.1016/S0065-2296(08)60057-9

    Article  CAS  Google Scholar 

  • Jordan BR (2002) Molecular response of plant cells to UV-B stress. Funct Plant Biol 29:909–916. doi:10.1071/FP02062

    Article  CAS  Google Scholar 

  • Kaiser MW (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145:377–382. doi:10.1007/BF00388364

    Article  CAS  PubMed  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Sailaja K (2003a) Field crop responses to ultraviolet-B radiation: a review. Agric For Meteorol 120:191–218. doi:10.1016/j.agrformet.2003.08.015

    Article  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003b) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826. doi:10.1093/aob/mcg086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Gao W (2004) Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiol Plant 121:250–257. doi:10.1111/j.0031-9317.2004.00314.x

    Article  CAS  PubMed  Google Scholar 

  • Kataria S, Dehariya P, Guruprasad KN, Pandey GP (2012) Effect of exclusion of ambient solar UV-A/B components on growth and antioxidant response of cotton (Gossypium hirsutum L.). Acta Biol Cracov Ser Bot 54:47–53. doi:10.2478/v10182-012-0018-7

    Google Scholar 

  • Katerova Z, Ivanov S, Mapelli S, Alexieva V (2009) Phenols, proline and low-molecular thiol levels in pea (Pisum sativum) plants respond differently toward prolonged exposure to ultraviolet-B and ultraviolet-C radiations. Acta Physiol Plant 31:111–117. doi:10.1007/s11738-008-0208-9

    Article  CAS  Google Scholar 

  • Keiller DR, Holmes MG (2001) Effects of long term exposure to elevated UV-B radiation on the photosynthetic performance of five broad leaved tree species. Photosynth Res 67:229–240. doi:10.1023/A:1010620228989

    Article  CAS  PubMed  Google Scholar 

  • Kendrick RE, Kerckhoffs LHJ, Tuinen AV, Koornneef M (1997) Photomorophogenic mutants of tomato. Plant Cell Environ 20:746–751. doi:10.1007/BF00022523

    Article  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation- an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514. doi:10.1631/jzus.2006.B0503

    Article  PubMed  PubMed Central  Google Scholar 

  • Klironomos JN, Allen MF (1995) UV-B-mediated changes on belowground communities associated with the roots of Acer saccharum. Funct Ecol 9:923–930. doi:10.2307/2389991

    Article  Google Scholar 

  • Krause GH, Winter K (1996) Photoinhibition of photosynthesis in plants growing in natural tropical forest gaps. A chlorophyll fluorescence study. Bot Acta 109:456–462. doi:10.1111/j.1438-8677.1996.tb00598.x

    Article  CAS  Google Scholar 

  • Krause GH, Gaile A, Gademann R, Winter K (2003) Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants. Funct Plant Biol 30:533–542. doi:10.1071/FP03047

    Article  CAS  Google Scholar 

  • Kulandaivelu G, Lingakumar K (2000) Molecular targets of UV-B radiation in the photosynthetic membranes. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis Mechanisms, Regulation and Adaptation. Taylor and Francis Publications, New York, pp. 364–378

    Google Scholar 

  • Kumari R, Singh S, Agrawal SB (2009) Combined effects of psoralens and ultraviolet-B on growth, pigmentation and biochemical parameters of Abelmoschus esculentus L. Ecotoxicol Environ Saf 72:1129–1136. doi:10.1016/j.ecoenv.2008.12.009

    Article  CAS  PubMed  Google Scholar 

  • Kostina E, Wulff A, Julkunen-Tiitto R (2001) Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Trees 15:483–491. doi:10.1007/s00468-001-0129-3

    Article  CAS  Google Scholar 

  • Krizek DT (2004) Influence of PAR and UV-A in determining plant sensitivity and photomorphogenic responses to UV-B radiation. Photochem Photobiol 79:307–315. doi:10.1111/j.1751-1097.2004.tb00013.x

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115. doi:10.1007/s11104-009-0042-x

    Article  CAS  Google Scholar 

  • Laposi R, Veres S, Lakatos G, Olah V, Fieldsend A, Meszaros I (2009) Responses of leaf traits of beech (Fagus sylvatica L.) saplings to supplemental UV-B radiation and UV-B exclusion. Agric For Meteorol 149:745–755. doi:10.1016/j.agrformet.2008.10.023

    Article  Google Scholar 

  • Laube JC, Newland MJ, Hogan C, Brenninkmeijer CAM, Fraser PJ, Martinerie P, Oram DE, Reeves CE, Rockmann T, Schwander J, Witrant E, Sturges WT (2014) Newly detected ozone-depleting substances in the atmosphere. Nat Geosci 7:266–269. doi:10.1038/ngeo2109

    Article  CAS  Google Scholar 

  • Li Z, Wang P, Cihlar J (2000) A simple and efficient method for retrieving surface UV radiation dose rate from satellite. J Geophys Res 105:5027–5036. doi:10.1029/1999JD900124

    Article  CAS  Google Scholar 

  • Li Y, Zu YQ, Chen JJ, Chen HY (2002) Intraspecific responses in crop growth and yield of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Field Crop Res 78:1–8. doi:10.1016/S0378-4290(02)00084-9

    Article  Google Scholar 

  • Li Y, Ran W, Zhang R, Sun S, Xu G (2009) Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 315:285–296. doi:10.1007/s11104-008-9751-9

    Article  CAS  Google Scholar 

  • Libbenga KR, Van Iren F, Bogers RJ, Schraag-Lamers MF (1973) The role of hormones and gradients in the initiation of cortex proliferation and nodule formation in Pisum sativum L. Planta 114:29–39. doi:10.1007/BF00390282

    Article  CAS  PubMed  Google Scholar 

  • Lingakumar K, Kulandaivelu G (1993) Changes induced by ultraviolet-B radiation in vegetative growth, foliar characteristics and photosynthetic activities in Vigna ungiculata. Aust J Plant Physiol 20:299–308. doi:10.1071/PP9930299

    Article  Google Scholar 

  • Liu LX, Oha TY, Xewn NO (2005) Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus. Environ Exp Bot 54:121–130. doi:10.1016/j.envexpbot.2004.06.006

    Article  CAS  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726. doi:10.1038/nature01527

    Article  CAS  PubMed  Google Scholar 

  • Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant 112:421–428. doi:10.1034/j.1399-3054.2001.1120316.x

    Article  CAS  PubMed  Google Scholar 

  • Lou Y, Ren L, Li Z, Cheng H, Zhang T (2011) Effect of elevated ultraviolet-B radiation on microbial biomass carbon and nitrogen in barley rhizosphere soil. Water Air Soil Pollut 219:501–506. doi:10.1007/s11270-010-0723-3

    Article  CAS  Google Scholar 

  • Mackerness SAH, Thomas B, Jordan BR (1997) The effect of supplementary ultraviolet-B radiation on mRNA transcripts, translation and stability of chloroplast proteins and pigment formation in Pisum sativum L. J Exp Bot 48:729–738. doi:10.1093/jxb/48.3.729

    Article  CAS  Google Scholar 

  • Madronich S, McKenzie RL, Caldwell MM, Bjorn LO (1995) Changes in ultraviolet radiation reaching the earth’s surface. Ambio 24:143–152

    Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    Article  CAS  Google Scholar 

  • Mazza CA, Boccalandro HE, Giordano CV, Battista D, Scopel AL, Ballare CL (2002) Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. Plant Physiol 122:117–125. doi:http://dx.doi.org/10.1104/pp.122.1.117

  • McKenzie RL, Bjorn LO, Bais A, Ilyasd M (2003) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol Sci 2:5–15. doi:10.1039/b211155c

    Article  CAS  PubMed  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M (2007) Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. Photochem Photobiol 6:218–231. doi:10.1039/B700017K

    Article  CAS  Google Scholar 

  • Meijkamp BB, Aerts R, Van de Staaij J, Tosserams M, Ernst W, Rozema J (1999) Effects of UV-B on secondary metabolisms in plants. In: Rozema J (ed) Stratospheric ozone depletion: the effects of enhanced UVB radiation on terrestrial ecosystems. Backhuys Publishers, Leiden, pp. 71–99

    Google Scholar 

  • Meijkamp BB, Doodeman G, Rozema J (2001) The response of Vicia faba to enhanced UV-B radiation under low and near ambient PAR levels. Plant Ecol 154:137–146. doi:10.1007/978-94-017-2892-8_13

    Article  Google Scholar 

  • Melis A, Nemson JA, Harrison MA (1992) Damage to functional components and partial degradation of PS II reaction centre protein upon chloroplast exposure to ultraviolet-B radiation. Biochim Biophys Acta 1109:313–320. doi:10.1016/0167-4838(92)90487-X

    Google Scholar 

  • Mes MG (1959) Influence of gibberellic acid and photoperiod on the growth, flowering nodulation and nitrogen assimilation of Vicia villosa. Nature 184:2035–2036. doi:10.1038/1842035a0

    Article  CAS  Google Scholar 

  • Middleton EM, Teramura AH (1993) The role of flavonol glycosides and carotenoids in protecting soybean from ultraviolet-B damage. Plant Physiol 103:741–752. doi:http://dx.doi.org/10.1104/pp.103.3.741

  • Miller JE, Booker FL, Fiscus EL, Heagle AS, Pursley WA, Vozzo SF, Heck WW (1994) Ultraviolet-B radiation and ozone effects on growth, yield, and photosynthesis of soybean. J Environ Qual 23:83–91. doi:10.2134/jeq1994.00472425002300010012x

    Article  CAS  Google Scholar 

  • Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol 74:475–480. doi:http://dx.doi.org/10.1104/pp.74.3.475

  • Mishra S, Agrawal SB (2006) Interactive effects between supplemental ultraviolet-B radiation and heavy metals on the growth and biochemical characteristics of Spinacia oleracea L. Braz J Plant Physiol 18:307–314. doi:http://dx.doi.org/10.1590/S1677-04202006000200007

  • Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542. doi:10.1016/S1360-1385(01)02101-X

    Article  CAS  PubMed  Google Scholar 

  • Murakami-Mizukami Y, Yamamoto Y, Yamaki S (1991) Analyses of indole acetic acid and abscisic acid contents in nodules of soybean plants bearing VA mycorrhizas. Soil Sci Plant Nutr 37:291–298. doi:10.1080/00380768.1991.10415039

    Article  CAS  Google Scholar 

  • Murali NS, Teramura AH (1985) Effects of ultraviolet-B irradiance on soybean. VII. Biomass and concentration and uptake of nutrients at varying P supply. J Plant Nutr 8:177–192. doi:10.1080/01904168509363333

    Article  CAS  Google Scholar 

  • Murali NS, Teramura AH (1986) Effects of ultraviolet-B radiation on the growth and physiology of field-grown soybean. Environ Exp Bot 26:233–242. doi:10.1016/0098-8472(86)90035-3

    Article  Google Scholar 

  • Nagel LM, Bassman JH, Edwards GE, Robberecht R, Franceshi VR (1998) Leaf anatomical changes in Populus trichocarpa, Quercus rubra, Pseudotsuga menziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation. Physiol Plant 104:385–396. doi:10.1034/j.1399-3054.1998.1040314.x

    Article  CAS  Google Scholar 

  • Ndakidemi PA, Dakora FD (2003) Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Funct Plant Biol 30:729–745. doi:10.1071/FP03042

    Article  Google Scholar 

  • Nedunchezhian N, Kulandaivelu G (1997) Changes induced by ultraviolet-B (280–320 nm) radiation to vegetative growth and photosynthetic characteristics in field grown Vigna unguiculata L. Plant Sci 123:85–92. doi:10.1016/S0168-9452(97)04583-4

    Article  CAS  Google Scholar 

  • Newsham KK, Greenslade PD, McLeod AR (1999) Effects of elevated ultraviolet radiation on Quercus robur and its insect and ectomycorrhizal associates. Glob Chang Biol 5:881–890. doi:10.1046/j.1365-2486.1999.00278.x

    Article  Google Scholar 

  • Noguchi K, Kujimeh H, Takeshi I (2007) UV-induced momilactone B accumulation in rice rhizosphere. J Plant Physiol 164:1548–1551. doi:10.1016/j.jplph.2006.12.008

    Article  CAS  Google Scholar 

  • Nogues S, Baker NR (1995) Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B. Plant Cell Environ 18:781–787. doi:10.1111/j.1365-3040.1995.tb00581.x

    Article  CAS  Google Scholar 

  • Nogues S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oravecz A, Baumann A, Mate Z, Brzezinska A, Molinier J, Oakeley EJ, Adam E, Schäfer E, Nagy F, Ulm R (2006) CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990. doi:10.1105/tpc.105.040097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal M, Sengupta UK, Srivastava AC, Jain V, Meena RC (1999) Changes in growth and photosynthesis of mungbean induced by UV-B radiation. Indian J Plant Physiol 4:79–84

    CAS  Google Scholar 

  • Phillips DA (1971) Abscisic acid inhibition of root nodule initiation in Pisum sativum. Planta 100:181–190. doi:10.1007/BF00387034.

    Article  CAS  PubMed  Google Scholar 

  • Pinto ME, Edwards GE, Riquelme AA, MSB K (2002) Enhancement of nodulation in bean (Phaseolus vulgaris) by UV-B irradiation. Funct Plant Biol 29:1189–1196. doi:10.1071/FP02012

    Article  CAS  Google Scholar 

  • Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport chain, antioxidant responses of young soybean seedlings to simultaneous exposure to nickel and UV-B. Photosynthetica 43:177–185. doi:10.1007/s11099-005-0031-0

    Article  CAS  Google Scholar 

  • Premkumar A, Kulandaivelu G (2001) Influence of increased ultraviolet-B radiation on magnesium deficient cowpea seedlings: changes in growth and foliar constituents. Plant Sci 161:1–8. doi:10.1016/S0168-9452(00)00448-9

    Article  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellins biosynthesis and other metabolic pathways. Annu Rev Plant Biol 51:501–531. doi:10.1146/annurev.arplant.51.1.501

    Article  CAS  Google Scholar 

  • Rajendiran K, Ramanujam MP (2000) Efficacy of triadimefon treatment in ameliorating the UV-B stress in green gram. In: Khan M (ed) National symposium on environmental crisis and security in the new millennium National Environmental Science Academy, New Delhi, pp 41–42

    Google Scholar 

  • Rajendiran K, Ramanujam MP (2004) Improvement of biomass partitioning, flowering and yield by triadimefon in UV-B stressed Vigna radiata (L.) Wilczek. Biol Plant 48:145–148. doi: 10.1023/B:BIOP.0000024293.31266.a2

    Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 115:–149

    Google Scholar 

  • Reed HE, Teramura AH, Kenworthy WJ (1992) Ancestral US soybean cultivars characterized for tolerance to ultraviolet-B radiation. Crop Sci 32:1214–1219. doi:10.2135/cropsci1992.0011183X003200050031x

    Article  Google Scholar 

  • Regvar M, Bukovnik U, Likar M, Kreft I (2012) UV-B radiation affects flavonoids and fungal colonisation in Fagopyrum esculentum and F. tataricum. Cent Eur J Biol 7:275–283. doi:10.2478/s11535-012-0017-4

    CAS  Google Scholar 

  • Reid CPP, Woods FW (1969) Translocation of C14 labelled compounds in mycorrhizal and its implications in interplant nutrient cycling. Ecology 50:178–187. doi:10.2307/1934844

    Article  Google Scholar 

  • Relic B, Talmont F, Kopcinska J, Golinowski W, JC P, WJ B (1993) Biological activity of Rhizobium sp.NGR234 Nod-factors on Macroptilium atropurpureum. Mol Plant Microbe Interact 6:764–774

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498. doi:10.1128/AEM.67.2.495-498.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans 24:790–795

    Article  CAS  PubMed  Google Scholar 

  • Ridge RW, Bender GL, Rolfe BG (1992) Nodule like structures induced on roots of wheat seedlings by addition of the systematic auxin 2,4- dichlorophenoxy acetic acid and the effects of microorganisms. Aust J Plant Physiol 19:481–492

    Article  CAS  Google Scholar 

  • Rodrigues GC, Van der Noort ME, Van Rensen JJS (2006) Evidence for the semireduced primary quinone electron acceptor of photosystem II being a photosensitizer for UVB damage to the photosynthetic apparatus. Plant Sci 170:283–290. doi:10.1016/j.plantsci.2005.08.015

    Article  CAS  Google Scholar 

  • Rodriguez-Barrueco C, Bermudez de Castro F (1973) Cytokinin-induced pseudonodules on Alnus glutinosa. Physiol Plant 29:277–280. doi:10.1111/j.1399-3054.1973.tb03107.x

    Article  CAS  Google Scholar 

  • Roldán A, Salinas-Garcıa JR, Alguacil MM, Caravaca F (2005) Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl Soil Ecol 30:11–20. doi:10.1016/j.apsoil.2005.01.004

    Article  Google Scholar 

  • Ros J, Tevini M (1995) Interaction of UV-radiation and IAA during growth of seedlings and hypocotyl segments of sunflower. J Plant Physiol 146:295–302. doi:10.1016/S0176-1617(11)82057-2

    Article  CAS  Google Scholar 

  • Rosas S, Soria S, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod Gene in Rhizobium. Plant Mol Biol 38:1161–1168. doi:10.1023/A:1006064807870

    Article  CAS  PubMed  Google Scholar 

  • Rosenfield JE, Schoeberl MR (2005) Recovery of the tropical lower stratospheric ozone layer. Geophys Res Lett 32:L21806. doi:10.1029/2005GL023626

    Article  CAS  Google Scholar 

  • Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552. doi:10.1046/j.1365-313x.2000.00702.x

    Article  CAS  PubMed  Google Scholar 

  • Rowland SF (2006) Stratospheric ozone depletion. Philos Trans Roy Soc B 361:769–790

    Article  CAS  Google Scholar 

  • Rozema J, Arp W, Van Diggelen J, Van Esbroek M, Broekman R, Punte H (1986) Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot Neerl 35:457–467. doi:10.1111/j.1438-8677.1986.tb00485.x

    Article  Google Scholar 

  • Rozema J, Van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28. doi:10.1016/S0169-5347(96)10062-8

    Article  CAS  PubMed  Google Scholar 

  • Sahoo A, Sarkar S, Singh RP, Kafatos M, Summers ME (2005) Declining trend of total ozone column over the northern parts of India. Int J Remote Sens 26:3433–3440. doi:10.1080/01431160500076467

    Article  Google Scholar 

  • Saile-Mark M, Tevini M (1997) Effects of solar UV-B radiation on growth, flowering and yield of central and southern European bush bean cultivars (Phaseolus vulgaris L.). Plant Ecol 128:115–125. doi:10.1023/A:1009750612676

    Article  Google Scholar 

  • Sangtarash MH, Qaderi MM, Chinnappa CC, Reid DM (2009) Differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Environ Exp Bot 66:212–219. doi:10.1016/j.envexpbot.2009.03.004

    Article  CAS  Google Scholar 

  • Santos I, Fidalgo F, Almeida JM, Salema R (2004) Biochemical and ultrastructural changes in leaves of potato plants grown under supplementary UV-B radiation. Plant Sci 167:925–935. doi:10.1016/j.plantsci.2004.05.035

    Article  CAS  Google Scholar 

  • Scheiner JD, Lavado RS, Alvareza R (1996) Difficulties in recommending phosphorus fertilizers for soybeans in Argentina. Commun Soil Sci Plant 27:521–530. doi:10.1080/00103629609369574

    Article  CAS  Google Scholar 

  • Searles PS, Flint SD, Caldwell MM (2001) A meta-analysis of plant field studies stimulating stratospheric ozone depletion. Oecologia 127:1–10. doi:10.1007/s004420000592

    Article  Google Scholar 

  • Selvakumar V (2008) Ultraviolet-B radiation (280–315 nm) invoked antioxidant defense systems in Vigna unguiculata L. Walp and Crotalaria juncea L. Photosynthetica 46:98–106. doi: 10.1007/s11099-008-0017-9

    Google Scholar 

  • Sharma S, Guruprasad KN (2012) Enhancement of root growth and nitrogen fixation in Trigonella by UV-exclusion from solar radiation. Plant Physiol Biochem 61:97–102. doi:10.1016/j.plaphy.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Abrol YP, Sengupta UK (1991) Effect of solar UV-B radiation on growth of mungbean (Vigna radiata L. Wilczek) plants. In: Abro YP, Wattal PN, Granam A, Govindjee, Ort DR, Teramura AH (eds.) Impact of Global Climatic Changes on Photosynthesis and Plant Productivity. Asian Publishing House, Kent, UK, pp 175–180

    Google Scholar 

  • Sharma YK, Léon J, Raskin I, KR D (1996) Ozone-induced responses in Arabidopsis thaliana: the role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Pro Natl Acad Sci USA 93:5099–5104

    Article  CAS  Google Scholar 

  • Shiozaki N, Hattori I, Gojo R, Tezuka T (1999) Activation of growth and nodulation in a symbiotic system between pea plants and leguminous bacteria by near-UV radiation. J Photochem Photobiol B 50:33–37. doi:10.1016/S1011-1344(99)00065-2

    Article  CAS  Google Scholar 

  • Shirley BW (1996) Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci 1:377–382. doi:10.1016/S1360-1385(96)80312-8

    Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrium plants under salinity stress. J Agron 8:79–83. doi:10.3923/ja.2009.79.83

    Article  CAS  Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integr Comp Biol 42:369–380. doi:10.1093/icb/42.2.369

    Article  PubMed  Google Scholar 

  • Sinclair TR, N’Diaye O, Biggs RH (1990) Growth and yield of field-grown soybean in response to enhanced exposure to ultraviolet-B radiation. J Environ Qual 19:478–481. doi:10.2134/jeq1990.00472425001900030020x

    Article  Google Scholar 

  • Singh A (1994) Effects of enhanced UV-B radiation on higher plants. Trop Ecol 35:164–189

    Google Scholar 

  • Singh A (1995) Influence of enhanced UV-B radiation on tropical legumes. Trop Ecol 36:249–252

    CAS  Google Scholar 

  • Singh A (1996) Growth, physiological, and biochemical responses of three tropical legumes to enhanced UV-B radiation. Can J Bot 74:135–139. doi:10.1139/b96-018

    Article  CAS  Google Scholar 

  • Singh A (1997) Increased UV-B radiation reduces N2-fixation in tropical leguminous crops. Environ Pollut 95:289–291. doi:10.1016/S0269-7491(96)00146-7

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Surabhi G-K, Gao W, Reddy KR (2008) Assessing genotypic variability of cowpea (Vigna unguiculata [L.] Walp.) to current and projected ultraviolet-B radiation. J Photochem Photobiol B 93:71–81. doi:10.1016/j.jphotobiol.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Mishra S, Kumari R, Agrawal SB (2009) Response of ultraviolet-B and nickel on pigments, metabolites and antioxidants of Pisum sativum L. J Environ Biol 30:677–684. doi:http://imsear.hellis.org/handle/123456789/146259

  • Singh R, Singh S, Tripathi R, Agrawal SB (2011) Supplemental UV-B radiation induced changes in growth, pigments and antioxidant pool of bean (Dolichos lablab) under field conditions. J Environ Biol 32:139–145

    CAS  PubMed  Google Scholar 

  • Singh S, Agrawal M, Agrawal SB (2013) Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage. Photosynth Res 115:123–138. doi:10.1007/s11120-013-9841-2

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sarkar A, Agrawal SB, Agrawal M (2014) Impact of ambient and supplemental ultraviolet-B stress on kidney bean plants: an insight into oxidative stress management. Protoplasma 251:1395–1405. doi:10.1007/s00709-014-0641-0

    Article  CAS  PubMed  Google Scholar 

  • Siqueira JO, Nair MG, Hammerschmidt R, Safir GR (1991) Significance of phenolic compounds in plant-soil-microbial systems. Crit Rev Plant Sci 10:63–121. doi:10.1080/07352689109382307

    Article  CAS  Google Scholar 

  • Skorska E (2000a) Responses of pea and triticale photosynthesis and growth to long-wave UV-B radiation. Biol Plant 43:129–131. doi:10.1023/A:1026523617988

    Article  CAS  Google Scholar 

  • Skorska E (2000b) Comparison of responses of bean, pea and rape plants to UV-B radiation in darkness and in light. Acta Physiol Plant 22:163–169. doi:10.1007/s11738-000-0072-8

    Article  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit Rev Plant Sci 15:559–582. doi:10.1080/07352689609382370

    CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in Legumes. Royal Bot, Gardens, Kew, UK

    Google Scholar 

  • Stafford HA (1997) Role of flavonoids in symbiotic and defense functions in legume roots. Bot Rev 63:27–39. doi:10.1007/BF02857916

    Article  Google Scholar 

  • Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4:1353–1358. doi:10.1105/tpc.4.11.1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Staxen I, Bornman JF (1994) A morphological and cytological study of Petunia hybrida exposed to UV-B radiation. Physiol Plant 91:735–740. doi:10.1111/j.1399-3054.1994.tb03013.x

    Article  Google Scholar 

  • Stephen J, Woodfin R, Corlett JE, Paul ND, Jones HG, Ayres PG (1999) Response of barley and pea crops to supplementary UV-B radiation. J Agric Sci 132:253–261

    Article  CAS  Google Scholar 

  • Stratmann JW (2003) Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci 8:526–533. doi:10.1016/j.tplants.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  • Stratmann JW, Stelmach BA, Weiler EW, Ryan CA (2000) UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves. Photochem Photobiol 71:116–123. doi:10.1562/0031-8655(2000)0710116SIPUUR2.0.CO2

    Article  CAS  PubMed  Google Scholar 

  • Strid A, Chow WS, Anderson JM (1990) Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Int J Biochem Biophys 1020:260–268. doi:10.1016/0005-2728(90)90156-X

    CAS  Google Scholar 

  • Subba Rao NS, Tilak KVBR, Singh CS (1986) Dual inoculation with Rhizobium and Glomus fasciculatum enhances nodulation, yield and nitrogen fixation in chickpea (Cicer arietinum Linn.). Plant Soil 95:351–359. doi:10.1007/BF02374616

    Article  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizas and water relations in maize under drought stress at tasselling. New Phytol 129:643–650. doi:10.1111/j.1469-8137.1995.tb03033.x

    Article  Google Scholar 

  • Sullivan JH, Teramura AH (1989) The effects of ultraviolet-B radiation on loblolly pine: 1. Growth, photosynthesis and pigment production in greenhouse-grown saplings. Physiol Plant 77:202–207. doi:10.1111/j.1399-3054.1989.tb04970.x

    Article  CAS  Google Scholar 

  • Sullivan JH, Teramura AH (1990) Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol 92:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan JH, Gitz DC, Peek MS, McElrone AJ (2003) Response of three eastern tree species to supplemental UV-B radiation: leaf chemistry and gas exchange. Agric For Meteorol 120:219–228. doi:10.1016/j.agrformet.2003.08.016

    Article  Google Scholar 

  • Surabhi GK, Reddy KR, Singh SK (2009) Photosynthesis, fluorescence, shoot biomass and seed weight response of three cowpea (Vigna unguiculata L. Walp.) cultivars with contrasting sensitivity to UV-B radiation. Environ Exp Bot 66:160–171. doi:10.1016/j.envexpbot.2009.02.004

    Article  CAS  Google Scholar 

  • Takeuchi A, Yamaguchi T, Hidema J, Strid A, Kumagai T (2002) Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (Oryza sativa L.) growing under supplementary UV-B radiation. Plant Cell Environ 25:695–706. doi:10.1046/j.1365-3040.2002.00844.x

    Article  CAS  Google Scholar 

  • Tandon A, Attri AK (2011) Trends in total ozone column over India: 1979–2008. Atmos Environ 45:1648–1654. doi:10.1016/j.atmosenv.2011.01.008

    Article  CAS  Google Scholar 

  • Teramura AH (1983) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58:415–422. doi:10.1111/j.1399-3054.1983.tb04203.x

    Article  CAS  Google Scholar 

  • Teramura AH, Murali NS (1986) Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions. Environ Exp Bot 26:89–95. doi:10.1016/0098-8472(86)90057-2

    Article  Google Scholar 

  • Teramura AH, Forseth I, Lydon J (1984) Effects of ultraviolet-B radiation on plants during mild water stress. IV. The insensitivity of soybean internal water relations to ultraviolet-B radiation. Physiol Plant 62:384–389. doi:10.1111/j.1399-3054.1984.tb04590.x

    Article  Google Scholar 

  • Teramura AH, Sullivan JH, Lydon J (1990a) Effects of UV-B radiation in altering soybean yield: a 6-year field study. Physiol Plant 80:5–11. doi:10.1111/j.1399-3054.1990.tb04367.x

    Article  Google Scholar 

  • Teramura AH, Sullivan JH, Ziska LH (1990b) Interaction of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiol 94:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50:479–487. doi:10.1111/j.1751-1097.1989.tb05552.x

    Article  CAS  Google Scholar 

  • Tevini M, Iwanzik W, Thoma U (1981) Some effects of enhanced ultraviolet irradiation on the growth and composition of plants: barley, maize, kidney beans, radishes. Planta 153:388–394. doi:10.1007/BF00384258

    Article  CAS  PubMed  Google Scholar 

  • Thurber GA, Douglas JR, Galston AW (1958) Inhibitory effects of gibberellins on nodulation in dwarf beans, Phaseolus vulgaris. Nature 181:1082–1083. doi:10.1038/1811082a0

    Article  CAS  Google Scholar 

  • Tobar R, Azcoń R, JM B (1994) Improved nitrogen uptake and transport from 15N labelled nitrate by external hyphae of arbuscular mycorrhiza under water stressed conditions. New Phytol 126:119–122. doi:10.1111/j.1469-8137.1994.tb07536.x

    Article  Google Scholar 

  • Tok JBH, Tzeng YL, Lee K, Zeng Z, Lynn DG (1997) Mechanisms for the initiation of pathogenesis. ACS Sym Ser 658:108–116. doi:10.1021/bk-1997-0658.ch008

    Article  CAS  Google Scholar 

  • Tosserams M, Visser A, Groen M, Kalis G, Magendans E, Rozema J (2001) Combined effects of CO2 concentration and enhanced UV-B radiation on faba bean. Plant Ecol 154:197–210. doi:10.1023/A:1012907118290

    Google Scholar 

  • Tripathi R, Agrawal SB (2013) Interactive effect of supplemental ultraviolet-B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers. J Sci Food Agric 93:1016–1025. doi:10.1002/jsfa.5838

    Article  CAS  PubMed  Google Scholar 

  • Ulm R, Baumann A, Oravecz A, Mate Z, Adam E, Oakeley EJ, Schafer E, Nagy F (2004) Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. P Natl Acad Sci USA 101:1397–1402. doi:10.1073/pnas.0308044100

    Article  CAS  Google Scholar 

  • Valdenegro M, Barea JM, Azcòn R (2001) Influence of arbuscular mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for revegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regul 34:233–240. doi:10.1023/A:1013323529603

    Article  CAS  Google Scholar 

  • Van de Staaij J, Rozema J, Van Beem A, Aerts R (1999) In: Rozema J (ed) Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems. Buckhuys Publishers, Leiden, pp 159-171

    Google Scholar 

  • Van de Staaij J, Rozema J, Van Beem A, Aerts R (2001) Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: Evidence from five years of field exposure. Plant Ecol 154:171–177. doi:10.1023/A:1012975605995

    Article  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:72–75. doi:10.1038/23932

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578. doi:10.1046/j.1469-8137.2003.00688.x

    Article  Google Scholar 

  • Van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K et al (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752. doi:10.1111/j.1469-8137.2006.01862.x

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  • Vicente MR, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338. doi:10.1093/jxb/err031

    Article  CAS  Google Scholar 

  • Visser AJ, Tosserams M, Groen MW, Kalis G, Kwant R, Magendans GWH, Rozema J (1997) The combined effects of CO2 concentration and enhanced UV-B radiation on faba bean. 3. Leaf optical properties, pigments, stomatal index and epidermal cell intensity. Plant Ecol 128:208–222. doi:10.1007/978-94-011-5718-6_19

    Article  Google Scholar 

  • Vivas A, Biró B, Campos E, Barea JM, Azcón R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189. doi:10.1016/S0269-7491(03)00195-7

    Article  CAS  PubMed  Google Scholar 

  • Vu CV, Allen LH Jr, Garrard LA (1984) Effects of enhanced UV-B radiation (280–320 nm) on ribulose-1,5-bisphosphate carboxylase in pea and soybean. Environ Exp Bot 24:131–143. doi:10.1016/0098-8472(84)90014-5

    Article  CAS  Google Scholar 

  • Wheeler CT, Gordon JC, Ching TM (1979) Oxygen relations of the root nodules of Alnus rubra Bong. New Phytol 82:449–457. doi:10.1111/j.1469-8137.1979.tb02671.x

    Article  CAS  Google Scholar 

  • WMO (2007) Scientific assessment of ozone depletion: 2006. Global ozone research and monitoring project report No. 50, Geneva, Switzerland, pp 572

    Google Scholar 

  • Wright LA, Murphy TM (1982) Short-wave ultraviolet light closes leaf stomata. Am J Bot 69:1196–1199

    Article  Google Scholar 

  • Wu FY, Bi YL, Wong MH (2009) Dual Inoculation with an Arbuscular Mycorrhizal Fungus and Rhizobium to Facilitate the Growth of Alfalfa on Coal Mine Substrates. J Plant Nutr 32:755–771. doi:10.1080/01904160902787867

    Article  CAS  Google Scholar 

  • Wulff A, Ahonen J, Kärenlampi L (1996) Cell ultrastructural evidence of accelerated ageing of Norway spruce needles in industrial areas. New Phytol 133:553–561. doi:10.1111/j.1469-8137.1996.tb01924.x

    Article  CAS  Google Scholar 

  • Wulff A, Nilsson C, Sundback K, Wangberg S-A, Odmark S (1999) UV radiation effects on microbenthos – a four month field experiment. Aquat Microb Ecol 19:269–278

    Article  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbascular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188. doi:10.1016/S0038-0717(01)00165-1

    Article  CAS  Google Scholar 

  • Xiong FS, Day TA (2001) Effect of solar ultraviolet-B radiation during springtime ozone depletion on photosynthesis and biomass production of Antarctic vascular plants. Plant Physiol 125:738–751. doi:http://dx.doi.org/10.1104/pp.125.2.738

  • Xu C, Natarajan S, Sullivan JH (2008) Impact of solar ultraviolet-B radiation on the antioxidant defense system in soybean lines differing in flavonoid contents. Environ Exp Bot 63:39–48. doi:10.1016/j.envexpbot.2007.10.029

    Article  CAS  Google Scholar 

  • Yang WC, De Blank C, Meskiene I, Hirt H, Bakker J, Van Kammen A, Franssen H, Bisseling T (1994) Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cycle is only completed in primordium formation. Plant Cell 6:1415–1426. doi:http://dx.doi.org/10.1105/tpc.6.10.1415

  • Yang Z, Zheng SJ, AT H, Zheng YF, Yan JY (2000) Response of cucumber plants to increased UV-B radiation under water stress. J Environ Sci 12:236–240

    Google Scholar 

  • Yanqun Z, Li Y, Haiyan C, Jianjun C (2003) Intraspecific differences in physiological response of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Environ Exp Bot 50:87–97. doi:10.1016/S0098-8472(03)00004-2

    Article  CAS  Google Scholar 

  • Yao Y, Xuan Z, Li Y, He Y, Korpelainen H, Li C (2006a) Effects of ultraviolet-B radiation on crop growth, development, yield and leaf pigment concentration of tartary buckwheat (Fagopyrum tataricum) under field conditions. Eur J Agron 25:215–222. doi:10.1016/j.eja.2006.05.004

    Article  CAS  Google Scholar 

  • Yao Y, Yang Y, Ren J, LI C (2006b) UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environ Exp Bot 57:160–167. doi:10.1016/j.envexpbot.2005.05.009

    Article  CAS  Google Scholar 

  • Yuan L, Yanqun Z, Chen J, Chen H (2002) Intra-specific responses in crop growth and yield of 20 Soybean cultivars to enhanced ultraviolet-B radiation under field conditions. Field Crop Res 78:1–16. doi:10.1016/S0378-4290(02)00084-9

    Article  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Read J, Sullivan J (2003) Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environment conditions. Plant Cell Environ 26:771–782. doi:10.1046/j.1365-3040.2003.01019.x

    Article  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Koti S, Gao W (2005) Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiol Plant 124:189–199. doi:10.1111/j.1399-3054.2005.00491.x

    Article  CAS  Google Scholar 

  • Zheng YF, Wan CG, Yan JY (1996) Effect of enhanced ultraviolet radiation on crops and its counter measures. Agric Meteorol 17:50–54

    Google Scholar 

  • Ziska LH, Teramura AH, Sullivan JH (1992) Physiological sensitivity of plants along an elevational gradient to UV-B radiation. Am J Bot 79:863–887

    Article  Google Scholar 

  • Zu Y, Li Y, Chen J, Chen H (2004) Intra-specific responses in grain quality of 10 wheat cultivars to enhanced UV-B radiation under field conditions. J Photoch Photobiol 74:95–117. doi:10.1016/j.jphotobiol.2004.01.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank, Head, Department of Botany and to Coordinator, Centre of Advanced Study, Department of Botany, Banaras Hindu University, India for providing necessary laboratory facilities for a part of our research related to this review. Krishna Kumar Choudhary is grateful to University Grant Commission, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Bhushan Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choudhary, K.K., Agrawal, S.B. (2017). Effect of UV-B Radiation on Leguminous Plants. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-48006-0_5

Download citation

Publish with us

Policies and ethics