Skip to main content
Log in

On Reducing Abnormal Hemodynamics in the Femoral End-to-Side Anastomosis: The Influence of Mechanical Factors

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study was concerned with investigating the influence of mechanical factors on the hemodynamics of the end-to-side anastomosis in an attempt to identify critical factors and establish if it is possible to re-engineer existing, patient-specific, by-pass grafts with a view to increasing their patency. The study chose the femoral artery as the principal subject of interest. Wall shear stresses (WSS) and wall shear stress gradients (WSSG) were taken as the primary quantities of interest. Angle, graft calibre, interposition cuffs, proximal outflow and inlet waveform were studied. The study found that the use of cuffs and patches can significantly reduce abnormal WSS and WSSG by up to 70% when compared to a benchmark 45 conventional anastomosis. The Taylor patch was found to be more robust in reducing peak WSS magnitudes and gradients than the Miller cuff, where design variables proved to be more critical. On the addition of a Taylor patch to a realistic end-to-side femoral anastomosis, the peak WSS and WSSG were found to be reduced by 27% and 57%, respectively. In conclusion, it is possible to use idealised models to identify critical disease influencing factors and to use these findings to reduce the effects of abnormal hemodynamics in realistic, patient-dependant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.

    Google Scholar 

  2. Buchanan, J. R., C. Kleinstreuer, and J. K. Comer. Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput. Fluids 29:695–724, 2000.

    MATH  Google Scholar 

  3. Caro, C. G., et al. Atheroma and arterial wall observations, correlation and proposal of a shear dependant mass transfer mechanism for atherogenesis. Proceedings of the Royal Society of London, Series B, 177:109–159, 1971.

    Article  Google Scholar 

  4. Cheshire N. J., M. A. Noone, and J. H. Wolfe. How to select the treatment of choice of critical leg ischemia. Ann. Chir Gyn. 81(2):141–152, 1992.

    Google Scholar 

  5. Cole, J. S., J. K. Watterson, and M. J. G. O’Reilly. Numerical investigations of the hemodynamics at a patched arterial bypass anastomosis. Med. Eng. Phys. 24:393–401, 2002.

    Google Scholar 

  6. Defrang, R. D., J. M. Edwards, G. L. Moneta, R. A. Yeager, L. M. Taylor, and J. M. Porter. Repeat leg bypass after multiple bypass failures. J. Vasc. Surg. 19:268–277, 1994.

    Google Scholar 

  7. Ducasse, E., L. Fleurisse, G. Vernier, F. Speziale, P. Fiorani, P. Puppinck, and C. Creusy. Interposition vein cuff and intimal hyperplasia: An experimental study. Eur. J. Vasc. Endovasc. Surg. 27(6):617–621, 2004.

    Google Scholar 

  8. Eagleton, M. J., K. Ouriel, C. Shortell, and R. M. Green. Femoral-infrapopliteal bypass with prosthetic grafts. Surgery 26(4):759–764, 1999.

    Google Scholar 

  9. Ethier, C. R., D. A. Steinman, X. Zhang, S. R. Karpik, and M. Ojha. Flow waveform effects on end-to-side anastomotic flow patterns’. J. Biomech. 31:609–617, 1998.

    Google Scholar 

  10. Fatemi, R. S., and S. E. Rittgers. Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions. J. Biomech. Eng. 116:361–367, 1994.

    Google Scholar 

  11. Fei, D. Y., J. D. Thomas, and S. E. Rittgers. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: A numerical model. J. Biomech. Eng. 116:331–336, 1994.

    Google Scholar 

  12. Fichelle, J. M., J. Marzelle, G. Colacchio, et al. Infrapopliteal polytetrafluoroethylene and composite bypass: Factors influencing patency. Ann. Vasc. Surg. 9(2):187–196, 1995.

    Google Scholar 

  13. Fry, D. L. Responses of the arterial wall to certain physical factors. In: Atherosclerosis: Initiating Factors, edited by R. Porter and J. Knight. Amsterdam: Associated Scientific Publisher, 1973, pp. 93–125.

    Google Scholar 

  14. Fung, Y. C. Biomechanics Circulation, 2nd ed. New York: Springer, 1997.

    Google Scholar 

  15. Hayashi, K., Y. Yanai, and T. Naiki. A 3D LDA study of the relation between WSS and intimal hyperplasia in a human aortic bifurcation. J. Biomech. Eng. 118:273–279, 1996.

    Google Scholar 

  16. Hazel, A. L., and T. J. Pedley. Alteration of mean wall shear stress near an oscillating stagnation point. J. Biomech. Eng. 120:227–237, 1998.

    Google Scholar 

  17. Henry, F. S., M. W. Collins, P. E. Hughes, and T. V. How. Numerical investigation of steady flow in proximal and distal end-to-side anastomoses’. J. Biomech. Eng. 118:302–310, 1996.

    Google Scholar 

  18. Henry, F. S., C. Kupper, and N. P. Lewington. Simulation of flow through a Miller cuff bypass. Comput. Methods Biomech. Bioeng. 5(3):207–217, 2002.

    Google Scholar 

  19. Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29(10):1297–1308, 1996.

    Google Scholar 

  20. Hughes, P. E., and T. V., How. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis. J. Biomech. 29(7):855–872, 1996.

    Google Scholar 

  21. Jones, S. A., D. P. Giddens, F. Loth, C. K. Zarins, F. Kajiya, I. Morita, O. Hiramatsu, K. Ogasawara, and K. Tsujioka. In vivo measurements of blood flow velocity profiles in canine ilio-femoral anastomotic bypass grafts. J. Biomech. Eng. 119:30–38, 1997.

    Google Scholar 

  22. Keynton, R. S., S. E. Rittgers, and M. C. S. Shu. The effect of angle and flow-rate upon hemodynamics in distal vascular graft anastomoses: An in vitro model study. J. Biomech. Eng. 113:458–463, 1991.

    Google Scholar 

  23. Kreienberg, P. B., R. C. Darling, B. B. Chang, P. S. Paty, W. E. Lloyd, and D. M. Shah. Adjunctive techniques to improve patency of distal prosthetic bypass grafts: Polytetrafluoroethylene with remote arteriovenous fistulae versus vein cuffs. J. Vasc. Surg. 31(4):696–701, 2000.

    Google Scholar 

  24. Kute, S. M., and D. A. Vorp. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: Computational study. J. Biomech. Eng. 123:277–283, 2001.

    Google Scholar 

  25. Lei, M. Computational fluid dynamics analyses and optimal design of bifurcating blood vessels. PhD Thesis, North Carolina State University Press, 1995.

  26. Lei, M., C. Kleinstreuer, and J. P. Archie. Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomch. 29(12):1605–1614, 1995.

    Google Scholar 

  27. Lei, M., J. P. Archie, and C. Kleinstreuer. Computational design of a bypass graft that minimises wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25(4):637–646, 1997.

    Google Scholar 

  28. Leuprecht, A., K. Perktold, M. Prosi, T. Berk, W. Trubel, and H. Schima. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of by-pass grafts. J. Biomch. 35:225–236, 2002.

    Google Scholar 

  29. Li, X. M., and S. E. Rittgers. Hemodynamics factors at the distal end-to-side anastomosis of a bypass graft with different POS: DOS flow ratios. J. Biomech. Eng. 123:270–276, 2001.

    Google Scholar 

  30. Longest, P. W., C. Kleinstreuer, and J. P. Archie Jr. Particle hemodynamics analysis of Miller cuff arterial anastomosis. J. Vasc. Surg. 38(6):1353–1362, 2003.

    Google Scholar 

  31. Loth, F., S. A. Jones, C. K. Zarins, D. P. Giddens, R. F. Nassar, S. Glagov, and H. S. Bassiouny. Relative contribution of wall shear stress and injury in experimental intimal thickening at ePTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124:44–51, 2002.

    Google Scholar 

  32. Madiba, T. E., M. Mars, and J. V. Robbs. Choosing the proximal anastomosis in aortobifemoral bypass. Br. J. Surg. 84(10): 1416–1418, 1997.

    Google Scholar 

  33. Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng. 121:265–272, 1999.

    Google Scholar 

  34. Morris, L., Numerical and Experimental Investigation of Mechanical Factors in the Treatment of Abdominal Aortic Aneurysms. PhD Thesis, University of Limerick Press, 2004.

  35. Nichols, W. W., and M. F. O’Rourke ‘McDonalds blood Flow in arteries,’ 4th ed. Arnold, 1998.

  36. Noori, N., R. Scherer, K. Perktold, M. Czerny, G. Karner, W. Trubel, P. Polterauer, and H. Schima. Blood flow in a distal ESA with PTFE and a venous patch: Results of an in vitro flow visualisation study. Eur. J. Vasc. Endovasc. Surg. 18:191–200, 1999.

    Google Scholar 

  37. Papaharilaou, Y., D. J. Doorly, and S. J. Sherwin. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J. Biomch. 35:1225–1239, 2002.

    Google Scholar 

  38. da Silva, A. F., T. Carpenter, T. V. How, and P. L. Harris. Stable vortices within vein cuffs inhibit anastomotic myointimal hyperplasia. Eur. J. Vasc. Endovasc. Surg. 14:157–163, 1997.

    Google Scholar 

  39. Steinman, D. A., B. Vinh, C. R. Ethier, M. Ojha, R. S. C. Cobbold, and K. W. Johnston. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. J. Biomech. Eng. 115:112–118, 1993.

    Google Scholar 

  40. Trubel, W., H. Schima, M. Czerny, K. Perktold, M. G. Schimek, and P. Polterauer. Experimental comparison of four methods of end-to-side anastomosis with expanded polytetrafluoroethylene. Br. J. Surg. 91(2):159–167, 2004.

    Google Scholar 

  41. Walsh, M. T., E. G. Kavanagh, T. O’Brien, P. A. Grace, and T. McGloughlin. On the existence of an optimum end-to-side junctional geometry in peripheral bypass surgery—A computer generated study. Eur. J. Vasc. Endovasc. Surg. 26:649–656, 2003.

    Google Scholar 

  42. Walsh, M., T. McGloughlin, D. W. Liepsch, T. O’Brien, L. Morris, and A. R. Ansari. On using experimentally estimated wall shear stresses to validate numerically predicted results. Proc. Instn. Mech. Engrs 217(H):77–90.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas O Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brien, T.O., Walsh, M. & McGloughlin, T. On Reducing Abnormal Hemodynamics in the Femoral End-to-Side Anastomosis: The Influence of Mechanical Factors. Ann Biomed Eng 33, 310–322 (2005). https://doi.org/10.1007/s10439-005-1733-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-1733-y

Keyword

Navigation