Skip to main content

Hemodynamics of Coronary Artery Bypass Grafting: Conventional vs. Innovative Anastomotic Configuration Designs for Enhancing Patency

  • Chapter
  • First Online:
Coronary Graft Failure

Abstract

In this chapter, we have reviewed (1) coronary arterial bypass grafting hemodynamics and (2) anastomosis designs to improve graft patency. The chapter specifically addresses the biomechanical factors for enhancement of the patency of coronary artery bypass grafts (CABGs). Stenosis of distal anastomosis, caused by thrombosis and intimal hyperplasia (IH), is the major cause of failure of CABGs. Strong correlations have been established between (1) the hemodynamics and vessel wall biomechanical factors and (2) the initiation and development of IH and thrombus formation. Accordingly, several investigations have been conducted and numerous anastomotic geometries and devices have been designed to better regulate the blood flow fields and distribution of hemodynamic parameters and biomechanical factors at the distal anastomosis, in order to enhance the patency of CABGs. Enhancement of longevity and patency rate of CABGs can eliminate the need for reoperation and can significantly lower morbidity, and thereby reduces medical costs for patients suffering from coronary stenosis. This chapter focuses on various endeavors made thus far to design a patency-enhancing optimized anastomotic configuration for the distal junction of CABGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braunwald H. Heart disease: a textbook of cardiovascular medicine. 5th ed. Philadelphia: Saunders; 1997.

    Google Scholar 

  2. Davies MG, Hagen PO. Pathobiology of intimal hyperplasia. Br J Surg. 1994;81(9):1254–69.

    Article  CAS  PubMed  Google Scholar 

  3. Canver CC. Conduit options in coronary artery bypass surgery. Chest. 1995;108(4):1150–5.

    Article  CAS  PubMed  Google Scholar 

  4. FitzGibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR. Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol. 1996;28(3):616–26.

    Article  CAS  PubMed  Google Scholar 

  5. Whittemore AD, Clowes AW, Couch NP, Mannick JA. Secondary femoro-popliteal reconstruction. Ann Surg. 1981;193:35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Butany JW, David TE, Ojha M. Histological and morphometric analyses of early and late aortocoronary vein grafts and distal anastomoses. Can J Cardiol. 1998;14(5):671–7.

    CAS  PubMed  Google Scholar 

  7. Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 1983;49(3):327–33. [Article].

    CAS  PubMed  Google Scholar 

  8. Liu MW, Roubin GS, King III SB. Restenosis after coronary angioplasty: potential biologic determinants and role of intimal hyperplasia. Circulation. 1989;79(6):1374–87.

    Article  CAS  PubMed  Google Scholar 

  9. Keynton RS, Evancho MM, Sims RL, Rodway NV, Gobin A, Rittgers SE. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J Biomech Eng. 2001;123(5):464–73.

    Article  CAS  PubMed  Google Scholar 

  10. White SS, Zarins CK, Giddens DP, Bassiouny H, Loth F, Jones SA, et al. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, flow division, reynolds number, and hood length. J Biomech Eng. 1993;115(1):104–11.

    Article  CAS  PubMed  Google Scholar 

  11. Ballyk PD, Walsh C, Butany J, Ojha M. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech. 1997;31(3):229–37.

    Article  Google Scholar 

  12. Clowes AW, Kirkman TR, Clowes MM. Mechanisms of arterial graft failure. Ii. Chronic endothelial and smooth muscle cell proliferation in healing polytetrafluoroethylene prostheses. J Vasc Surg. 1986;3(6):877–84.

    Article  CAS  PubMed  Google Scholar 

  13. Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK. Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg. 1992;15(4):708–17.

    Article  CAS  PubMed  Google Scholar 

  14. Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J Biomech. 1996;29(10):1297–308.

    Article  CAS  PubMed  Google Scholar 

  15. Sottiurai VS, Yao JST, Batson RC, Sue SL, Jones R, Nakamura YA. Distal anastomotic intimal hyperplasia: histopathologic character and biogenesis. Ann Vasc Surg. 1989;3(1):26–33.

    Article  CAS  PubMed  Google Scholar 

  16. Ojha M, Cobbold RSC, Johnston KW. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J Vasc Surg. 1994;19(6):1067–73.

    Article  CAS  PubMed  Google Scholar 

  17. Ghista DN, Kabinejadian F. Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review. Biomed Eng Online. 2013;12(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brien TO, Walsh M, McGloughlin T. On reducing abnormal hemodynamics in the femoral end-to-side anastomosis: the influence of mechanical factors. Ann Biomed Eng. 2005;33(3):310–22.

    Article  PubMed  Google Scholar 

  19. Fei DY, Thomas JD, Rittgers SE. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study. J Biomech Eng. 1994;116(3):331–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hughes PE, How TV. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis. J Biomech. 1996;29(7):855–72.

    Article  CAS  PubMed  Google Scholar 

  21. Jackson ZS, Ishibashi H, Gotlieb AI, Lowell Langille B. Effects of anastomotic angle on vascular tissue responses at end-to-side arterial grafts. J Vasc Surg. 2001;34(2):300–7.

    Article  CAS  PubMed  Google Scholar 

  22. Pietrabissa R, Inzoli F, Fumero R. Simulation study of the fluid dynamics of aorto-coronary bypass. J Biomed Eng. 1990;12(5):419–24.

    Article  CAS  PubMed  Google Scholar 

  23. Staalsen NH. The anastomosis angle does change the flow fields at vascular end-to-side anastomoses in vivo. J Vasc Surg. 1995;21(3):460–71.

    Article  CAS  PubMed  Google Scholar 

  24. Keynton RS, Rittgers SE, Shu MCS. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: an in vitro model study. J Biomech Eng. 1991;113(4):458–63.

    Article  CAS  PubMed  Google Scholar 

  25. Cole JS, Watterson JK, O’Reilly MJG. Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis. Med Eng Phys. 2002;24(6):393–401.

    Article  CAS  PubMed  Google Scholar 

  26. Lei M, Archie JP, Kleinstreuer C. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J Vasc Surg. 1997;25(4):637–46.

    Article  CAS  PubMed  Google Scholar 

  27. Leuprecht A, Perktold K, Prosi M, Berk T, Trubel W, Schima H. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J Biomech. 2002;35(2):225–36.

    Article  PubMed  Google Scholar 

  28. Longest PW, Kleinstreuer C. Computational haemodynamics analysis and comparison study of arterio-venous grafts. J Med Eng Technol. 2000;24(3):102–10.

    Article  CAS  PubMed  Google Scholar 

  29. Bonert M, Myers JG, Fremes S, Williams J, Ethier CR. A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses. Ann Biomed Eng. 2002;30(5):599–611.

    Article  PubMed  Google Scholar 

  30. Qiao A, Liu Y. Influence of graft-host diameter ratio on the hemodynamics of cabg. Biomed Mater Eng. 2006;16(3):189–201.

    CAS  PubMed  Google Scholar 

  31. Zahab ZE, Divo E, Kassab A. Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless cfd and genetic algorithms optimisation. Comput Methods Biomech Biomed Engin. 2010;13(1):35–47.

    Article  PubMed  Google Scholar 

  32. Papaharilaou Y, Doorly DJ, Sherwin SJ. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J Biomech. 2002;35(9):1225–39.

    Article  CAS  PubMed  Google Scholar 

  33. Sankaranarayanan M, Ghista DN, Chua LP, Tan YS, Kassab GS. Analysis of blood flow in an out-of-plane cabg model. Am J Physiol Heart Circ Physiol. 2006;291(1):H283–95.

    Article  CAS  PubMed  Google Scholar 

  34. Sherwin SJ, Shah O, Doorly DJ, Peiró J, Papaharilaou Y, Watkins N, et al. The influence of out-of-plane geometry on the flow within a distal end- to-side anastomosis. J Biomech Eng. 2000;122(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  35. Deplano V, Bertolotti C, Boiron O. Numerical simulations of unsteady flows in a stenosed coronary bypass graft. Med Biol Eng Comput. 2001;39(4):488–99.

    Article  CAS  PubMed  Google Scholar 

  36. Kute SM, Vorp DA. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. J Biomech Eng. 2001;123(3):277–83.

    Article  CAS  PubMed  Google Scholar 

  37. Kabinejadian F, Chua LP, Ghista DN, Tan YS. Cabg models flow simulation study on the effects of valve remnants in the venous graft. J Mech Med Biol. 2010;10(4):593–609.

    Article  Google Scholar 

  38. Bertolotti C, Deplano V, Fuseri J, Dupouy P. Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses. J Biomech. 2001;34(8):1049–64.

    Article  CAS  PubMed  Google Scholar 

  39. Hida S, Chikamori T, Hirayama T, Usui Y, Yanagisawa H, Morishima T, et al. Beneficial effect of coronary artery bypass grafting as assessed by quantitative gated single-photon emission computed tomography. Circ J. 2003;67(6):499–504.

    Article  PubMed  Google Scholar 

  40. Sottiurai VS, Lim Sue S, Feinberg Ii EL, Bringaze WL, Tran AT, Batson RC. Distal anastomotic intimal hyperplasia: biogenesis and etiology. Eur J Vasc Surg. 1988;2(4):245–56.

    Article  CAS  PubMed  Google Scholar 

  41. Trubel W, Moritz A, Schima H, Raderer F, Scherer R, Ullrich R, et al. Compliance and formation of distal anastomotic intimal hyperplasia in dacron mesh tube constricted veins used as arterial bypass grafts. ASAIO J. 1994;40(3):M273–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sottiurai VS. Distal anastomotic intimal hyperplasia: histocytomorphology, pathophysiology, etiology, and prevention. Int J Angiol. 1999;8(1):1–10.

    Article  PubMed  Google Scholar 

  43. Ojha M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J Biomech. 1993;26(12):1377–88.

    Article  CAS  PubMed  Google Scholar 

  44. Fillinger MF, Reinitz ER, Schwartz RA, Resetarits DE, Paskanik AM, Bruch D, et al. Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts. J Vasc Surg. 1990;11(4):556–66.

    Article  CAS  PubMed  Google Scholar 

  45. Giordana S, Sherwin SJ, Peiro J, Doorly DJ, Crane JS, Lee KE, et al. Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts. J Biomech Eng. 2005;127(7):1087–98.

    Article  CAS  PubMed  Google Scholar 

  46. Loth F, Jones SA, Zarins CK, Giddens DP, Nassar RF, Glagov S, et al. Relative contribution of wall shear stress and injury in experimental intimal thickening at ptfe end-to-side arterial anastomoses. J Biomech Eng. 2002;124(1):44–51.

    Article  PubMed  Google Scholar 

  47. Rittgers SE, Karayannacos PE, Guy JF. Velocity distribution and intimal proliferation in autologous vein grafts in dogs. Circ Res. 1978;42(6):792–801.

    Article  CAS  PubMed  Google Scholar 

  48. Kleinstreuer C, Nazemi M, Archie JP. Hemodynamics analysis of a stenosed carotid bifurcation and its plaque-mitigating design. J Biomech Eng. 1991;113(Compendex):330–5.

    Article  CAS  PubMed  Google Scholar 

  49. Fry DL. Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res. 1968;22(2):165–97.

    Article  CAS  PubMed  Google Scholar 

  50. Fry DL. Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog. Circ Res. 1969;24(1):93–108.

    Article  CAS  PubMed  Google Scholar 

  51. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci. 1971;177(46):109–59.

    Article  CAS  PubMed  Google Scholar 

  52. Nazemi M, Kleinstreuer C, Archie JP, Sorrell FY. Fluid flow and plaque formation in an aortic bifurcation. J Biomech Eng. 1989;111(4):316–24.

    Article  CAS  PubMed  Google Scholar 

  53. Nazemi M, Kleinstreuer C, Archie Jr JP. Pulsatile two-dimensional flow and plaque formation in a carotid artery bifurcation. J Biomech. 1990;23(10):1031–7.

    Article  CAS  PubMed  Google Scholar 

  54. Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI, Rutaganira T. Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng. 2002;124(4):378–87.

    Article  CAS  PubMed  Google Scholar 

  55. Nerem RM. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomech Eng. 1992;114(3):274–82.

    Article  CAS  PubMed  Google Scholar 

  56. Ishibashi H, Sunamura M, Karino T. Flow patterns and preferred sites of intimal thickening in end-to-end anastomosed vessels. Surgery. 1995;117(4):409–20.

    Article  CAS  PubMed  Google Scholar 

  57. Sunamura M, Ishibashi H, Karino T. Flow patterns and preferred sites of intimal thickening in diameter-mismatched vein graft interpositions. Surgery. 2007;141(6):764–76.

    Article  PubMed  Google Scholar 

  58. Morinaga K, Okadome K, Kuroki M. Effect of wall shear stress on intimal thickening of arterially transplanted autogenous veins in dogs. J Vasc Surg. 1985;2(3):430–3.

    Article  CAS  PubMed  Google Scholar 

  59. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis. 1985;5(3):293–302.

    Article  CAS  PubMed  Google Scholar 

  60. He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 1996;118(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  61. Li XM, Rittgers SE. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different pos:Dos flow ratios. J Biomech Eng. 2001;123(3):270–6.

    Article  CAS  PubMed  Google Scholar 

  62. Passerini AG, Milsted A, Rittgers SE. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J Vasc Surg. 2003;37(1):182–90.

    Article  PubMed  Google Scholar 

  63. Zhang JM, Chua LP, Ghista DN, Yu SCM, Tan YS. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model. Med Biol Eng Comput. 2008;46(7):689–99.

    Article  PubMed  Google Scholar 

  64. Haruguchi H, Teraoka S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003;6(4):227–35.

    Article  PubMed  Google Scholar 

  65. DePaola N, Gimbrone Jr MA, Davies PF, Dewey Jr CF. Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb. 1992;12(11):1254–7.

    Article  CAS  PubMed  Google Scholar 

  66. Lei M, Kleinstreuer C, Truskey GA. Numerical investigation and prediction of atherogenic sites in branching arteries. J Biomech Eng. 1995;117(3):350–7.

    Article  CAS  PubMed  Google Scholar 

  67. Lei M, Kleinstreuer C, Truskey GA. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med Eng Phys. 1996;18(4):326–32.

    Article  CAS  PubMed  Google Scholar 

  68. Loth F, Fischer PF, Bassiouny HS. Blood flow in end-to-side anastomoses. Annu Rev Fluid Mech. 2008;40:367–93.

    Article  Google Scholar 

  69. Hughes PE, How TV. Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division. J Biomech Eng. 1995;117(2):224–36.

    Article  CAS  PubMed  Google Scholar 

  70. Friedrich P, Reininger AJ. Occlusive thrombus formation on indwelling catheters: in vitro investigation and computational analysis. Thromb Haemost. 1995;73(1):66–72.

    CAS  PubMed  Google Scholar 

  71. Reininger AJ, Heinzmann U, Reininger CB, Friedrich P, Wurzinger LJ. Flow mediated fibrin thrombus formation in an endothelium-lined model of arterial branching. Thromb Res. 1994;74(6):629–41.

    Article  CAS  PubMed  Google Scholar 

  72. Li XM, Rittgers SE. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different pos:Dos ratios. Am Soc Mech Eng Bioeng Div (Pub) BED. 1999;42:225–6.

    Google Scholar 

  73. Bates CJ, O’Doherty DM, Williams D. Flow instabilities in a graft anastomosis: a study of the instantaneous velocity fields. Proc Inst Mech Eng H. 2001;215(6):579–87.

    Article  CAS  PubMed  Google Scholar 

  74. Binns RL, Ku DN, Stewart MT, Ansley JP, Coyle KA. Optimal graft diameter: effect of wall shear stress on vascular healing. J Vasc Surg. 1989;10(3):326–37.

    Article  CAS  PubMed  Google Scholar 

  75. Idu MM, Buth J, Hop WCJ, Cuypers P, Van De Pavoordt EDWM, Tordoir JMH. Factors influencing the development of vein-graft stenosis and their significance for clinical management. Eur J Vasc Endovasc Surg. 1999;17(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  76. Varty K, London NJM, Brennan JA, Ratliff DA, Bell PRF. Infragenicular in situ vein bypass graft occlusion: a multivariate risk factor analysis. Eur J Vasc Surg. 1993;7(5):567–71.

    Article  CAS  PubMed  Google Scholar 

  77. Schanzer A, Hevelone N, Owens CD, Belkin M, Bandyk DF, Clowes AW, et al. Technical factors affecting autogenous vein graft failure: observations from a large multicenter trial. J Vasc Surg. 2007;46(6):1180–90; discussion 1190.

    Article  PubMed  Google Scholar 

  78. Towne JB, Schmitt DD, Seabrook GR, Bandyk DF. The effect of vein diameter on patency of in situ grafts. J Cardiovasc Surg (Torino). 1991;32(2):192–6.

    CAS  Google Scholar 

  79. Yasuura K, Takagi Y, Ohara Y, Takami Y, Matsuura A, Okamoto H. Theoretical analysis of right gastroepiploic artery grafting to right coronary artery. Ann Thorac Surg. 2000;69(3):728–31.

    Article  CAS  PubMed  Google Scholar 

  80. Bezon E, Choplain JN, Maguid YA, Aziz AA, Barra JA. Failure of internal thoracic artery grafts: conclusions from coronary angiography mid-term follow-up. Ann Thorac Surg. 2003;76(3):754–9.

    Article  PubMed  Google Scholar 

  81. Botman CJ, Schonberger J, Koolen S, Penn O, Botman H, Dib N, et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg. 2007;83(6):2093–7.

    Article  PubMed  Google Scholar 

  82. Nakajima H, Kobayashi J, Toda K, Fujita T, Shimahara Y, Kasahara Y, et al. A 10-year angiographic follow-up of competitive flow in sequential and composite arterial grafts. Eur J Cardiothorac Surg. 2011;40(2):399–404.

    PubMed  Google Scholar 

  83. Nordgaard H, Nordhaug D, Kirkeby-Garstad I, Løvstakken L, Vitale N, Haaverstad R. Different graft flow patterns due to competitive flow or stenosis in the coronary anastomosis assessed by transit-time flowmetry in a porcine model. Eur J Cardiothorac Surg. 2009;36(1):137–42.

    Article  PubMed  Google Scholar 

  84. Pagni S, Storey J, Ballen J, Montgomery W, Chiang BY, Etoch S, et al. Ita versus svg: a comparison of instantaneous pressure and flow dynamics during competitive flow. Eur J Cardiothorac Surg. 1997;11(6):1086–92.

    Article  CAS  PubMed  Google Scholar 

  85. Sabik III JF, Lytle BW, Blackstone EH, Khan M, Houghtaling PL, Cosgrove DM, et al. Does competitive flow reduce internal thoracic artery graft patency? Ann Thorac Surg. 2003;76(5):1490–7.

    Article  PubMed  Google Scholar 

  86. Speziale G. Competitive flow and steal phenomenon in coronary surgery. Intraoperative graft patency verification in cardiac and vascular surgery. New York: Futura Publishing; 2001.

    Google Scholar 

  87. Villareal RP, Mathur VS. The string phenomenon: an important cause of internal mammary artery graft failure. Tex Heart Inst J. 2000;27(4):346–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wiesner TF, Levesque MJ, Rooz E, Nerem RM. Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses ii: experimental comparison and parametric investigations. J Biomech Eng. 1988;110(2):144–9.

    Article  CAS  PubMed  Google Scholar 

  89. Sabik III JF, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg. 2005;79(2):544–51.

    Article  PubMed  Google Scholar 

  90. Gaudino M, Alessandrini F, Nasso G, Bruno P, Manzoli A, Possati G. Severity of coronary artery stenosis at preoperative angiography and midterm mammary graft status. Ann Thorac Surg. 2002;74(1):119–21.

    Article  PubMed  Google Scholar 

  91. Hirotani T, Kameda T, Shirota S, Nakao Y. An evaluation of the intraoperative transit time measurements of coronary bypass flow. Eur J Cardiothorac Surg. 2001;19(6):848–52.

    Article  CAS  PubMed  Google Scholar 

  92. Kawasuji M, Sakakibara N, Takemura H, Tedoriya T, Ushijima T, Watanabe Y. Is internal thoracic artery grafting suitable for a moderately stenotic coronary artery? J Thorac Cardiovasc Surg. 1996;112(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  93. Bertolotti C, Deplano V. Three-dimensional numerical simulations of flow through a stenosed coronary bypass. J Biomech. 2000;33(8):1011–22.

    Article  CAS  PubMed  Google Scholar 

  94. Chen J, Lu XY, Wang W. Non-newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J Biomech. 2006;39(11):1983–95.

    Article  PubMed  Google Scholar 

  95. Su CM, Lee D, Tran-Son-Tay R, Shyy W. Fluid flow structure in arterial bypass anastomosis. J Biomech Eng. 2005;127(4):611–8.

    Article  CAS  PubMed  Google Scholar 

  96. Caro CG, Cheshire NJ, Watkins N. Preliminary comparative study of small amplitude helical and conventional eptfe arteriovenous shunts in pigs. J R Soc Interface. 2005;2(3):261–6.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huijbregts HJTAM, Blankestijn PJ, Caro CG, Cheshire NJW, Hoedt MTC, Tutein Nolthenius RP, et al. A helical ptfe arteriovenous access graft to swirl flow across the distal anastomosis: results of a preliminary clinical study. Eur J Vasc Endovasc Surg. 2007;33(4):472–5.

    Article  CAS  PubMed  Google Scholar 

  98. Kokkalis E, Hoskins PR, Corner GA, Stonebridge PA, Doull AJ, Houston JG. Secondary flow in peripheral vascular prosthetic grafts using vector doppler imaging. Ultrasound Med Biol. 2013;39(12):2295–307.

    Article  PubMed  Google Scholar 

  99. Miller JH, Foreman RK, Ferguson L, Faris I. Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg. 1984;54(3):283–5.

    Article  CAS  PubMed  Google Scholar 

  100. Stonebridge PA, Prescott RJ, Ruckley CV. Randomized trial comparing infrainguinal polytetrafluoroethylene bypass grafting with and without vein interposition cuff at the distal anastomosis. J Vasc Surg. 1997;26(4):543–50.

    Article  CAS  PubMed  Google Scholar 

  101. Kissin M, Kansal N, Pappas PJ, DeFouw DO, Durán WN, Hobson II RW. Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluoroethylene bypass grafts. J Vasc Surg. 2000;31(1 I):69–83.

    Article  CAS  PubMed  Google Scholar 

  102. Suggs WD, Hendriques HF, DePalma RG. Vein cuff interposition prevents juxta-anastomotic neointimal hyperplasia. Ann Surg. 1988;207(6):717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brumby SA, Petrucco MF, Walsh JA, Bond MJ. A retrospective analysis of infra-inguinal arterial reconstruction: three year patency rates. Aust N Z J Surg. 1992;62(4):256–60.

    Article  CAS  PubMed  Google Scholar 

  104. Norberto JJ, Sidawy AN, Trad KS, Jones BA, Neville RF, Najjar SF, et al. The protective effect of vein cuffed anastomoses is not mechanical in origin. J Vasc Surg. 1995;21(4):558–66.

    Article  CAS  PubMed  Google Scholar 

  105. Raptis S, Miller JH. Influence of a vein cuff on polytetrafluoroethylene grafts for primary femoropopliteal bypass. Br J Surg. 1995;82(4):487–91.

    Article  CAS  PubMed  Google Scholar 

  106. Cole JS, Wijesinghe LD, Watterson JK, Scott DJA. Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses. Proc Inst Mech Eng H. 2002;216(2):135–43.

    Article  CAS  PubMed  Google Scholar 

  107. Henry FS, Küpper C, Lewington NP. Simulation of flow through a miller cuff bypass graft. Comput Methods Biomech Biomed Engin. 2002;5(3):207–17.

    Article  CAS  PubMed  Google Scholar 

  108. Longest PW, Kleinstreuer C, Archie Jr JP. Particle hemodynamics analysis of miller cuff arterial anastomosis. J Vasc Surg. 2003;38(6):1353–62.

    Article  PubMed  Google Scholar 

  109. Wijesinghe LD, Mahmood T, Scott DJA. Axial flow fields in cuffed end-to-side anastomoses: effect of angle and disease progression. Eur J Vasc Endovasc Surg. 1999;18(3):240–4.

    Article  CAS  PubMed  Google Scholar 

  110. Taylor RS, Loh A, McFarland RJ, Cox M, Chester JF. Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br J Surg. 1992;79(4):348–54.

    Article  CAS  PubMed  Google Scholar 

  111. Gentile AT, Mills JL, Gooden MA, Hagerty RD, Berman SS, Hughes JD, et al. Vein patching reduces neointimal thickening associated with prosthetic graft implantation. Am J Surg. 1998;176(6):601–7.

    Article  CAS  PubMed  Google Scholar 

  112. Yeung KK, Mills Sr JL, Hughes JD, Berman SS, Gentile AT, Westerband A. Improved patency of infrainguinal polytetrafluoroethylene bypass grafts using a distal taylor vein patch. Am J Surg. 2001;182(6):578–83.

    Article  CAS  PubMed  Google Scholar 

  113. Linton RR, Darling RC. Autogenous saphenous vein bypass grafts in femoropopliteal obliterative arterial disease. Surgery. 1962;51(1):62–73.

    CAS  PubMed  Google Scholar 

  114. Batson RC, Sottiurai VS, Craighead CC. Linton patch angioplasty. An adjunct to distal bypass with polytetrafluoroethylene grafts. Ann Surg. 1984;199(6):684–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tyrrell MR, Wolfe JHN. New prosthetic venous collar anastomotic technique: combining the best of other procedures. Br J Surg. 1991;78(8):1016–7.

    Article  CAS  PubMed  Google Scholar 

  116. Lemson MS, Tordoir JHM, Van Det RJ, Welten RJTJ, Burger H, Estourgie RJA, et al. Effects of a venous cuff at the venous anastomosis of polytetrafluoroethylene grafts for hemodialysis vascular access. J Vasc Surg. 2000;32(6):1155–63.

    Article  CAS  PubMed  Google Scholar 

  117. Gagne PJ, Martinez J, DeMassi R, Gregory R, Parent FN, Gayle R, et al. The effect of a venous anastomosis tyrell vein collar on the primary patency of arteriovenous grafts in patients undergoing hemodialysis. J Vasc Surg. 2000;32(6):1149–54.

    Article  CAS  PubMed  Google Scholar 

  118. Sorom AJ, Hughes CB, McCarthy JT, Jenson BM, Prieto M, Panneton JM, et al. Prospective, randomized evaluation of a cuffed expanded polytetrafluoroethylene graft for hemodialysis vascular access. Surgery. 2002;132(2):135–40.

    Article  PubMed  Google Scholar 

  119. Lumsden AB, Weaver FA, Hood DB. Prospective multi-center evaluation of venaflo eptfe as compared to impra eptfe vascular graft in hemodialysis applications. In: Henry ML, editor. Vascular access for hemodialysis. 4th ed. Chicago: Precept Press; 1997. p. 242–9.

    Google Scholar 

  120. Longest PW, Kleinstreuer C, Deanda A. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Ann Biomed Eng. 2005;33(12 SPEC. ISS):1752–66.

    Article  PubMed  Google Scholar 

  121. O’Brien TP, Grace P, Walsh M, Burke P, McGloughlin T. Computational investigations of a new prosthetic femoral-popliteal bypass graft design. J Vasc Surg. 2005;42(6):1169–75.

    Article  PubMed  Google Scholar 

  122. Chua LP, Tong JH, Zhou T. Numerical simulation of steady flows in designed sleeve models at distal anastomoses. Int Commun Heat Mass Trans. 2005;32(5):707–14.

    Article  Google Scholar 

  123. O’Brien T, Walsh M, McGloughlin T. Altering end-to-side anastomosis junction hemodynamics: the effects of flow-splitting. Med Eng Phys. 2006;28(7):727–33.

    Article  PubMed  Google Scholar 

  124. Walsh MT, McGloughlin TM, Grace P, inventors; University of Limerick, Limerick (IE), assignee. A vascular graft. 2010.

    Google Scholar 

  125. O’Brien TP, Walsh MT, Kavanagh EG, Finn SP, Grace PA, McGloughlin TM. Surgical feasibility study of a novel polytetrafluoroethylene graft design for the treatment of peripheral arterial disease. Ann Vasc Surg. 2007;21(5):611–7.

    Article  PubMed  Google Scholar 

  126. Sankaranarayanan M, Ghista DN, Chua LP, Tan YS, Sundaravadivelu K, Kassab GS. Blood flow in an out-of-plane aorto-left coronary sequential bypass graft. In: Guccione JM, Kassab GS, Ratcliffe M, editors. Computational cardiovascular mechanics: modeling and applications in heart failure. New York: Springer; 2010. p. 277–95.

    Chapter  Google Scholar 

  127. Vural KM, Sener E, Tasdemir O. Long-term patency of sequential and individual saphenous vein coronary bypass grafts. Eur J Cardiothorac Surg. 2001;19(2):140–4.

    Article  CAS  PubMed  Google Scholar 

  128. Kabinejadian F, Chua LP, Ghista DN, Sankaranarayanan M, Tan YS. A novel coronary artery bypass graft design of sequential anastomoses. Ann Biomed Eng. 2010;38(10):3135–50.

    Article  PubMed  Google Scholar 

  129. Kabinejadian F, Ghista DN, Su B, Kaabi Nezhadian M, Chua LP, Yeo JH, et al. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions. Med Eng Phys. 2014;36:1233–45.

    Article  PubMed  Google Scholar 

  130. Kabinejadian F, Ghista DN. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-newtonian rheology on blood flow regime and hemodynamic parameters distribution. Med Eng Phys. 2012;34(7):860–72.

    Article  PubMed  Google Scholar 

  131. Hyun J, Wang S, Yang S. Topology optimization of the shear thinning non-newtonian fluidic systems for minimizing wall shear stress. Comput Math App. 2014;67(5):1154–70.

    Article  Google Scholar 

  132. Goldman S, Zadina K, Moritz T, Ovitt T, Sethi G, Copeland JG, et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a department of veterans affairs cooperative study. J Am Coll Cardiol. 2004;44(11):2149–56.

    Article  PubMed  Google Scholar 

  133. Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM. Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput. 2007;45(4):327–36.

    Article  PubMed  Google Scholar 

  134. Migliavacca F, Dubini G. Computational modeling of vascular anastomoses. Biomech Model Mechanobiol. 2005;3(4):235–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foad Kabinejadian PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kabinejadian, F., Ghista, D.N., Nezhadian, M.K., Leo, H.L. (2016). Hemodynamics of Coronary Artery Bypass Grafting: Conventional vs. Innovative Anastomotic Configuration Designs for Enhancing Patency. In: Ţintoiu, I., Underwood, M., Cook, S., Kitabata, H., Abbas, A. (eds) Coronary Graft Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-26515-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26515-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26513-1

  • Online ISBN: 978-3-319-26515-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics