Skip to main content

Eco Friendly Management of Damping-off of Solanaceous Crops Caused by Pythium Species

  • Chapter
  • First Online:
Current Trends in Plant Disease Diagnostics and Management Practices

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Tomato, Chilli and Brinjal are commonly known as culinary vegetables, belonging to solanaceae family, form an indispensible culinary spice of almost every cuisines of the world. However, there is still lower production of these three vegetables in the country when compared to other countries. This can be attributed to the infection by various fungal and bacterial pathogens affecting the production at seedling to harvest stages of the crop. Among the fungal disease about 60 % losses at seedling stage in both nursery and field level have been reported due to damping off disease in tomato, chilli and brinjal caused by Pythium species. It is a soil-borne plant pathogen causing seed rot and damping off diseases in many vegetables and it has a wide host range. Because of the reason it is very difficult to control by using any physical/chemical method. Moreover, use of chemicals leads to accumulation of toxicity in soil, animal, human beings and environment. Repeated application of fungicides develops resistant to the pathogen. These constraints have provoked the use of alternative method, especially the use bio-control agents for the past two decades. Biological control involves the use of beneficial organisms, their genes, and/or products, plant extracts and essential oils that reduce the negative effects of plant pathogens and promote positive responses by the plant. Particularly, the use of bacterial antagonist (Psuedomonas fluorescens (Trevisan) Migula) and fungal antagonist (Trichoderma viride Pers.) has been developed commercially as a talc based formulation and tested against several seed borne and soil-borne diseases previously showing promising results in managing disease incidence under both field and greenhouse conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Monaim MF, Abo-Elyousr KAM, Morsy KM (2011) Effectiveness of plant extracts on suppression of damping- off and wilt diseases of lupine (Lupinus termis Forsik). Crop Prot 30(2):185–191

    Article  Google Scholar 

  • Abdollahi M, Rahnama K, Marabadi M, Ommati F, Zaker M (2012) The in vitro efficacy of Trichoderma isolates against Pythium aphanidermatum, the causal agent of sugar beet root rot. J Res Agric Sci 8:79–87

    Google Scholar 

  • Adekunle AA, Uma NU (2005) Effect of benlate solution, crude leaf extracts of Azadirachta indica and Ocimum gratissimum on growth of fungi and preservation of melon seeds. Plant Pathol J 4:29–34

    Article  Google Scholar 

  • Afek U, Carmeli S (1995) Increasing celery resistance to pathogens during storage and reducing high-risk psoralen concentration by treatment with GA3. J Am Soc Hortic Sci 120:562–565

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010a) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Asian J Biol Sci 4:88–95

    Google Scholar 

  • Ahemad M, Khan MS (2011) Pseudomonas aeruginosa strain PS1 enhances growth parameters of green gram (Vigna radiata (L.) Wilczek) in insecticide-stressed soils. J Pest Sci 84:123–131

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012b) Alleviation of fungicide-induced phytotoxicity in green gram (Vigna radiata (L.) Wilczek) using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad JS, Baker R (1987) Competitive saprophytic ability and cellulolytic activity ofrhizosphere-competent mutants of Trichoderma harzianum. Phytopathology 77:358–362

    Article  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Castellanos PP, Bishop CD, Pascual M (2001) Antifungal activity of the essential oil of flower heads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. J Phytochem 57(1):99–102

    Article  CAS  Google Scholar 

  • Alvarez-Castellanos PP, Bishop CD, Pascual M (2009) Antifungal activity of the essential oil of flower heads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. J Phytochem 57(1):99–102

    Article  Google Scholar 

  • Amaresan N, Jayakumar V, Thajuddin N (2014) Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian J Biotechnol 13:247–255

    CAS  Google Scholar 

  • Ambikapathy V, Gomathi S, Panneerselvam A (2011) Effect of antifungal activity of some medicinal plants against Pythium debaryanum (Hesse). Asian J Plant Sci Res 1:131–134

    Google Scholar 

  • Amini M, Safaie N, Salmani MJ, Shams-Bakhsh M (2012) Antifungal activity of three medicinal plant essential oils against some phytopathogenic fungi. Trakia J Sci 10(1):1–8

    Google Scholar 

  • Angioni A, Barra A, Cereti E, Barile D, Coisson JD, Arlorio M (2004) Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential of Rosmarinus officinalis L. J Agric Food Chem 52:3530–3535

    Article  CAS  PubMed  Google Scholar 

  • Anitha K, Tripathi NN (2001) Laboratory screening of fungal and bacterial antagonists against Rhizoctonia solani khun. and Pythium aphanidermatum (Edson) Fitz. inciting seedling diseases of okra. Indian J Plant Prot 29:146–148

    Google Scholar 

  • Bahraminejad S, Abbasi S, Fazlali M (2011) In vitro antifungal activity of 63 Iranian plant species against three different plant pathogenic fungi. Afr J Biotechnol 10:16193–16201

    Google Scholar 

  • Bailey BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on Plant growth and resistance to pathogens. In: Kubicek CP, Harman GE, Ondik KL (eds) Trichoderma and Gliocladium: enzymes, biological control and commercial applications. Taylor and Francis, London, pp 185–204

    Google Scholar 

  • Bajpai VK, Kang SC (2010) Antifungal activity of leaf essential oil and extract of Metaseqoia glystostroboides Miki ex Hu. J Am Oil Chem Soc 87:327–336

    Article  CAS  Google Scholar 

  • Bala K, Robideau G, de Cock AWAM, Abad ZG, Lodhi AM, Shahzad S, Ghaffar A, Coffey MD, Lévesque CA (2010) Phytopythium gen. nov. Persoonia 24:136–137

    Google Scholar 

  • Bandara BMR, Kumar NS, Samaranayake KMS (1989) An antifungal constituent from the stembark of Butea monosperma. J Ethnopharmacol 25:73–75

    Article  CAS  PubMed  Google Scholar 

  • Baratta MT, Dorman HJD, Deans SG, Figueiredo AC, Barroso JG, Ruberto G (1998) Antibacterial and anti-oxidant properties of some commercial essential oils. Flavour Fragr J 13:235–244

    Article  CAS  Google Scholar 

  • Barkley TM, Brouillet L, Strother JL (2006) Magnoliophyta: Asteridae: Asteraceae, part 1 vol. 19, part 2 vol. 20, and part 3 vol. 21. In: Flora of North America Editorial Committee (eds) 1993+. Flora of North America North of Mexico, New York.

    Google Scholar 

  • Bar-Ness E, Chen Y, Hadar Y, Marschner H, Römheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant and Soil 130:231–241

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252

    Article  Google Scholar 

  • Bellgard S, Ham C (2004) Common diseases of peanuts in the top end of the NT Arachis hypogaea L. Agdex No: 141/633. Agnote Northern Territory of Australia (162), 7 p

    Google Scholar 

  • Bharathi R, Vivekananthan R, Harish S, Ramanathan A, Samiyappan R (2004) Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot 23:835–843

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhuvaneshwari S (2008) Biological control of damping-off disease of tomato caused by Pythium aphanidermatum (Edson) Fitz. MSc (Ag.) thesis, Annamalai University, Tamil Nadu

    Google Scholar 

  • Bullerman LB, Lieu FY, Seire AS (1977) Inhibition of growth and alfatoxin production by cinnamon and clove oils, cinnamic aldehyde and eugenol. J Food Sci 42:1107–1116

    Article  CAS  Google Scholar 

  • Cardenas NC, Zavala MA, Aguirre JR, Perez C, Perez S (2005) Chemical composition and antifungal activity of essential oil of Chrysactinia mexicana Gray. J Agric Food Chem 53:4347–4349

    Article  CAS  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The mycota IV: environmental and microbial relationships. Springer-Verlag, Berlin, pp 165–184

    Google Scholar 

  • Choi GJ, Jang KS, Kim JS, Lee SW, Cho JY, Cho KY, Kim JC (2004) In vivo fungal activity of 57 plant extracts against six plant pathogenic fungi. Plant Pathol J 20:184–191

    Article  Google Scholar 

  • Chuang PH, Lee CW, Chou JY, Murugan M, Shieh BJ, Chen HM (2007) Antifungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresour Technol 98:232–236

    Article  CAS  PubMed  Google Scholar 

  • Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J Ethnopharmacol 79:213–220

    Article  CAS  PubMed  Google Scholar 

  • Collins DP, Jacobsen BJ (2002) Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biol Control 26:153–161

    Article  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DA (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric micro organisms. Springer, Netherlands, pp 169–189

    Chapter  Google Scholar 

  • Dana ED, Delomas JG, Sanchez J (2010) Effects of the aqueous extracts of Zygophyllum fabago on the growth of Fusarium oxyosporum f. sp. melonis and Pythium aphanidermatum. Weed Biol Manag 10:170–175

    Article  Google Scholar 

  • Dar WA, Bhat JA, Rashid R, Rehman S, Bhat ZA (2012) Bioefficacy of Pseudomonas fluorescens in management of damping-off disease in papaya (Carica papaya L.). J Agric Technol 8:693–697

    Google Scholar 

  • Das K, Tiwari RKS, Shrivastava DK (2010) Techniques for evaluation of medicinal plant products as antimicrobial agent: current methods and future trends. J Med Plants Res 4:104–111

    Google Scholar 

  • Davies PJ (2004) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic, Dordrecht

    Google Scholar 

  • Deadman M, Perret J, Al-Jabri S, Al-Maqbali Y, Al-Sa’di A, Al-Kiyoomi K, Al-Hasani H (2007) Epidemiology of damping-off disease in greenhouse cucumber crops in the Sultanate of Oman. Acta Hortic 731:319–326

    Article  Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenase. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 763–834

    Google Scholar 

  • Devaiah SP, Mahadevappa GH, Shetty HS (2009) Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract. Crop Prot 28:783–791

    Article  Google Scholar 

  • Dhingra OD, Jham GN, Rodrigues FA, Silva GJ, Costa MCN (2009) Retardation of fungal deterioration of stored soybeans by fumigation with mustard essential oil. Aust Plant Pathol 38:540–545

    Article  CAS  Google Scholar 

  • Djibaoui R, Ahmed B (2005) Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr J Biotechnol 4:697–702

    Article  Google Scholar 

  • Djonovic S, Pozo MJ, Kenerley CM (2006) Tvbgn3, a beta-1, 6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 72:7661–7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Dubey SC, Jha AK, Jha DK (1996) Integrated management of collar rot of okra through chemical and fungal antagonists. In: Diseases of economically importance plant of eastern India and their management. Nationals Symposium of Indian Phytopathological Society. 20 p.

    Google Scholar 

  • Dumitars L, Fratilescu-Sesan (1979) Aspects of the antagonism of Trichoderma viride pers. to Pythium debaryanum Hesse. Biol Vegetala 31:63–67

    Google Scholar 

  • Elad Y, David DR, Levi T, Kapat A, Kirshner B (1999) Trichoderma harzianum T-39 mechanisms of biocontrol of foliar pathogens. In: Lyr H, Russell PE, Dehne HW, Sisler HD (eds) Modern fungicides and antifungal compounds II. Intercept, Andover, Hants, UK, pp 459–467

    Google Scholar 

  • Elliott SM (2003) Rhizome rot disease of ginger. Ministry of Agriculture Research and Development Division. St. Catherine, Jamaica

    Google Scholar 

  • Endoi K, Kanno E, Oshima Y (1990) Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry 29:797–799

    Article  Google Scholar 

  • Engelmeier D, Hadacek F (2006) Antifungal natural products: Assays and Applications. In: Ashok K., (ed). Advances in Phytomedicine, Naturally occurring bioactive compounds. Vol. 3, Elsevier, Amsterdam, The Netherlands, pp 423–467

    Google Scholar 

  • Faleiro ML, Miguel MG, Ladeiro F, Venancio F, Ravares R, Brito JC, Figueiredo AC, Barroso JG, Pedro LG (2003) Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Lett Appl Microbiol 36:35–40

    Article  CAS  PubMed  Google Scholar 

  • Farag RS, Daw ZY, Abo- Raya SH (1989) Influence of some spice essential oils on Aspergillus paraciticus growth and production of alfatoxins in synthetic medium. J Food Sci 54:74–76

    Article  CAS  Google Scholar 

  • Feng W, Zheng X, Chen J, Yang Y (2008) Combination of cassia oil with magnesium sulphate for control of postharvest storage rots of cherry tomatoes. Crop Prot 27:112–117

    Article  CAS  Google Scholar 

  • Fonesca AO, Pereiro DJ, Jacob RG, Maia Filho FS, Oliverra DH, Maroneze BP, Valents JS, Osorio LG, Botton SA, Meireles MC (2015) In vitro susceptibility of Brazilian Pythium insidiosum isolates to essential oils of some Lamiaceae family species. Mycopathologia 179:253–258

    Article  CAS  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Barlett publishers, Boston, p 234

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–115

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, University Avenue South, Waterloo, Canada

    Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gomathi S, Ambikapathy V, Panneerselvam A (2011) Antimicrobial activity of some medical plants against Pythium debaryanum (Hesse). J Microbiol Biotechnol Res 1:8–13

    Google Scholar 

  • Goncalves M, Vicente A, Cavaleiro C, Salgueiro L (2007) Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat Prod Res 21:867–871

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:26–32

    Article  CAS  Google Scholar 

  • Guirado ML, Sáez Y, Serrano E, Gómez J (2009) Aetiology watermelon “sudden death” of greenhouses in the southeast of Spain. Bol Sanid Veg Plagas 35(4):617–628

    Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol l41:117–153

    Article  CAS  Google Scholar 

  • Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322

    Article  CAS  Google Scholar 

  • Haouala R, Hawala S, ElA-yeb A, Khanfir R, Boughanmi N (2008) Aqueous and organic extracts of Trigonella foenumgraecum L. inhibit the mycelia growth of fungi. J Environ Sci 20:1453–1457

    Article  CAS  Google Scholar 

  • Haran S, Schickler H, Oppenheim A, Chet I (1996) Differential expression of Trichoderma harzianum chitinases during mycoparasitism. Phytopathology 86:980–985

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harris AR, Schisler DA, Correl RL, Ryder MH (1994) Soil bacteria selected for suppression of Rhizoctonia solani and growth promotion in bedding plants. Soil Biol Biochem 26:1249–1255

    Article  Google Scholar 

  • Hazarika DK, Sarmah R, Paramanick T, Hazarika K (2000) Biological management of tomato damping-off caused by Pythium aphanidermatum. Indian J Plant Pathol 18:36–39

    Google Scholar 

  • Hendrix FF, Campbell WA (1973) Pythiums as plant pathogens. Annu Rev Phytopathol 11:77–98

    Article  Google Scholar 

  • Hoffland E, Halilinen J, Van Pelt JA (1996) Comparison of systemic resistance induced by avirulant and non-pathogenic Pseudomonas species. Phytopathology 86:757–762

    Article  Google Scholar 

  • Hong CX, Moorman GW (2005) Plant pathogens in irrigation water: challenges and opportunities. Crit Rev Plant Sci 24(3):189–208

    Article  Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma & Gliocladium, vol 2. Taylor & Francis, Padstow, pp 173–184

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Howell CR, Stipanovic RD (1983) Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70:712–715

    Article  Google Scholar 

  • Hudge BV (2014) Management of damping off disease of soybean caused by Pythium ultimum Trow. Int J Curr Microbiol Appl Sci 4:799–808

    Google Scholar 

  • Intana W, Chamswarng C (2007) Control of Chinese-kale damping-off caused by Pythium aphanidermatum by antifungal metabolites of Trichoderma virens. Songklanakarin J Sci Technol 29:919–927

    Google Scholar 

  • Jackisch-Matsuura AB, Menezes M (2000) Effect of Trichoderma spp. in the control of Pythium aphanidermatum in tobacco (Nicotiana tabacum L.). Bio-control News Inf 21:38

    Google Scholar 

  • Jadhav VT, Ambadkar CV (2007) Effect of Trichoderma spp. on seedling emergence and seedling mortality of tomato, chilli and brinjal. J Pl Dis Sci 2:190–192

    Google Scholar 

  • Jasso de Rodríguez D, Hernández-Castillo D, Rodríguez-García R, Angulo-Sánchez JL (2005) Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Ind Crop Prod 21:81–87

    Article  Google Scholar 

  • Jayaraj J, Radhakrishnan NV, Velazhahan R (2006) Development of formulations of Trichoderma harzianum strain M1 for control of damping of tomato caused by Pythium aphanidermatum. Arch Phytopathol Plant Protect 39:1–8

    Article  Google Scholar 

  • Jayaseelan EC, Tharmila S, Niranjan K (2012) Antagonistic activity of Trichoderma sp and Bacillus spp. against Pythium aphanidermatum isolated from tomato damping-off. Arch Appl Sci Technol 4:1623–1627

    Google Scholar 

  • Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    CAS  PubMed  Google Scholar 

  • Juan Z, Xue QH, Tang M (2009) Screening of antagonistic actinomycetes against ‘Jiashi’ Cucumis melo L. damping-off. J Northwest A & F Univ Nat Sci Ed 37(5):144–148

    Google Scholar 

  • Kandhari J (2007) Management of sheath blight of rice through fungicides and botanicals. Indian Phytopathol 60:214–217

    CAS  Google Scholar 

  • Kang SM, Joo GJ, Hamayun M (2009) Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett 31:277–281

    Article  CAS  PubMed  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Report 4:179–183

    Article  Google Scholar 

  • Karamenderes C, Khan S, Tekwani BL, Jacob MR, Khan IA (2006) Antiprotozoal and antimicrobial activities of Centaurea species. Pharm Biol 44:534–539

    Article  Google Scholar 

  • Kavitha PG, Thomas G (2007) Evaluation of Zingiberaceae for resistance to ginger soft rot caused by Pythium aphanidermatum (Edson) Fitzp. J Plant Genet Resour Newslett 152:54–57

    Google Scholar 

  • Kavitha K, Mathiyazhahan S, Sendhilvel V, Nakkeeran S, Chandrasekar G, Fernando WGD (2005) Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode. Arch Phytopathol Plant Prot 38:69–76

    Article  CAS  Google Scholar 

  • Kawarazaki H, Nara Y, Kijima T, Goto M (2008) Pythium rot of fig marigold (Lampranthus spectabile) caused by Pythium aphanidermatum. J Gen Plant Pathol 74(1):94–95

    Google Scholar 

  • Kazmi SAR, Shahzad S, Niaz I (1995) Effect of neem oil on in vitro growth of root infecting fungi. Pak J Bot 27(1):217–220

    CAS  Google Scholar 

  • Khabbaz SE, Abbasi PA (2014) Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Can J Microbiol 60:25–33

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Akhtar MJ, Mahmood MH, Arshad M (2006) Effect of substrate dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilising microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khare A, Singh BK, Upadhyay RS (2010) Biological control of Pythium aphanidermatum causing damping-off of mustard by mutants of Trichoderma viride 1433. J Agric Technol 6:231–243

    Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 33:389–397

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kishore N, Dubey NK (2002) Fungitoxic potency of some essential oils in management of damping-off diseases in soil infested with Pythium aphanidermatum and Pythium debaryanum. Indian J For 25:463–468

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes: proceedings of the 4th international conference on Plant Pathogenic Bacteria, Station de Pathologie Vegetable et Phytobacteriologie, INRA, Angers. pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Knobloch K, Pauli A, Iberl B, Weis N, Weigand H (1989) Antibacterial activity and antifungal properties of essential oil components. J Essent Oil Res 1:119–128

    Article  CAS  Google Scholar 

  • Koomen, Jeffries P (1993) Effects of antagonistic microorganisms on the postharvest development of Colletotrichum gloeosporioides on mango. Plant Pathol 42:230–237

    Article  Google Scholar 

  • Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A (2005) Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish artemisia species. J Agric Food Chem 53:1408–1416

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy AS (1987) Biological control of damping-off disease of tomato caused by Pythium indicum, MSc (Ag.) thesis, Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Kubicek CP, Herrera EA, Seidl SV, Martinez DA (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:40–63

    Article  CAS  Google Scholar 

  • Kubota M (2010) Diseases of cabbage plug seedlings in Japan and control of the diseases. Bull Natl Inst Veg Tea Sci 9:57–112

    Google Scholar 

  • Kucharek T, Mitchell D (2000) Diseases of agronomic and vegetable crops caused by Pythium. Plant pathology fact sheet, University of Florida; p 53, http://128.227.207.24/takextpub/FactSheet/pp53.pdf

  • Kumar R, Hooda I (2007) Evaluation of antagonistic properties of Trichoderma species against Pythium aphanidermatum causing damping-off of tomato. J Mycol Plant Patho 37:240–243

    Google Scholar 

  • Kurucheve V, Padmavathi R (1997) Effect of seed treatment with plant products on seed germination, growth and vigour of chilli seedlings (K-1). Indian Pathol 50:529–530

    Google Scholar 

  • Ladha JK, de Bruijn FJ, Malik KA (1997) Introduction: assessing opportunities for nitrogen fixation in rice-a frontier project. Plant Soil 124:1–10

    Article  Google Scholar 

  • Lavanya N, Saravanakumar D, Rajendran L, Ramiah M, Raguchander T, Samiyappan R (2009) Management of sunflower necrosis virus through anti-viral substances. Arch Phytopathol Plant Prot 42:265–276

    Article  CAS  Google Scholar 

  • Lee SO, Choi GJ, Jang KS, Lim HK, Cho KY, Kim J-C (2007) Antifungal activity of five plant essential oils as fumigant against postharvest and soil borne plant pathogenic fungi. Plant Pathol J 23:97–102

    Article  CAS  Google Scholar 

  • Lee SW, Han SW, Sririyanum M, Park C-J, Seo Y-S, Ronald PC (2009) A type I–secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    Article  CAS  PubMed  Google Scholar 

  • Lifshitz R, Windham MT, Baker R (1986) Mechanism of biological control of pre-emergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76:720–725

    Article  Google Scholar 

  • Loganathan M, Sible GV, Prabakar K, Samiyappan R (2004) Antagonism of yeast Saccharomyces cerevisiae against Pythium aphanidermatum (Edson) Fitz. in tobacco. Madras Agric J 91:530–532

    Google Scholar 

  • Lorito M (2005) Molecular biology of the interactions between Trichoderma, phytopathogenic fungi and plants: opportunities for developing novel disease control methods. Second Global Conference. “Plant Health-Global Wealth”. Abstracts. pp 162–163

    Google Scholar 

  • Lorito M, Scala F (1999) Microbial genes expressed in transgenic plants to improve disease resistance. J Plant Pathol 81:73–88

    Google Scholar 

  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996) Mycoparasitic interaction relieves binding of Cre1 carbon catabolite repressor protein topromoter sequence of ech-42 (endochitinase-encoding) gene of Trichoderma harzianum. Proc Natl Acad Sci USA 93:14868–14872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Manjamalai A, Berlin Grace VM (2012) Antioxidant activity of essential oils from Wedelia chinensis (osbeck) in vitro and in vivo lung cancer bearing C57BL/6 mice. Asian Pac J Cancer Prev 13:3065–3071

    Google Scholar 

  • Manoranjitham SK, Prakasam V (2000) Management of chilli damping off using biocontrol agents. Capsicum Eggplant News Lett 19:101–104

    Google Scholar 

  • Manoranjitham SK, Prakasam V, Rajappan K, Amutha G (2000) Control of chilli damping-off using bioagents. J Mycol Plant Pathol 30:225–228

    Google Scholar 

  • Marjanlo AA, Mostofi Y, Shoeibi S, Fattahi M (2009) Effect of cumin essential oil on postharvest decay and some quality factors of strawberry. J Med Plants 8:25–43

    Google Scholar 

  • Marongiu B, Piras A, Porcedda S, Falconieri D, Maxia A, Goncalves MJ, Cavaleiro C, Salgueiro L (2010) Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. Nepeta (Lamiaceae). Nat Prod Res 24:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Marroqui S, Zorreguieta A, Santamarı’a C (2001) Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J Bacteriol 183:854–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H, Rohmeld V (1994) Strategies of plants for acquisition of iron. Plant Soil 165:261–274

    Article  CAS  Google Scholar 

  • Marzano M, Gailo A, Altomare C (2013) Improvement of biocontrol efficacy of Trichoderma harzianum VS Fusarium oxysporum f. sp. lycopersici through UV induced tolerance to fusaric acid. Biol Control 67:397–408

    Article  CAS  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fuorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • McKenzie RH, Roberts TL (1990) Soil and fertilizers phosphorus update. In: Proceedings of Alberta soil science workshop proceedings, 20–22 Feb, Edmonton. pp 84–104

    Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335

    Article  PubMed  Google Scholar 

  • Mehra R (2005) Seed spices: diseases and their management. Indian J Areca Nut Spices Med Plants 7(4):134–143

    Google Scholar 

  • Mejri J, Abderrabba M, Mejri M (2010) Chemical composition of the essential oil of Ruta chalepensis L: influence of drying, hydro-dist illation duration and plant parts. Ind Crop Prod 32:671–673

    Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biol Biochem 40:718–727

    Article  CAS  Google Scholar 

  • Montes-Belmont, Carvajal (1998) Control of Aspergillus flavus in maize with plant essential oils and their components. J Food Prot 61:616–619

    CAS  PubMed  Google Scholar 

  • Moorman GW, Kang S, Geiser DM, Kim SH (2002) Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Dis 86:1227–1231

    Article  Google Scholar 

  • Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76:2345–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Benjamin A, Horwitz Estrella AH, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Munees A, Mohammad SK (2009) Effects of quizalafop-p-ethyl and clodinafop on plant growth promoting activities of rhizobacteria from mustard rhizosphere. Ann Plant Prot Sci 17:175–180

    Google Scholar 

  • Muthukumar A (2008) Management of chilli damping-off caused by Pythium aphanidermatum (Edson) Fitz. with bacterial endophytes (Pseudomonas fluorescens) in glasshouse conditions. Adv Plant Sci 21:295–298

    Google Scholar 

  • Muthukumar A, Bhaskaran R (2007) Efficacy of antimicrobial metabolites of Pseudomonas fluorescens (Trevisan) Migula. against Rhizoctonia solani Khun. and Pythium sp. J Biol Control 21:105–110

    Google Scholar 

  • Muthukumar A, Sangeetha G (2008) Broad spectrum antifungal activity of plant oils against chilli damping-off incited by Pythium aphanidermatum. Plant Dis Res 23:99–101

    Google Scholar 

  • Muthukumar A, Eswaran A, Sanjeevkumar K (2008) Biological control of Pythium aphanidermatum (Deson) Fitz. Mysore J Agric Sci 42:20–25

    Google Scholar 

  • Muthukumar A, Eswaran A, Nakkeeran S, Sangeetha G (2010a) Efficacy of plant extracts and biocontrol agents against Pythium aphanidermatum inciting chilli damping-off. Crop Prot 29:1483–1488

    Article  Google Scholar 

  • Muthukumar A, Bhaskaran R, Sanjeevkumar K (2010b) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopestic 3:105–109

    Google Scholar 

  • Muthukumar A, Eswaran A, Sanjeevkumar K (2011) Exploitation of Trichoderma species on the growth of Pythium aphanidermatum in chilli. Braz J Microbiol 42:1598–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nafiseh N, Mehrded L, Ali G (2012) Accumulation of chromium and its effect on growth of Allium cepa cv. Hybrid. Eur J Exp Biol 2:969–979

    Google Scholar 

  • Naidu GP (1988) Antifungal activity in Codieum variegatum leaf extract. Curr Sci 57:502–503

    CAS  Google Scholar 

  • Nakkeeran S, Kavitha K, Chandrasekar G, Renukadevi P, Fernando WGD (2006) Induction of plant defence compounds by Pseudomonas chlororaphis PA 23 and Bacillus subtilis BSCBE 4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci Technol 16:403–416

    Article  Google Scholar 

  • Neelamegam R (2004) Evaluation of fungal antagonists to control damping-off of tomato (Lycopersicon esculentum Mill.) caused by Pythium ultimum. J Biol Control 18:97–102

    Google Scholar 

  • Nelson RJ, Heschl MF, Craig EA (1992) Isolation and characterization of estrogenic suppressors of mutations in the SSA hsp70 genes of Saccharomyces cerevisiae. Genetics 131(2):277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen MN, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Nurhayat T, Betul D, Sara LC, Kemal HB, David EW (2007) Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils. J Agric Food Chem 55:8430–8435

    Google Scholar 

  • O’Sullivan DB, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  PubMed Central  Google Scholar 

  • Osburn RM, Schroth MN, Hancock JG, Hendson M (1989) Dynamics of sugarbeet colonization by Pythium ultimum and Pseudomonas species: effects on seed rot and damping-off. Phytopathology 79:709–716

    Article  Google Scholar 

  • Padmanaban P, Alexander KC (1984) Biological control of cane seedling root rot. Sugarcane 1:11

    Google Scholar 

  • Palleroni NJ (1984) Pseudomonadaceae. In: Kreig NR, Holt JG (eds) Bergey’s manual of systematic biology. Williams and Wilkins Co, Baltimore, pp 141–199

    Google Scholar 

  • Pandey VN, Dubey NK (1994) Antifungal potential of leaves and essential oils from higher plants against soil phytopathogens. Soil Biol Biocbem 26:1417–1421

    Article  Google Scholar 

  • Pandey KP, Mishra RK, Kamran A, Mishra P, Bajaj AK, Dikshit A (2010) Studies on antidermatophytic activity of waste leaves of Curcuma longa L. Physiol Mol Biol 16:177–185

    Article  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Google Scholar 

  • Paranagama P (1991) Lemongrass. In: Senanaake UM (ed) In: analysis of Sri Lankan essential oils by gas chromatography and mass spectroscopy. Industrial Technology Institute, Colombo, pp 39–40

    Google Scholar 

  • Paranagama PA, Abeysekara KHT, Abeywickrama K, Nugaliadde L (2003) Fungicidal and anti-aflatoxingenic effects of the essential oil of Cymbopogan citratus (DC.) Stapf. (lemongrass) against Aspergillus flavus Link. isolated from store rice. Lett Appl Microbiol 37:86–90

    Article  CAS  PubMed  Google Scholar 

  • Park-Kwon, Kim J, Lee S-G, Shin S-C (2007) Nematicidal activity of plant essential oils and components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) essential oils against Pine Wood nematode (Bursaphelenchus xylophilus). J Nematol 39:275–279

    Google Scholar 

  • Parveen T, Sharma K (2014) Management of “Soft Rot” of ginger by botanicals. Int J Pharm Life Sci 5:3478–3484

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3- acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Pattnaik S, Subramanyam VR, Kole CR (1996) Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 86:237–246

    CAS  PubMed  Google Scholar 

  • Paul B, Bala K, Belbahri L, Calmin G, Sanchez-Hernandez E, Lefort F (2006) A new species of Pythium with ornamented oogonia: morphology, taxonomy, ITS region of its rDNA, and its comparison with related species. FEMS Microbiol Lett 254:317–323

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Zhou T, Rankin L (1992) Selection of rhizosphere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biol Control 2:226–237

    Article  Google Scholar 

  • Pinto E, Salgueiro LR, Cavaleiro C, Palmeira A, Gonçalves MJ (2007) In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Ind Crop Prod 26:135–141

    Google Scholar 

  • Pitipong T, Jularat U, Apinya P, Phirayot K (2009) Screening for the antifungal activity of essential oils from Bergamot oil (Citrus hystrix DC.) and Tea tree oil (Melaleuca alternifolia) against economically rice pathogenic fungi: a driving force of organic rice cv. KDML 105 production. Asian J Agric Food Sci (Special Issue):S374–S380

    Google Scholar 

  • Pleban S, Ingel F, Chet I (1995) Control of Rhizoctonia solani and Sclerotium rolfsii in the green house using endophytic bacteria. Eur J Plant Pathol 101:665–672

    Article  Google Scholar 

  • Ponmurugan P, Gopi C (2006) In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. Afr J Biotechnol 5:348–350

    CAS  Google Scholar 

  • Portillo MC, Viramontes S, Muñoz LN, Gastelum MG, Nevarez GV (2005) Antifungal activity of Mexican oregano (Lippia berlandieri Shauer.). J Food Prot 68:2713–2717

    Google Scholar 

  • Prasad CS, Shukla R, Kumar A, Dubey NK (2009) In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses 53:123–129

    Article  PubMed  CAS  Google Scholar 

  • Pyun MS, Shin S (2006) Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketoconazole. Phytomedicine 13:394–400

    Google Scholar 

  • Radhakrishnan N, Balasubramanian R (2009) Salicylic acid induced defence responses in Curcuma longa (L.) against Pythium aphanidermatum infection. J Crop Prot 28(11):974–979

    Article  CAS  Google Scholar 

  • Rahman AU, Ashraf M, Choudhary MI, Rehman HU, Kazmi MH (1995) Antifungal Aryltetralin lignans from leaves of Podophyllum hexandrum. Phytochemistry 40:427–431

    Article  Google Scholar 

  • Raju G, Maridas M (2011) Composition, antifungal and cytotoxic activities of essential oils of Piper barberi Fruits. Int J Biol Technol 2:100–105

    CAS  Google Scholar 

  • Ramesh R (2004) Management of damping-off in brinjal using bio-control agent. J Mycol Plant Pathol 34:666–670

    Google Scholar 

  • Ranasinghe L, Jayawardenam B, Abeywickrama K (2002) Fungicidal activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L.M. Perry against crown rot and anthracnose pathogens isolated from banana. Lett Appl Microbiol 35:208–211

    Article  CAS  PubMed  Google Scholar 

  • Rathore VRS, Mathur K, Lodha B (1990) Activity of volatile and non-volatile substances produced by Trichoderma viride on ginger rhizome rot pathogens. Indian Phytopathol 19:253–254

    Google Scholar 

  • Rathore VRS, Mathur K, Lodha BC (1992) Activity of volatile and non-volatile substances produced by Trichoderma viride on ginger rhizome rot pathogen. Indian Phytopathol 45:253–254

    Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  CAS  PubMed  Google Scholar 

  • Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    Article  CAS  Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    Article  CAS  PubMed  Google Scholar 

  • Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11(6):1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli C, Bruni R, Andreotti E, Rai MK, Vicentini CB, Mares D (2005) Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L. Protoplasma 225:57–65

    Article  CAS  PubMed  Google Scholar 

  • Rosso ML, Rupe JC, Chen PY, Mozzoni LA (2008) Inheritance and genetic mapping of resistance to Pythium damping-off caused by Pythium aphanidermatum in ‘Archer’ soybean. J Crop Sci 48(6):2215–2222

    Google Scholar 

  • Roy S, Chattergiee P (2010) A non toxic antifungal compound from the leaves of Catharaanthus roseus characterized as 5-hydroxy flavones by UV spectroscopic analysis and evaluation of its antifungal property by agar cup method. Ind Crop Prod 32:375–380

    Article  CAS  Google Scholar 

  • Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111

    Article  CAS  PubMed  Google Scholar 

  • Sagar SD, Kulkarni S, Hegde YR (2007) Management of rhizome rot of ginger by botanicals. Int J Plant Sci 2:155–158

    Google Scholar 

  • Sagar SD, Kulkarni S, Hegde YR (2008) Survey, surveillance and etiology of rhizome rot of ginger in Karnataka. J Plant Dis Sci 3(1):37–39

    Google Scholar 

  • Saha S, Rai AB, Pandey S (2011) Efficacy of seed dressing agents against damping-off disease of chilli (Capsicum frutescens). Indian J Agric Sci 81:92–93

    Google Scholar 

  • Salamone EG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  Google Scholar 

  • Salamone EG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Amsterdam, pp 173–195

    Chapter  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Salomone A, Scaritto G, Sacco A, Cabras G, Angioni A (2008) Inhibitory effects of the main com-pounds of oregano essential oil against some pathogenic fungi. Modern fungicide and antifungal compounds V. Deut Phytomedizinische Ges 44:345–360

    Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessou P, Farougou S, Alitonou G, Djenontin TS, Yèhouénou, Azokpota P (2012) Chemical composition and antifungal activity of essential oil of fresh leaves of Ocimum gratissimum from Benin against six mycotoxigenic fungi isolated from traditional cheese wagashi. Int Res J Biol Sci 1:22–27

    Google Scholar 

  • Shanmugam V, Varma AS (1999) Effect of native antagonists against Pythium aphanidermatum the causal organism of rhizome rot of ginger. J Mycol Plant Pathol 29:375–379

    CAS  Google Scholar 

  • Sharma P, Sain SK, James S (2003) Compatibility study of Trichoderma isolates with fungicides against damping-off of cauliflower and tomato caused by Pythium aphanidermatum. Pestic Res J 15:133–138

    Google Scholar 

  • Sharma D, Chauhan S, Kumar G, Singh KP, Kumar R (2012) Cadmium stabilization by plant growth promotory fluorescent pseudomonas in combination with Indian mustard var. Kranti South Asian J Exp Biol 3:128–135

    Google Scholar 

  • Sheetal V, Singh SP (2008) Current and future status of herbal medicines. Vet World 1:347–350

    Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simic A, Sokovic MD, Ristic M, Grujic S, Vukojevic J, Marin PD (2004) The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytother Res 18:713–718

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Singh HB, Singh BN, Singh SP, Singh SR, Sharma BK (2009) Biological control of plant diseases: current status and future prospects. In: Johri JK (ed) Recent advances in biopesticides: biotechnological applications. New India Pub, New Delhi, p 322

    Google Scholar 

  • Sitara U, Naseem J, Sultana N (2008) Antifungal effect of essential oils on in vitro growth of pathogenic fungi. Pak J Bot 40:409–414

    Google Scholar 

  • Sivasithamparam K, Ghisalberti FL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol I. Taylor and Francis Ltd, London, pp 139–191

    Google Scholar 

  • Sokmen A, Jones BM, Erturk M (1999) The in vitro antibacterial activity of Turkish medicinal plants. J Ethnopharmacol 67:79–86

    Article  CAS  PubMed  Google Scholar 

  • Soliman KM, Badea RI (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40:1669–1675

    Article  CAS  PubMed  Google Scholar 

  • Somda I, Leth V, Sereme P (2007) Antifungal effect of Cymbopogon citrates, Eucalyptus camaldulensis and Azadirachta indica. Asian J Plant Sci 6(8):1182–1189

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:1–4

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stuardo M, Sanmartin R (2008) Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Ind Crop Prod 27:296–302

    Article  CAS  Google Scholar 

  • Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Subhashini DV, Padmaja K (2009) Exploitation of Pseudomonas fluorescens for the management of damping-off disease of tobacco in seedbeds. Indian J Plant Protect 37:147–150

    Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter; Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Sukatta U, Haruthaithanasan V, Chantarapanont W, Dilokkunanant U, Suppakul P (2008) Antifungal activity of clove and cinnamon oil and their synergistic against post harvest decay fungi of grape in vitro. Kasetsart J 42:169–174

    Google Scholar 

  • Suleiman MN, Emua SA (2009) Efficacy of four plant extract in the control of root rot disease of cow pea (Vigna unguiculata Linn. Walp). Afr J Biotechnol 8:3806–3808

    Google Scholar 

  • Suman A, Shasany AK, Singh M, Shahi HN, Gaur A, Khanuja SPS (2001) Molecular assessment of diversity among endophytic diazotrophs isolated from subtropical Indian sugarcane. World J Microbiol Biotechnol 17:39–45

    Article  CAS  Google Scholar 

  • Sumonrat C, Suphitchaya C, Tipparat H (2008) Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin. J Sci Technol 30:125–131

    Google Scholar 

  • Sun OL, Gyung JC, Kyoung SJ, He KL, Kwang YC, Jin-Cheol K (2007) Antifungal activity of five plant essential oils as fumigants against postharvest and soil borne plant pathogenic fungi. Plant Path J 23:97–102

    Google Scholar 

  • Sunita B, Mahendra R (2008) Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J Med Sci 3:81–88

    Google Scholar 

  • Suprapta DN, Khalimi K (2009) Efficacy of plant extract formulation to suppress stem rot disease on vanilla seedlings. ISSA J 15:34–41

    Google Scholar 

  • Sutthivaiyakit S, Thapsut M, Prachayasittikul V (2000) Constituents and bioactivity of the tubers of Euphorbia sessiliflora. Phytochemistry 53:947–950

    Article  CAS  PubMed  Google Scholar 

  • Taiga A (2009) Efficacy of selected plant extracts in the control of fungal dry rot of white yam (Dioscorea Rotundata) Tubers in Kogi State. Am Eurasian J Sustain Agric 3:310–313

    Google Scholar 

  • Taller BJ, Wong TY (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao GC, Tian SJ, Cai MY, Xie GH (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Google Scholar 

  • Tavares AC, Gonçalves MJ, Cavaleiro C, Cruz MT, Lopes MC, Canhoto J, Salgueiro L (2008) Essential oil of Daucus carota subsp halophilus: composition, antifungal activity and citotoxicity. J Ethnopharmacol 119:129–134

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tirillini B, Velasquez ER, Pellegrino R (1996) Chemical composition and antimicrobial activity of essential oil of Piper angustifolium. Planta Med 62:372–373

    Article  CAS  PubMed  Google Scholar 

  • Trevor GP, Daniel J, Sullivan O, Larry LM (2003) Identification of bacilysin, chlorotetaine and itirin A produced by Bacillus sp. strain CS93 isolated from pozol, a maxican fermented dough. Appl Environ Microbiol 70:631–634

    Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Tundis R, Statti GA, Conforti F, Bianchi A, Agrimonti C, Sachetti G (2005) Influence of environmental factors on composition of volatile constituents and biological activity of Helichrysum italicum (Roth) Don (Asteraceae). Nat Prod Res 19:379–387

    Article  CAS  PubMed  Google Scholar 

  • Urszula J (2006) Synthesis of siderophores by soil bacteria of the genus Pseudomonas under various culture conditions. Acta Sci Polonorum Agric 5:33–44

    Google Scholar 

  • Ushamalini C, Nakkeeran S, Marimuthu T (2008) Development of biomanure for the management of turmeric rhizome rot caused by Pythium aphanidermatum. Arch Phytopathol Plant Protect 41:365–378

    Article  Google Scholar 

  • Valarmathi A (2007) Studies on biocontrol potential of combined application of Trichoderma spp. and Psudomonas spp. against damping-off of tomato caused by Pythium aphanidermatum (Edson) Fitz., M.Sc. (Ag.) thesis, Annamalai University, Tamil Nadu, p 94

    Google Scholar 

  • Van Der Plaats-Niterink AJ (1981) Monograph of the genus Pythium, vol 21, Studies in Mycology. Central Bureau Voor Schimmel cultures, Baarn

    Google Scholar 

  • Van West P, Appiah AA, Gow NAR (2003) Advances in research on oomycete root pathogens. Physiol Mol Plant Pathol 62:99–113

    Article  Google Scholar 

  • Velluti A, Sanchis V, Ramos AJ, Marin S (2003) Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int J Food Microbiol 89:145–154

    Article  CAS  PubMed  Google Scholar 

  • Veloz-García R, Marín-Martínez R, Veloz- Rodríguez R, Rodríguez-Guerra R, Torres- Pacheco I, González-Chavira MM, Anaya-López JL, Guevara-Olvera L, Feregrino- Pérez AA, Loarca-Piña G, Guevara-González RG (2010) Antimicrobial activities of cascalote (Caesalpinia cacalaco) phenolics-containing extract against fungus Colletotrichum lindemuthianum. Ind Crop Prod 31:134–138

    Article  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal bio-control agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as bio-control agents: progress, problems and potential. CAB International, Bristol, pp 311–346

    Chapter  Google Scholar 

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilising bacteria on nodulation and growth parameters of greengram (Vigna radiate L. Wilczec). Res J Microbiol 3:62–72

    Article  Google Scholar 

  • Viterbo A, Horwotz BA (2010) Mycoparasitism. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi, vol 56. ASM Press, Herndon, pp 676–694

    Chapter  Google Scholar 

  • Wang GM, Stribley DP, Walker C (1993) Effect of pH on arbuscular mycorrhiza I. Field observations on long-term liming experiments at rothamsted and Woburn. New Phytol 124:465–472

    Article  CAS  Google Scholar 

  • Waterhouse GM, Waterston JM (1964) Pythium aphanidermatum. CMI descriptions of pathogenic fungi and bacteria, No. 36. Commonwealth Mycological Institute: Surrey. Waterhouse

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field condition. Phytopathology 86:221–224

    Article  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Whipps JM, Lumsden DR (1991) Biological control of Pythium species. Biocontrol Sci Tech 1:75–90

    Article  Google Scholar 

  • Wiest A, Grzegorski D, Xu B, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2006) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233

    Article  Google Scholar 

  • Woleffhechel H, Jensen DF (1992) Use of Trichoderma harzianum and Gliocladium virens for the biological control of post-emergence damping-off and root rot of cucumber caused by Pythium ultimum. J Phytopathol 136:221–230

    Article  Google Scholar 

  • Yegen O, Begger B, Heitefuss R (1992) Studies on the fungitoxic effect for extracts of six selected plants from Turkey on phytopathogenic fungi. Z Pflanzenkrankh Pflanzenschütz 99:349–359

    CAS  Google Scholar 

  • Yenjit P, Intanoo W, Chamswarng C, Siripanich J, Intana W (2004) Use of promising bacterial strains for controlling antracnose on leaf and fruit of mango caused by Colletotrichum gloeosporioides. Walailak J Sci Technol 1:56–69

    Google Scholar 

  • Zagade SN, Deshpande GD, Gawade DB, Atnoorkar AA, Pawar SV (2012) Biocontrol agents and fungicides for management of damping-off in chilli. World J Agrl Sci 8:590–597

    Google Scholar 

  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    CAS  PubMed  Google Scholar 

  • Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424

    Google Scholar 

  • Zaidi A, Khan MS (2005) Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J Plant Nutr 28:2079–2092

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zuzarte M, Gonçalves MJ, Cavaleiro C, Canhoto J, Vale-Silva L, Silva MJ, Pinto E, Salgueiro L (2011) Chemical composition and antifungal activity of the essential oils Lavandula viridis L’Hér. J Med Microbiol 14:249–258

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muthukumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muthukumar, A., Udhayakumar, R., Naveenkumar, R. (2016). Eco Friendly Management of Damping-off of Solanaceous Crops Caused by Pythium Species. In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_3

Download citation

Publish with us

Policies and ethics