Skip to main content

Isolation of Bacteriophages

  • Living reference work entry
  • First Online:
Bacteriophages

Abstract

Before any phage can be studied, or used for its biological properties, it must first be isolated. As such, isolation is a critical step – indeed, the critical step – in many explorations of phage biology and biotechnology. There are several techniques, both classical and modern, by which phages can be isolated, and selection of the proper method often depends on the intended use of the phage. In this chapter, we discuss the general principles of phage isolation and techniques to obtain pure phage isolates from a variety of sources, with a particular focus on the isolation of therapeutic phages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedon ST, Culler RR (2007) Optimizing bacteriophage plaque fecundity. J Theor Biol 249(3):582–592

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST, Murray KL (2013) Archaeal viruses, not archaeal phages: an archaeological dig. Archaea 2013:1–10

    Article  CAS  Google Scholar 

  • Abedon ST, Yin J (2008) Impact of spatial structure on phage population growth. In: Abedon ST (ed) Bacteriophage ecology population growth, evolution and impact of bacterial viruses. Cambridge, UK: Cambridge University Press, pp 94–113

    Google Scholar 

  • Abedon ST, Yin J (2009) Bacteriophage plaques: theory and analysis. In: Clokie MR, Kropinski AM (eds) Bacteriophages: methods in molecular biology, vol 1. Humana Press, New York, pp 161–172

    Chapter  Google Scholar 

  • Abedon ST, Hyman P, Thomas C (2003) Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol 69(12):7499–7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann HW (2011) The first phage electron micrographs. Bacteriophage 1(4):225–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams MH (1959) Bacteriophages. Interscience, New York

    Google Scholar 

  • Adaptive Phage Technologies (2018) The Science. http://www.aphage.com/the-science/. Accessed on 10th May 2019

  • Adriaenssens EM, Ceyssens PJ, Dunon V, Ackermann HW, Van Vaerenbergh J, Maes M, De Proft M, Lavigne R (2011) Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, Belonging to the “phiKMV-Like Viruses”. Appl Environ Microbiol 77(10):3443–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adriaenssens EM, Lehman SM, Vandersteegen K, Vandenheuvel D, Philippe DL, Cornelissen A, Clokie MRJ, García AJ, De Proft M, Maes M, Lavigne R (2012) CIM® monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology 434(2):265–270

    Article  CAS  PubMed  Google Scholar 

  • Anand T, Vaid RK, Bera BC, Barua S, Riyesh T, Virmani N, Yadav N, Malik P (2015) Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhea. Virus Genes 51(2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Anand T, Vaid RK, Bera BC, Singh J, Barua S, Virmani N, Rajukumar K, Yadav NK, Nagar D, Singh RK, Tripathi BN (2016) Isolation of a lytic bacteriophage against virulent Aeromonas hydrophila from an organized equine farm. J Basic Microbiol 56(4):432–437

    Article  CAS  PubMed  Google Scholar 

  • Augustine J, Louis L, Varghese SM, Bhat SG, Kishore A (2013) Isolation and partial characterization of ΦSP-1, a Salmonella specific lytic phage from intestinal content of broiler chicken. J Basic Microbiol 53(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Auling G, Mayer F, Schlegel HG (1977) Isolation and partial characterization of normal and defective bacteriophages of gram-negative hydrogen bacteria. Arch Microbiol 115(3):237–247

    Article  CAS  PubMed  Google Scholar 

  • Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36(1):50–53

    Article  PubMed  Google Scholar 

  • Barnet YM (1972) Bacteriophages of Rhizobium trifolii I. Morphology and host range. J Gen Virol 15(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Basra S, Anany H, Brovko L, Kropinski AM, Griffiths MW (2014) Isolation and characterization of a novel bacteriophage against Mycobacterium avium subspecies paratuberculosis. Arch Virol 159(10):2659–2674

    Article  CAS  PubMed  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL (2016) Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–2866

    Article  PubMed  PubMed Central  Google Scholar 

  • Boulanger P (2008) Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. In: Clokie MR, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 2. Molecular and applied aspects Humana Press, New York, pp 277–238

    Google Scholar 

  • Breyne K, Honaker RW, Hobbs Z, Richter M, Żaczek M, Spangler T, Steenbrugge J, Lu R, Kinkhabwala A, Marchon B, Meyer E, Mokres L (2017) Efficacy and safety of a bovine-associated Staphylococcus aureus phage cocktail in a murine model of mastitis. Front Microbiol 8:2348–2348

    Article  PubMed Central  PubMed  Google Scholar 

  • Bronfenbrenner JJ, Korb C (1925) Studies on the bacteriophage of D’Herelle. J Exp Med 42:483–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM (2016) Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391

    Article  PubMed  PubMed Central  Google Scholar 

  • Burchard RP, Dworkin M (1966) A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J Bacteriol 91(3):1305–1313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burrowes BH, Molineux IJ, Fralick JA (2019) Directed in vitro evolution of therapeutic bacteriophages: the appelmans protocol. Viruses 11:241

    Article  CAS  PubMed Central  Google Scholar 

  • Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y (2015) Isolation and characterization of a “phiKMV-like” bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 10(1):e0116571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlson K (2005) Appendix: working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Washington, D.C., pp 437–487

    Google Scholar 

  • Ceyssens PJ, Hertveldt K, Ackermann HW, Noben JP, Demeke M, Volckaert G, Lavigne R (2008) The intron-containing genome of the lytic Pseudomonas phage LUZ24 resembles the temperate phage PaP3. Virology 377(2):233–238

    Article  CAS  PubMed  Google Scholar 

  • Ceyssens PJ, Brabban A, Rogge L, Lewis MS, Pickard D, Goulding D, Dougan G, Noben JP, Kropinski A, Kutter E, Lavigne R (2010) Molecular and physiological analysis of three Pseudomonas aeruginosa phages belonging to the “N4-like viruses”. Virology 405:26–30

    Article  CAS  PubMed  Google Scholar 

  • Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, Tediashvili M, Merabishvili M (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8(1):134

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Y, Shin H, Lee JH, Park CJ, Paik SY, Ryu S (2015) Isolation and genome characterization of the virulent Staphylococcus aureus bacteriophage SA97. Viruses 7(10):5225–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheepudom J, Lee CC, Cai B, Meng M (2015) Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca. Front Microbiol 15(6):959

    Google Scholar 

  • Chibani-Chennoufi S, Sidoti J, Bruttin A, Dillmann ML, Kutter E, Qadri F, Sarker SA, Brüssow H (2004) Isolation of Escherichia coli bacteriophages from the stool of pediatric diarrhea patients in Bangladesh. J Bacteriol 186(24):8287–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cihlar RL, Lessie TG, Holt SC (1978) Characterization of bacteriophage CP1, an organic solvent sensitive phage associated with Pseudomonas cepacia. Can J Microbiol 24(11):1404–1412

    Article  CAS  PubMed  Google Scholar 

  • Cornax R, Moriñigo MA, Gonzalez-Jaen F, Alonso MC, Borrego JJ (1994) Bacteriophages presence in human faeces of healthy subjects and patients with gastrointestinal disturbances. Zentralblatt Bakteriol 281(2):214–224

    Article  CAS  Google Scholar 

  • Cornelissen A, Ceyssens PJ, T’Syen J, Van Praet H, Noben JP, Shaburova OV, Krylov VN, Volckaert G, Lavigne R (2011) The T7-related Pseudomonas putida phage φ15 displays virion-associated biofilm degradation properties. PLoS One 6(4):e18597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelissen A, Ceyssens PJ, Krylov VN, Noben JP, Volckaert G, Lavigne R (2012) Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology 434(2):251–256

    Article  CAS  PubMed  Google Scholar 

  • Czajkowski R, Ozymko Z, Lojkowska E (2014) Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathol 63(4):758–772

    Article  Google Scholar 

  • Czajkowski R, Ozymko Z, Lojkowska E (2016) Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts. Folia Microbiol 61(1):29–33

    Article  CAS  Google Scholar 

  • d’Herelle F (1916) Sur un bacille dysentérique atypique. Ann Inst Pasteur 30:145

    Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Paris 165:373–375

    Google Scholar 

  • Dedrick R et al (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delisle AL, Levin RE (1969) Bacteriophages of psychrophilic pseudomonads. II. Host range of phage active against Pseudomonas putrefaciens. Antonie Van Leeuwenhoek 35(1):318–324

    Article  CAS  PubMed  Google Scholar 

  • Dietz AS, Yayanos AA (1978) Silica gel media for isolating and studying bacteria under hydrostatic pressure. Appl Environ Microbiol 36(6):966–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elford WJ, Andrewes CH (1932) The sizes of different bacteriophages. Br J Exp Pathol 13(5):446–456

    Google Scholar 

  • Ellis LF, Schlegel RA (1974) Electron microscopy of Pseudomonas φ6 bacteriophage. J Virol 14(6):1547–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shibiny A, Connerton PL, Connerton IF (2005) Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl Environ Microbiol 71(3):1259–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endersen L, Coffey A, Neve H, McAuliffe O, Ross RP, O’Mahony JM (2013) Isolation and characterisation of six novel mycobacteriophages and investigation of their antimicrobial potential in milk. Int Dairy J 28(1):8–14

    Article  CAS  Google Scholar 

  • Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79:3148–3155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Espejo RT, Canelo ES (1968) Properties of bacteriophage PM2: a lipid-containing bacterial virus. Virology 34(4):738–747

    Article  CAS  PubMed  Google Scholar 

  • Fay D, Bowman BU (1978) Structure of native and chloroform-methanol-treated mycobacteriophage R1. J Virol 27(2):432–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fortier L-C, Sekulovic O (2013) Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4:354–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulton J, Douglas T, Young M (2009) Isolation of viruses from high temperature environments. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages. New York, NY, USA: Springer, pp 43–54

    Google Scholar 

  • García-Aljaro C, Muniesa M, Jofre J (2018) Isolation of bacteriophages of the anaerobic bacteria bacteroides. In: Azaredo J, Sillankorva S (eds) Bacteriophage therapy. New York, NY, USA: Humana Press, pp 11–22

    Google Scholar 

  • Ghugare GS, Nair A, Nimkande V, Sarode P, Rangari P, Khairnar K (2016) Membrane filtration immobilization technique – a simple and novel method for primary isolation and enrichment of bacteriophages. J Appl Microbiol 122(2):531–539

    Article  PubMed  CAS  Google Scholar 

  • Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14

    Article  CAS  PubMed  Google Scholar 

  • Gill J, Sabour P, Leslie K, Griffiths M (2006) Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol 101:377–386

    Article  CAS  PubMed  Google Scholar 

  • Greene J, Goldberg RB (1985) Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the Streptomycetes. Microbiology 131(9):2459–2465

    Article  CAS  Google Scholar 

  • Harper D, Blake K (2018) Therapeutic bacteriophage compositions. Patent. International Publication Number WO 2013/164640 A1

    Google Scholar 

  • Harper DR, Parracho HMRT, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284

    Article  CAS  PubMed Central  Google Scholar 

  • Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, Sozhamannan S (2012) Development of a high throughput assay for indirectly measuring phage growth using the OmniLog™ system. Bacteriophage 2:159–167

    Article  PubMed  PubMed Central  Google Scholar 

  • Heuer OE, Pedersen K, Andersen JS, Madsen M (2001) Prevalence and antimicrobial susceptibility of thermophilic Campylobacter in organic and conventional broiler flocks. Lett Appl Microbiol 33(4):269–274

    Article  CAS  PubMed  Google Scholar 

  • Hjorleifsdottir S, Aevarsson A, Hreggvidsson GO, Fridjonsson OH, Kristjansson JK (2014) Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage. Extremophiles 18(2):261–270

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8:e57355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman PY, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    Article  CAS  PubMed  Google Scholar 

  • Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64(2):575–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X, Zhang C, Fang Y, Zhang Q, Lin L, Tang B, Wei Y (2015) Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virol Sin 30(1):52–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages. Folia Microbiol 56:191–200

    Article  CAS  Google Scholar 

  • Kang W, Sarkar S, Lin ZS, McKenney S, Konry T (2019) Ultra-fast parallelized microfluidic platform for antimicrobial susceptibility testing of gram positive and negative bacteria. Anal Chem 91(9):6242–6249

    Article  CAS  PubMed  Google Scholar 

  • Karumidze N, Kusradze I, Rigvava S, Goderdzishvili M, Rajakumar K, Alavidze Z (2013) Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca. Curr Microbiol 66(3):251–258

    Article  CAS  PubMed  Google Scholar 

  • Koser SA (1926) Action of the bacteriophage on a thermophilic Bacillus. Proc Soc Exp Biol Med 24(1):109–111

    Article  Google Scholar 

  • Kropinski AM, Mazzocco A, Waddell TE, Lingoh E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Washington, D.C., pp 69–76

    Chapter  Google Scholar 

  • Krylov V, Shaburova O, Krylov S, Pleteneva E (2012) A genetic approach to the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses 5:15–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo TT, Huang TC, Chow TY (1969) A filamentous bacteriophage from Xanthomonas oryzae. Virology 39(3):548–555

    Article  CAS  PubMed  Google Scholar 

  • Kutter EM, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttman B (1994) Effects of bacterial growth conditions and physiology on T4 infection. In: Karam J (ed) Molecular biology of bacteriophage T4. American Society of Microbiology, Washington, DC, pp 406–418

    Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  CAS  PubMed  Google Scholar 

  • Kwiatek M, Parasion S, Rutyna P, Mizak L, Gryko R, Niemcewicz M, Olender A, Łobocka M (2017) Isolation of bacteriophages and their application to control Pseudomonas aeruginosa in planktonic and biofilm models. Res Microbiol 168(3):194–207

    Article  PubMed  Google Scholar 

  • Lamont I, Brumby AM, Egan JB (1989) UV induction of coliphage 186: prophage induction as an SOS function. PNAS 86(14):5492–5496

    Article  CAS  Google Scholar 

  • Li M, Wang J, Zhang Q, Lin L, Kuang A, Materon LA, Ji X, Wei Y (2016) Isolation and characterization of the lytic cold-active bacteriophage MYSP06 from the Mingyong Glacier in China. Curr Microbiol 72(2):120–127

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yang X, Zhao W (2017) Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol Translating Life Sciences Innovation 22:585–608

    Article  Google Scholar 

  • Lin NT, Chiou PY, Chang KC, Chen LK, Lai MJ (2010) Isolation and characterization of ϕAB2: a novel bacteriophage of Acinetobacter baumannii. Res Microbiol 161(4):308–314

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Han J, Ji X, Hong W, Huang L, Wei Y (2011) Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles 15(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wu S, Song Q, Zhang X, Xie L (2006) Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol 53(2):163–166

    Article  CAS  PubMed  Google Scholar 

  • Łobocka M, Hejnowicz MS, Gagała U, Weber-Dabrowska B, Wegrzyn G, Dadlez M (2014) Phage Therapy: Current Research and Applications. In: Borysowski J, Miedzybrodzki R, Górski A (eds) The first step to bacteriophage therapy – how to choose the correct phage phage therapy: current research and applications, Norfolk, UK: Caister Academic Press pp 23–69

    Google Scholar 

  • Loc Carrillo CM, Connerton PL, Pearson T, Connerton IF (2007) Free-range layer chickens as a source of Campylobacter bacteriophage. Antonie Van Leeuwenhoek 92(3):275

    Article  PubMed  Google Scholar 

  • Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  • Locus Biosciences (2018) Locus biosciences acquires EpiBiome’s high-throughput discovery platform to enhance its global leadership in CRISPR-engineered phage therapeutics. https://www.locus-bio.com/locus-biosciences-acquires-epibiomes-high-throughput-discovery-platform-to-create-the-worlds-leading-crispr-engineered-bacteriophage-company/. Accessed on 9th May 2019

  • Lopez R, Ronda C, Tomasz A, Portoles A (1977) Properties of “diplophage”: a lipid-containing bacteriophage. J Virol 24(1):201–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Gao J, Zhang DD, Gau V, Liao JC, Wong PK (2013) Single cell antimicrobial susceptibility testing by confined microchannels and Electrokinetic loading. Anal Chem 85:3971–3976. https://doi.org/10.1021/ac4004248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luhtanen AM, Eronen-Rasimus E, Kaartokallio H, Rintala JM, Autio R, Roine E (2014) Isolation and characterization of phage–host systems from the Baltic Sea ice. Extremophiles 18(1):121–130

    Article  CAS  PubMed  Google Scholar 

  • Maal KB, Delfan AS, Salmanizadeh S (2015) Isolation and identification of two novel Escherichia coli bacteriophages and their application in wastewater treatment and coliform's phage therapy. Jundishapur J Microbiol 8(3):e14945

    Google Scholar 

  • Machuca P, Daille L, Vinés E, Berrocal L, Bittner M (2010) Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl Environ Microbiol 76(21):7243–7250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapes AC, Trautner BW, Liao KS, Ramig RF (2016) Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage 6(1):e1096995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markel DE, Eklund C (1974) Isolation, characterization, and classification of three bacteriophage isolates for the genus Levinea. Int J Syst Evol Microbiol 24(2):230–234

    Google Scholar 

  • Marks TJ, Hamilton PT (2014) Characterization of a thermophilic bacteriophage of Geobacillus kaustophilus. Arch Virol 159(10):2771–2775

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki S, Uchiyama J, Takemura-Uchiyama I, Ujihara T, Daibata M (2018) Isolation of bacteriophages for fastidious bacteria. In: Azaredo J, Sillankorva S (eds) Bacteriophage therapy. New York, NY, USA: Humana Press, pp 3–10

    Google Scholar 

  • Mattila S, Ruotsalainen P, Jalasvuori M (2015) On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01271

  • Melo LD, Sillankorva S, Ackermann HW, Kropinski AM, Azeredo J, Cerca N (2014) Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. J Gen Virol 95(2):506–515

    Article  CAS  PubMed  Google Scholar 

  • Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4(3):e4944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millard AD (2009) Isolation of cyanophages from aquatic environments. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 33–42

    Google Scholar 

  • Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10(3):e0118557

    Article  CAS  Google Scholar 

  • Muruga BN, Wagacha J, Kabaru J, Amugune N, Duboise M (2013) Isolation of bacteriophage infecting haloalkaliphilic bacteria in Lake Magadi, Kenya International. J Innov Res Dev 2:10

    Google Scholar 

  • Nivas D, Ramesh N, Krishnakumar V, Rajesh P, Solomon EK, Kannan VR (2015) Distribution, isolation and characterization of lytic bacteriophages against multi-drug resistant and extended-spectrum of Β-lactamase producing pathogens from hospital effluents. Asian J Pharm Clin Res 8(2):384–389

    Google Scholar 

  • O'flaherty S, Coffey A, Meaney W, Fitzgerald G, Ross R (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279

    Article  CAS  PubMed  Google Scholar 

  • Olsen RH, Metcalf ES, Todd JK (1968) Characteristics of bacteriophages attacking psychrophilic and mesophilic pseudomonads. J Virol 2(4):357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen RH, Siak JS, Gray RH (1974) Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage. J Virol 14(3):689–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens J, Barton MD, Heuzenroeder MW (2013) The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet Microbiol 162(1):144–150

    Article  PubMed  Google Scholar 

  • Paolozzi L, Ghelardini P (2006) The bacteriophage Mu. In: Calendar R (ed) The bacteriophages, 2nd edn. Oxford University Press, New York, pp 469–496

    Google Scholar 

  • Parfitt T (2005) Georgia: an unlikely stronghold for bacteriophage therapy. Lancet 365:2166–2167

    Article  PubMed  Google Scholar 

  • Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100(5):2141–2151

    Article  CAS  PubMed  Google Scholar 

  • Pirnay JP, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR, Corte-Real S, Debarbieux L, Dublanchet A, De Vos D, Gabard J, Garcia M, Goderdzishvili M, Górski A, Hardcastle J, Huys I, Kutter E, Lavigne R, Merabishvili M, Olchawa E, Parikka KJ, Patey O, Pouilot F, Resch G, Rohde C, Scheres J, Skurnik M, Vaneechoutte M, Van Parys L, Verbeken G, Zizi M, Van den Eede G (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32(7):2173–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirnay JP, Verbeken G, Ceyssens P-J, Huys I, De Vos D, Ameloot C, Fauconnier A (2018) The magistral phage. Viruses 10(2):e64

    Article  PubMed  Google Scholar 

  • Pootjes CF, Mayhew RB, Korant BD (1966) Isolation and characterization of Hydrogenomonas facilis bacteriophages under heterotrophic growth conditions. J Bacteriol 92(6):1787–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popova AV, Zhilenkov EL, Myakinina VP, Krasilnikova VM, Volozhantsev NV (2012) Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiol Lett 332:40–46. https://doi.org/10.1111/j.1574-6968.2012.02573.x

    Article  CAS  PubMed  Google Scholar 

  • Raya RR, Hébert EM (2009) Isolation of phage via induction of lysogens. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 23–32

    Google Scholar 

  • Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10:607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci 98(23):13341–13345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombouts S, Volckaert A, Venneman S, Declercq B, Vandenheuvel D, Allonsius CN, Van Malderghem C, Jang HB, Briers Y, Noben JP, Klumpp J, Van Vaerenbergh J, Maes M, Lavigne R (2016) Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. Porri. Front Microbiol 7:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakaki Y, Oshima T (1975) Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol 15(6):1449–1453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salifu SP, Casey SA, Foley S (2013) Isolation and characterization of soilborne virulent bacteriophages infecting the pathogen Rhodococcus equi. J Appl Microbiol 114(6):1625–1633

    Article  CAS  PubMed  Google Scholar 

  • Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seeley ND, Primrose SB (1982) The isolation of bacteriophages from the environment. J Appl Bacteriol 53:1–17

    Article  CAS  PubMed  Google Scholar 

  • Sillankorva S (2018) Isolation of bacteriophages for clinically relevant bacteria. In: Azaredo J, Sillankorva S (eds) Bacteriophage therapy. New York, NY, USA: Humana Press, pp 23–30

    Google Scholar 

  • Solonenko SA, Sullivan MB (2013) Preparation of metagenomic libraries from naturally occurring marine viruses. In: DeLong EF (ed) Methods in enzymology, vol 531. Cambridge, MA, USA: Elsevier, pp 143–165

    Google Scholar 

  • Spencer R (1955) A marine bacteriophage. Nature 175(4459):690–691

    Article  CAS  PubMed  Google Scholar 

  • Stedman K, Porter M, Dyall-Smith M (2009) The isolation of viruses infecting Archaea. In: Wilhelm S, Weinbauer M, Suttle C (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Waco, TX, USA, pp 57–64

    Chapter  Google Scholar 

  • Steinberg VI, Hart EJ, Handley J, Goldberg ID (1976) Isolation and characterization of a bacteriophage specific for Neisseria perflava. J Clin Microbiol 4(1):87–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186(4814):1241–1243

    Article  Google Scholar 

  • Tylenda CA, Calvert C, Kolenbrander PE, Tylenda A (1985) Isolation of Actinomyces bacteriophage from human dental plaque. Infect Immun 49(1):1–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S (2008) Isolation and characterization of a novel Enterococcus faecalis bacteriophage φEF24C as a therapeutic candidate. FEMS Microbiol Lett 278(2):200–206

    Article  CAS  PubMed  Google Scholar 

  • Van Twest R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 15–21

    Google Scholar 

  • Verma H, Pramod D, Abbas M, Prajapati A, Ramchandra D, Rawat M (2013) Isolation and partial characterization of lytic phage against Salmonella Abortusequi. Veterinary World 6(2):72–75

    Article  Google Scholar 

  • Vidaver AK, Koski RK, Van Etten JL (1973) Bacteriophage φ6: a lipid-containing virus of Pseudomonas phaseolicola. J Virol 11(5):799–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255(1):117–124

    Article  CAS  Google Scholar 

  • Ward TE, Bruhn DF, Shean ML, Watkins CS, Bulmer D, Winston V (1993) Characterization of a new bacteriophage which infects bacteria of the genus Acidiphilium. J Gen Virol 74(11):2419–2425

    Article  CAS  PubMed  Google Scholar 

  • Weber-Dabrowska B, Jonczyk-Matysiak E, Zaczek M, Lobocka M, Lusiak-Szelachowska M, Gorski A (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177. https://doi.org/10.3389/fmicb.2016.01177

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells LE, Deming JW (2006) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45(1):15–29

    Article  Google Scholar 

  • Wittmann J, Dreiseikelmann B, Rohde C, Rohde M, Sikorski J (2014) Isolation and characterization of numerous novel phages targeting diverse strains of the ubiquitous and opportunistic pathogen Achromobacter xylosoxidans. PLoS One 9(1):e86935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wommack KE, Williamson KE, Helton RR, Bench SR, Winget DM (2009) Methods for the isolation of viruses from environmental samples. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: Methods and Protocols. New York, NY, USA: Humana Press, pp 3–14

    Google Scholar 

  • Xie Y, Wahab L, Gill J (2018) Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses 10:189

    Article  PubMed Central  CAS  Google Scholar 

  • Yakimovich A, Andriasyan V, Witte R, Wang I-H, Prasad V, Suomalainen M, Greber UF (2015) Plaque2. 0 – a high-throughput analysis framework to score virus-cell transmission and clonal cell expansion. PLoS One 10:e0138760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40(3):734–744

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Mao J, Xie J (2014) Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 28:265–274

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Liang L, Lin S, Jia S (2010) Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol 10:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yehle CO, Doi RH (1967) Differential expression of bacteriophage genomes in vegetative and sporulating cells of Bacillus subtilis. J Virol 1(5):935–947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung MK, Kozelsky CS (1997) Transfection of Actinomyces spp. by genomic DNA of bacteriophages from human dental plaque. Plasmid 37(2):141–153

    Article  CAS  PubMed  Google Scholar 

  • Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151(4):663–679

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Mathieu J, Li M, Dai Z, Alvarez PJ (2016) Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl Environ Microbiol 82(3):808–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Feng Y, Zong Z (2018) Two new lytic bacteriophages of the myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front Microbiol 9:850–850. https://doi.org/10.3389/fmicb.2018.00850

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Burrowes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

van Charante, F., Holtappels, D., Blasdel, B., Burrowes, B. (2019). Isolation of Bacteriophages. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics