Skip to main content

Advertisement

Log in

Computational modeling of vascular anastomoses

  • Review
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Recent development of computational technology allows a level of knowledge of biomechanical factors in the healthy or pathological cardiovascular system that was unthinkable a few years ago. In particular, computational fluid dynamics (CFD) and computational structural (CS) analyses have been used to evaluate specific quantities, such as fluid and wall stresses and strains, which are very difficult to measure in vivo. Indeed, CFD and CS offer much more variability and resolution than in vitro and in vivo methods, yet computations must be validated by careful comparison with experimental and clinical data. The enormous parallel development of clinical imaging such as magnetic resonance or computed tomography opens a new way toward a detailed patient-specific description of the actual hemodynamics and structural behavior of living tissues. Coupling of CFD/CS and clinical images is becoming a standard evaluation that is expected to become part of the clinical practice in the diagnosis and in the surgical planning in advanced medical centers. This review focuses on computational studies of fluid and structural dynamics of a number of vascular anastomoses: the coronary bypass graft anastomoses, the arterial peripheral anastomoses, the arterio-venous graft anastomoses and the vascular anastomoses performed in the correction of congenital heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ballyk PD, Steinman DA, Ethier CR (1994) Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 31:565–586

    Google Scholar 

  • Ballyk PD, Walsh C, Butany J, Ojha M (1998) Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 31:229–237

    Google Scholar 

  • Barnea O, Santamore WP, Rossi A, Salloum E, Chien S, Austin EH (1998) Estimation of oxygen delivery in newborns with a univentricular circulation. Circulation 98:1407–1413

    Google Scholar 

  • Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15:708–716

    Article  Google Scholar 

  • Bathe M, Kamm RD (1999) A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery. J Biomech Eng 121:361–369

    CAS  PubMed  Google Scholar 

  • Berthier B, Bouzerar R, Legallais C (2002) Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J Biomech 35:1347–1356

    Google Scholar 

  • Bertolotti C, Deplano V (2000) Three-dimensional numerical simulations of flow through a stenosed coronary bypass. J Biomech 33:1011–1122

    Google Scholar 

  • Bertolotti C, Deplano V, Fuseri J, Dupouy P (2001) Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses. J Biomech 34:1049–1064

    Google Scholar 

  • Bolzon G, Pedrizzetti G, Grigioni M, Zovatto L, Daniele C, D’Avenio G (2002) Flow on the symmetry plane of a total cavo-pulmonary connection. J Biomech 35:595–608

    Google Scholar 

  • Bonert M, Myers JG, Fremes S, Williams J, Ethier CR (2002) A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses. Ann Biomed Eng 30:599–611

    Google Scholar 

  • Boutsianis E, Dave H, Frauenfelder T, Poulikakos D, Wildermuth S, Turina M, Ventikos Y, Zund G (2004) Computational simulation of intracoronary flow based on real coronary geometry. Eur J Cardiothorac Surg 26:248–256

    Google Scholar 

  • Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047

    Google Scholar 

  • Bryant SR, Bjercke RJ, Erichsen DA, Rege A, Lindner V (1999) Vascular remodeling in response to altered blood flow is mediated by fibroblast growth factor-2. Circ Res 84:323–328

    Google Scholar 

  • Cavalcanti S, Tura A (1999) Hemodynamic and mechanical performance of arterial grafts assessed by numerical simulation: a design oriented study. Artif Organs 23:175–185

    Google Scholar 

  • Cole JS, Watterson JK, O’Reilly MJ (2002a) Is there a haemodynamic advantage associated with cuffed arterial anastomoses? J Biomech 35:1337–1346

    Google Scholar 

  • Cole JS, Wijesinghe LD, Watterson JK, Scott DJ (2002b) Computational and experimental simulations of the haemodynamics at cuffed arterial bypass graft anastomoses. Proc Inst Mech Eng [H] 216:135–143

    Google Scholar 

  • Cole JS, Watterson JK, O’Reilly MJ (2002c) Numerical investigation of the haemodynamics at a patched arterial bypass anastomosis. Med Eng Phys 24:393–401

    Google Scholar 

  • Crawshaw H M, Quist W C, Serrallach E, Valeri R, Logerfo FW (1980) Flow disturbance at the distal end-to-side anastomosis. Arch Surg 115:1280–1284

    Google Scholar 

  • De Hart J, Baaijens FP, Peters GW, Schreurs PJ (2003a) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712

    Google Scholar 

  • De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2003b) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112

    Google Scholar 

  • De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2004) Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech 37:303–311

    Article  Google Scholar 

  • DeGroff C, Shandas R (2002) Designing the optimal total cavopulmonary connection: pulsatile versus steady flow experiments. Med Sci Monit 8:MT41-MT45

    Google Scholar 

  • DeGroff CG, Shandas R, Kwon J, Valdes-Cruz L (2000) Accuracy of the Bernoulli equation for estimation of pressure gradient across stenotic Blalock-Taussig shunts: an in vitro and numerical study. Pediatr Cardiol 21:439–447

    Google Scholar 

  • Deplano V, Bertolotti C, Boiron O (2001) Numerical simulations of unsteady flows in a stenosed coronary bypass graft. Med Biol Eng Comput 39:488–499

    Google Scholar 

  • Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23:647–655

    Article  PubMed  Google Scholar 

  • Dobrin PB, Littooy FN, Endean ED (1989) Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105:393–400

    Google Scholar 

  • Douglas WI, Goldberg CS, Mosca RS, Law IH, Bove EL (1999) The hemi-Fontan procedure for hypoplastic left heart syndrome: Intermediate outcome and suitability for Fontan. Ann Thor Surg 68:1361–1368

    Google Scholar 

  • Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J Biomech 29:111–121

    Google Scholar 

  • Ene-Iordache B, Mosconi L, Remuzzi G, Remuzzi A (2001) Computational fluid dynamics of a vascular access case for hemodialysis. J Biomech Eng 123:284–292

    Google Scholar 

  • Ensley AE, Lynch P, Chatzimavroudis GP, Lucas C, Sharma S, Yoganathan AP (1999) Toward designing the optimal total cavopulmonary connection: an in vitro study. Ann Thorac Surg 68:1384–1390

    Google Scholar 

  • Ethier CR, Steinman DA, Zhang X, Karpik SR, Ojha M (1998) Flow waveform effects on end-to-side anastomotic flow patterns. J Biomech 31:609–617

    Google Scholar 

  • Fei DY, Thomas JD, Rittgers SE (1994) The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study. J Biomech Eng 116:331–336

    Google Scholar 

  • Fisher RK, How TV, Bakran A, Brennan JA, Harris PL (2004) Outflow distribution at the distal anastomosis of infrainguinal bypass grafts. J Biomech 37:417–420

    Google Scholar 

  • Gasser TC, Schulze-Bauer CA, Holzapfel GA (2002) A three-dimensional finite element model for arterial clamping. J Biomech Eng 124:355–363

    Google Scholar 

  • Gerdes A, Kunze J, Pfister G, Sievers HH (1999) Addition of a small curvature reduces power losses across total cavopulmonary connections. Ann Thorac Surg 67:1760–1764

    Google Scholar 

  • Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112:1018–1031

    Google Scholar 

  • Grigioni M, Daniele C, Del Gaudio C, Morbiducci U, Balducci A, D’Avenio G, Amodeo A, Barbaro V, Di Donato R (2003) Numerical simulation of a realistic total cavo-pulmonary connection: effect of unbalanced pulmonary resistances on hydrodynamic performance. Int J Artif Organs 26:1005–1014

    Google Scholar 

  • Guo LR, Steinman DA, Moon BC, Wan WK, Millsap RJ (2001) Effect of distal graft anastomosis site on retrograde perfusion and flow patterns of native coronary vasculature. Ann Thorac Surg 72:782–787

    Google Scholar 

  • Haller JA, Adkins JC, Worthington M, Ravenhorst J (1966) Experimental studies on permanent bypass of the right heart. Surgery 59:1128–1132

    Google Scholar 

  • Haruguchi H, Teraoka S (2003) Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs 6:227–235

    Google Scholar 

  • Healy TM, Lucas C, Yoganathan AP (2001) Noninvasive fluid dynamic power loss assessments for total cavopulmonary connections using the viscous dissipation function: a feasibility study. J Biomech Eng 123:317–324

    Google Scholar 

  • Henry FS, Collins MW, Hughes PE, How TV (1996) Numerical investigation of steady flow in proximal and distal end-to-side anastomoses. J Biomech Eng 118:302–310

    Google Scholar 

  • Henry FS, Kupper C, Lewington NP (2002) Simulation of flow through a Miller cuff bypass graft. Comput Methods Biomech Biomed Engin 5:207–217

    Google Scholar 

  • Hodgson L, Tarbell JM (2002) Solute transport to the endothelial intercellular cleft: the effect of wall shear stress. Ann Biomed Eng 30:936–945

    Google Scholar 

  • Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H (1996) Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J Biomech 29:1297–1308

    Google Scholar 

  • Houlind K, Stenbog EV, Sorensen KE, Emmertsen K, Hansen OK, Rybro L, Hjortdal VE (1999) Pulmonary and caval flow dynamics after total cavopulmonary connection. Heart 81:67–72

    Google Scholar 

  • Hughes PE, How TV (1995) Flow structures at the proximal side-to-end anastomosis: influence of geometry and flow division. J Biomech Eng 117:224–236

    Google Scholar 

  • Ibrahim J, Miyashiro JK, Berk BC (2003) Shear stress is differentially regulated among inbred rat strains. Circ Res 92:1001–1009

    Google Scholar 

  • Inzoli F, Migliavacca F, Pennati G (1996) Numerical analysis of steady flow in aorto-coronary bypass 3-D model. J Biomech Eng 118:172–179

    Google Scholar 

  • Jackson MJ, Bicknell CD, Zervas V, Cheshire NJ, Sherwin SJ, Giordana S, Peiro J, Papaharilaou Y, Doorly DJ, Caro CG (2003) Three-dimensional reconstruction of autologous vein bypass graft distal anastomoses imaged with magnetic resonance: clinical and research applications. J Vasc Surg 38:621–625

    Google Scholar 

  • Kaazempur-Mofrad MR, Ethier CR (2001) Mass transport in an anatomically realistic human right coronary artery. Ann Biomed Eng 29:121–127

    Google Scholar 

  • Karner G, Perktold K, Zehentner HP (2001) Computational modeling of macromolecule transport in the arterial wall. Comput Methods Biomech Biomed Engin 4:491–504

    Google Scholar 

  • Khunatorn Y, Mahalingam S, DeGroff CG, Shandas R (2002) Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J Biomech Eng 124:364–377

    Google Scholar 

  • Kim YH, Chandran KB (1993) Steady flow analysis in the vicinity of an end-to-end anastomosis. Biorheology 30:117–130

    Google Scholar 

  • Kim YH, Chandran KB, Bower TJ, Corson JD (1993) Flow dynamics across end-to-end vascular bypass graft anastomoses. Ann Biomed Eng 21:311–320

    Google Scholar 

  • Kim YH, Walker PG, Fontaine AA, Panchal S, Ensley AE, Oshinski J, Sharma S, Ha B, Lucas CL, Yoganathan AP (1995) Hemodynamics of the Fontan connection: an in-vitro study. J Biomech Eng 117:423–428

    Google Scholar 

  • Kirpalani A, Park H, Butany J, Johnston KW, Ojha M (1999) Velocity and wall shear stress patterns in the human right coronary artery. J Biomech Eng 121:370–375

    Google Scholar 

  • Kitagawa T, Katoh I, Fukumura Y, Masuda Y, Hori T (1995) Achieving optimal pulmonary blood flow in the first-stage palliation in early infancy for complex cardiac defects with hypoplastic left ventricles. Cardiol Young 5:21–27

    Google Scholar 

  • Kleinstreuer C, Lei M, Archie JP Jr (1996) Flow input waveform effects on the temporal and spatial wall shear stress gradients in a femoral graft-artery connector. J Biomech Eng 118:506–510

    Google Scholar 

  • Kleinstreuer C, Hyun S, Buchanan JR Jr, Longest PW, Archie JP Jr, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29:1–64

    Google Scholar 

  • Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110:220–226

    Google Scholar 

  • Krueger U, Zanow J, Scholz H (2000) Comparison of two different arteriovenous anastomotic forms by numerical 3D simulation of blood flow. Int J Angiol 9:226–231

    Google Scholar 

  • Krueger U, Zanow J, Scholz H (2002) Computational fluid dynamics and vascular access. Artif Organs 26:571–575

    Google Scholar 

  • Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302

    CAS  PubMed  Google Scholar 

  • Ku JP, Draney MT, Arko FR, Lee WA, Chan FP, Pelc NJ, Zarins CK, Taylor CA (2002) In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann Biomed Eng 30:743–752

    Google Scholar 

  • Kute SM, Vorp DA (2001) The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. J Biomech Eng 123:277–283

    Google Scholar 

  • Laganà K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364

    Google Scholar 

  • Laganà K, Balossino R, Migliavacca F, Pennati G, Bove EL, de Leval MR, Dubini G (2005) Pulmonary and coronary perfusions in univentricular circulation assessed by CFD multiscale models. J Biomech (in press)

  • Lardo AC, Webber SA, Friehs I, del Nido PJ, Cape EG (1999a) Fluid dynamic comparison of intra-atrial and extracardiac total cavopulmonary connections. J Thorac Cardiovasc Surg 117:697–704

    Google Scholar 

  • Lardo AC, Webber SC, Iyengar A, del Nido PJ, Friehs I, Cape EG (1999b) Bidirectional superior cavopulmonary anastomosis improves mechanical efficiency in dilated atriopulmonary connections. J Thorac Cardiovasc Surg 188:681–691

    Google Scholar 

  • Lee D, Su JM, Liang HY (2001) A numerical simulation of steady flow fields in a bypass tube. J Biomech 34:1407–1416

    Google Scholar 

  • Lei M, Kleinstreuer C, Archie JP Jr (1996) Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J Biomech 29:1605–1614

    Google Scholar 

  • Lei M, Kleinstreuer C, Archie JP (1997a) Hemodynamic simulations and computer-aided designs of graft-artery junctions. J Biomech Eng 119:343–348

    Google Scholar 

  • Lei M, Archie JP, Kleinstreuer C (1997b) Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J Vasc Surg 25:637–646

    Google Scholar 

  • Lei M, Giddens DP, Jones SA, Loth F, Bassiouny H (2001) Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data. J Biomech Eng 123:80–87

    Google Scholar 

  • Lemmon JD, Yoganathan AP (2000) Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. J Biomech Eng 122:109–117

    Google Scholar 

  • Leuprecht A, Perktold K, Prosi M, Berk T, Trubel W, Schima H (2002) Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J Biomech 35:225–236

    Google Scholar 

  • de Leval MR, McKay R, Jones M, Stark J, Macartney FJ (1981) Modified Blalock–Taussig shunt. Use of subclavian artery orifice as flow regulator in prosthetic systemic-pulmonary artery shunts. J Thorac Cardiovasc Surg 81:112–119

    Google Scholar 

  • de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg 96:682–695

    CAS  PubMed  Google Scholar 

  • de Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg 111:502–513

    Google Scholar 

  • Longest PW, Kleinstreuer C (2000) Computational haemodynamics analysis and comparison study of arterio-venous grafts. J Med Eng Technol 24:102–110

    Google Scholar 

  • Longest PW, Kleinstreuer C (2003a) Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med Eng Phys 25:843–858

    Google Scholar 

  • Longest PW, Kleinstreuer C (2003b) Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses. J Biomech Eng 125:671–681

    Google Scholar 

  • Longest PW, Kleinstreuer C, Archie JP Jr (2003) Particle hemodynamics analysis of Miller cuff arterial anastomosis. J Vasc Surg 38:1353–1362

    Google Scholar 

  • Loth F, Fischer PF, Arslan N, Bertram CD, Lee SE, Royston TJ, Shaalan WE, Bassiouny HS (2003) Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the ERK1/2 mechanotransduction pathway. J Biomech Eng 125:49–61

    Google Scholar 

  • Low HT, Chew YT, Lee CN (1993) Flow studies on atriopulmonary and cavopulmonary connections of the Fontan operations for congenital heart defects. J Biomed Eng 15:303–307

    Google Scholar 

  • Lutostansky EM, Karner G, Rappitsch G, Ku DN, Perktold K (2003) Analysis of hemodynamic fluid phase mass transport in a separated flow region. J Biomech Eng 125:189–196

    Google Scholar 

  • McGiffin DC, McGiffin PB, Galbraith AJ, Cross RB (1992) Aortic wall stress profile after repair of coarctation of the aorta. It is related to subsequent true aneurysm formation? J Thorac Cardiovasc Surg 104:924–931

    Google Scholar 

  • McQueen DM, Peskin CS, Yellin EL (1982) Fluid dynamics of the mitral valve: physiological aspects of a mathematical model. Am J Physiol 242:H1095–H1110

    Google Scholar 

  • Melbin J, Ho PC (1997) Stress reduction by geometric compliance matching at vascular graft anastomoses. Ann Biomed Eng 25:874–881

    Google Scholar 

  • Migliavacca F, de Leval MR, Dubini G, Pietrabissa R (1996) A computational pulsatile model of the bidirectional cavopulmonary anastomosis: the influence of pulmonary forward flow. J Biomech Eng 118:520–528

    Google Scholar 

  • Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. Med Eng Phys 19:394–403

    Google Scholar 

  • Migliavacca F, de Leval MR, Dubini G, Pietrabissa R, Fumero R (1999b) Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med Eng Phys 23:187–193

    Google Scholar 

  • Migliavacca F, Kilner PJ, Pennati G, Dubini G, Pietrabissa R, Fumero R, de Leval MR (1999a) Computational fluid dynamic and magnetic resonance analyses of flow distribution between lungs after total cavopulmonary connection. IEEE Trans Biomed Eng 46:393–399

    Article  CAS  PubMed  Google Scholar 

  • Migliavacca F, Yates R, Pennati G, Dubini G, Fumero R, de Leval MR (2000b) Calculating blood flow from Doppler measurements in the systemic-to-pulmonary artery shunt. A method based on computational fluid dynamics. Ultrasound Med Biol 26:209–219

    Google Scholar 

  • Migliavacca F, Dubini G, Pennati G, Pietrabissa R, Fumero R, Hsia T-Y, de Leval MR (2000a) Computational model of the fluid dynamics in systemic-to-pulmonary shunts. J Biomech 33:549–557

    Google Scholar 

  • Migliavacca F, Pennati G, Dubini G, Pietrabissa R, Fumero R, Urcelay G, Bove EL, Hsia T-Y, de Leval MR (2001) Modeling of the Norwood circulation: effects of shunt size vascular resistances and heart rate. Am J Physiol Heart Circ Physiol 280:H2076–H2086

    Google Scholar 

  • Migliavacca F, Pennati G, Di Martino E, Dubini G, Pietrabissa R (2002) Pressure drops in a distensible model of end-to-side anastomosis in systemic-to-pulmonary shunts. Comput Methods Biomech Biomed Engin 5:243–248

    Google Scholar 

  • Migliavacca F, Dubini G, Bove EL, de Leval MR (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:805–813

    Google Scholar 

  • Moore JA, Steinman DA, Prakash S, Johnston KW, Ethier CR (1999) A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J Biomech Eng 121:265–272

    Google Scholar 

  • Moyle K (2003) Heamodynamics of the Fontan connection. PhD Thesis, Auckland

  • Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR (2001) Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng 29:109–120

    Google Scholar 

  • Ojha M (1994) Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ Res 74:1227–1231

    Google Scholar 

  • Ojha M, Cobbold RS, Johnston KW (1993) Hemodynamics of a side-to-end proximal arterial anastomosis model. J Vasc Surg 17:646–655

    Google Scholar 

  • Papaharilaou Y, Doorly DJ, Sherwin SJ (2002a) The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. J Biomech 35:1225–1239

    Google Scholar 

  • Papaharilaou Y, Doorly DJ, Sherwin SJ, Peiro J, Griffith C, Cheshire N, Zervas V, Anderson J, Sanghera B, Watkins N, Caro CG (2002b) Combined MR imaging and numerical simulation of flow in realistic arterial bypass graft models. Biorheology 39:525–531

    Google Scholar 

  • Pennati G, Fiore GB, Migliavacca F, Lagana’ K, Fumero R, Dubini G (2001) In vitro steady-flow analysis of systemic-to-pulmonary shunt haemodynamics. J Biomech 34:23–30

    Google Scholar 

  • Perktold K, Rappitsch G (1995) Mathematical modeling of arterial blood flow and correlation to atherosclerosis. Technol Health Care 3:139–151

    Google Scholar 

  • Perktold K, Leuprecht A, Prosi M, Berk T, Czerny M, Trubel W, Schima H (2002) Fluid dynamics wall mechanics and oxygen transfer in peripheral bypass anastomoses. Ann Biomed Eng 30:447–460

    Google Scholar 

  • Pietrabissa R, Inzoli F, Fumero R (1990) Simulation study of the fluid dynamics of aorto-coronary bypass. J Biomed Eng 12:419–424

    Google Scholar 

  • Pietrabissa R, Mantero S, Marotta T, Menicanti L (1996) A lumped parameter model to evaluate the fluid dynamics of different coronary bypasses. Med Eng Phys 18:477–484

    Google Scholar 

  • Pittaccio S, Migliavacca F, Dubini G, Pedersen EM, Fründ ET, Hjortdal V, Xu Y, de Leval M (2003) Fluid-structure interaction and rigid wall CFD-MRI combined study of aortic coarctation repairs. In: Proceedings of 2003 summer bioengineernig ASME conference. ISBN No. 0-9742492–0–3 (http://www.tulane.edu/~sbc2003/), pp 509–510

  • Qiu Y, Tarbell JM (1996) Computational simulation of flow in the end-to-end anastomosis of a rigid graft and a compliant artery. ASAIO J 42:M702–M709

    Google Scholar 

  • Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci 4:111–124

    Google Scholar 

  • Quarteroni A, Veneziani A, Zunino P (2002) A domain decomposition method for advection-diffusion processes with application to blood solutes. SIAM J Sci Comput 23:1959–1980

    Google Scholar 

  • Rachev A, Manoach E, Berry J, Moore JE Jr (2000) A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J Theor Biol 206:429–443

    Google Scholar 

  • Rappitsch G, Perktold K (1996) Computer simulation of convective diffusion processes in large arteries. J Biomech 29:207–215

    Google Scholar 

  • Redaelli A, Montevecchi FM (1996) Computational evaluation of intraventricular pressure gradients based on a fluid-structure approach. J Biomech Eng 118:529–537

    Google Scholar 

  • Redaelli A, Maisano F, Ligorio G, Cattaneo E, Montevecchi FM, Alfieri O (2004) Flow dynamics of the St Jude Medical Symmetry aortic connector vein graft anastomosis do not contribute to the risk of acute thrombosis. J Thorac Cardiovasc Surg 128:117–123

    Google Scholar 

  • Redington AN, Penny D, Shinebourne EA (1991) Pulmonary blood flow after total cavopulmonary shunt. Br Heart J 65:213–217

    Google Scholar 

  • Ryu K, Healy TM, Ensley AE, Sharma S, Lucas C, Yoganathan AP (2001) Importance of accurate geometry in the study of the total cavopulmonary connection computational simulations and in vitro experiments. Ann Biomed Eng 29:844–853

    Google Scholar 

  • Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, Carson RJ (2001) The mechanical behavior of vascular grafts: a review. J Biomater Appl 15:241–278

    Google Scholar 

  • Sano S, Ishino K, Kawada M, Arai S, Kasahara S, Asai T, Masuda Z, Takeuchi M, Ohtsuki S (2003) Right ventricle-pulmonary artery shunt in first-stage palliation of hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:504–509

    Article  PubMed  Google Scholar 

  • Scheltes JS, van Andel CJ, Pistecky PV, Borst C (2003) Coronary anastomotic devices: blood-exposed non-intimal surface and coronary wall stress. J Thorac Cardiovasc Surg 126:191–199

    Google Scholar 

  • Schwartz LB, O’Donohoe MK, Purut CM, Mikat EM, Hagen PO, McCann RL (1992) Myointimal thickening in experimental vein grafts is dependent on wall tension. J Vasc Surg 15:176–186

    Google Scholar 

  • Selezov I, Avramenko O, Fratamico G, Pallotti G, Pettazzoni P, De Sanctis LB, Coli L, Stefoni S, Bonomini V (1998) Mechanical effects of heart pulse propagation on a vessel-graft suture line stress. Int J Artif Organs 21:114–118

    Google Scholar 

  • Sharma S, Goudy S, Walker P, Panchal S, Ensley A, Kanter K, Tam V, Fyfe D, Yoganathan A (1996) In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol 27:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Sherwin SJ, Shah O, Doorly DJ, Peiro J, Papaharilaou Y, Watkins N, Caro CG, Dumoulin CL (2000) The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis. J Biomech Eng 122:86–95

    Google Scholar 

  • Sherwin SJ, Doorly DJ, Franke P, Peiro J (2002) Unsteady near wall residence times and shear exposure in model distal arterial bypass grafts. Biorheology 39:365–371

    Google Scholar 

  • Steinman DA, Ethier CR (1994) The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J Biomech Eng 116:294–301

    Google Scholar 

  • Steinman DA, Vinh B, Ethier CR, Ojha M, Cobbold RS, Johnston KW (1993) A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. J Biomech Eng 115:112–118

    Google Scholar 

  • Stewart SF, Lyman DJ (2004) Effects of an artery/vascular graft compliance mismatch on protein transport: a numerical study. Ann Biomed Eng 32:991–1006

    Google Scholar 

  • Tacy TA, Whitehead KK, Cape EG (1998) In vitro Doppler assessment of pressure gradients across modified Blalock–Taussig shunts. Am J Cardiol 81:1219–1223

    Google Scholar 

  • Tada S, Tarbell JM (2000) Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 278:H1589–H1597

    Google Scholar 

  • Tada S, Tarbell JM (2001) Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann Biomed Eng 29:456–466

    Google Scholar 

  • Tada S, Tarbell JM (2002) Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am J Physiol Heart Circ Physiol 282:H576–H584

    Google Scholar 

  • Tada S, Tarbell JM (2004) Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study. Am J Physiol Heart Circ Physiol 287:H905–H913

    Google Scholar 

  • Tang D, Yang J, Yang C, Ku DN (1999) A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes. J Biomech Eng 121:494–501

    Google Scholar 

  • Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid-wall interactions. J Biomech Eng 123:548–557

    Google Scholar 

  • Tang D, Yang C, Kobayashi S, Ku DN (2004) Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI):models. J Biomech Eng 126:363–370

    Google Scholar 

  • Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech 36:197–231

    Google Scholar 

  • Taylor CA, Hughes TJR, Zarins CK (1996) Computational investigations in vascular disease. Comp Phys 10:224–232

    Google Scholar 

  • Thubrikar MJ, Robicsek F (1995) Pressure-induced arterial wall stress and atherosclerosis. Ann Thorac Surg 59:1594–1603

    Google Scholar 

  • Van Haesdonck JM, Mertens L, Sizaire R, Montas G, Purnode B, Daenen W, Crochet M, Gewillig M (1995) Comparison by computerized numeric modeling of energy losses in different Fontan connections. Circulation 92:II322–II326

    Google Scholar 

  • Vignon IE, Taylor CA (2004) Outflow boundary condition for one-dimensional finite element modeling of blood flow and pressure waves in arteries. Wave Motion 39:361–374

    Google Scholar 

  • Walsh MT, Kavanagh EG, O’Brien T, Grace PA, McGloughlin T (2003) On the existence of an optimum end-to-side junctional geometry in peripheral bypass surgery—a computer generated study. Eur J Vasc Endovasc Surg 26:649–656

    Google Scholar 

  • Wang DM, Tarbell JM (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J Biomech Eng 117:358–363

    Google Scholar 

  • White SS, Zarins CK, Giddens DP, Bassiouny H, Loth F, Jones SA, Glagov S (1993) Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility flow division Reynolds number and hood length. J Biomech Eng 115:104–111

    Google Scholar 

  • Yamaguchi T, Yamamoto Y, Liu H (2000) Computational mechanical model studies on the spontaneous emergent morphogenesis of the cultured endothelial cells. J Biomech 33:115–126

    Google Scholar 

  • Zidi M, Cheref M (2003) Mechanical analysis of a prototype of small diameter vascular prosthesis: numerical simulations. Comput Biol Med 33:65–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Migliavacca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migliavacca, F., Dubini, G. Computational modeling of vascular anastomoses. Biomech Model Mechanobiol 3, 235–250 (2005). https://doi.org/10.1007/s10237-005-0070-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-005-0070-2

Keywords

Navigation