Skip to main content
Log in

Numerical Simulation of Wall Shear Stress and Particle-Based Hemodynamic Parameters in Pre-Cuffed and Streamlined End-to-Side Anastomoses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A number of research studies have related multiple hemodynamic parameters to the formation of distal anastomotic intimal hyperplasia (IH) at the sub-cellular, cellular, and tissue levels. Focusing on mitigating WSS-based parameters alone, several studies have suggested geometrically modified end-to-side anastomoses with the intent of improving synthetic graft patency rates. However, recent clinical trials of commercially available versions of these grafts indicate persistently high rates of failure. Furthermore, recent evidence suggests that platelet-wall interactions may play a significant role in the formation of IH, which is not captured by WSS-based parameters alone. In this study, numerical simulations have been conducted to assess the potential for IH formation in conventional and geometrically modified anastomoses based on both wall shear stress (WSS) conditions and platelet-wall interactions. Sites of significant particle-wall interactions, including elevated concentrations and stasis, were identified by a near-wall residence time model, which includes factors for platelet activation and surface reactivity. Conventional, pre-cuffed, and streamlined distal end-to-side anastomoses were considered with proximal and distal arterial outflow. It was found that a pre-cuffed anastomosis, similar to the Distaflo configuration, does not offer a hemodynamic advantage over the conventional design considered with respect to the magnitude of the WSS field and the potential for platelet interactions with the vessel surface. Streamlined configurations largely consistent with venous confluences resulted in an advantageous reduction of wall shear stress gradient values; however, particle-wall interactions remained significant throughout the anastomosis. Results of this study are not intended to be directly extrapolated to surgical recommendations. However, these results highlight the difficulty associated with designing an end-to-side distal anastomosis with two-way outflow that is capable of simultaneously reducing multiple hemodynamic parameters. Further testing will be necessary to determine if the observed elevated particle-wall interactions in a pre-cuffed anastomosis provide the stimulus responsible for the reported high failure rates of these grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts, P. A., P. Steendijk, J. J. Sixma, and R. M. Heethaar. Fluid shear as a possible mechanism for platelet diffusivity in flowing blood. J. Biomech. 19(10):799–805, 1986.

    Article  Google Scholar 

  2. Aarts, P. A., S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells in the center in flowing blood. Arteriosclerosis 8(6):819–824, 1988.

    Google Scholar 

  3. Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: Mechanical injury or flow induced. J. Vasc. Surg. 15:708–717, 1992.

    Google Scholar 

  4. Bertschinger, K., P. C. Cassina, J. F. Debatin, and S. G. Ruehm. Surveillance of peripheral arterial bypass grafts with three-dimensional MR angiography. Am. J. Roentgenol. 176:215–220, 2001.

    Google Scholar 

  5. Buchanan, J. R., and C. Kleinstreuer. Simulation of particle hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses. J. Biomech. Eng. 120:446–454, 1998.

    Google Scholar 

  6. Cokelet, G. R. In: Handbook of Bioengineering, edited by R. Skalak and S. Chien. New York: McGraw-Hill, 1987.

    Google Scholar 

  7. Da Silva, A. F., T. Carpenter, T. V. How, and P. L. Harris. Stable vortices within vein cuffs inhibit the anastomotic myointimal hyperplasia? Eur. J. Vasc. Endovasc. Surg. 14:157–163, 1997.

    Google Scholar 

  8. Fisher, R. K., T. V. How, A. Bakran, J. A. Brennan, and P. L. Harris. Outflow distribution at the distal anastomosis of infrainguinal bypass grafts. J. Biomech. 37:417–420, 2004.

    Article  Google Scholar 

  9. Fisher, R. K., T. V. How, I. M. Toonder, M. T. C. Hoedt, J. A. Brennan, G. L. Gilling-Smith, and P. L. Harris. Harnessing haemodynamic forces for the suppression of anastomotic intimal hyperplasia: The rationale for precuffed grafts. Eur. J. Vasc. Endovasc. Surg. 21:520–528, 2001.

    Google Scholar 

  10. Fisher, R. K., U. J. Kirkpatrick, T. V. How, J. A. Brennan, G. L. Gilling-Smith, and L. P. Harris. The Distaflo Graft: A Valid Alternative to Interposition Vein. Eur. J. Vasc. Endovasc. Surg. 25:235–239, 2003.

    Google Scholar 

  11. Fisher, R. K., U. J. Kirkpatrick, T. V. How, J. A. Brennan, G. L. Gilling-Smith, and P. L. Harris. Prospective study of the Distaflo graft. Br. J. Surg. 89(4):514, 2002.

    Google Scholar 

  12. Goldsmith, H. L., M. M. Frojmovic, S. Braovac, F. McIntosh, and T. Wong. Adenosine diphosphate-inducted aggregation of human platelets in flow through tubes. III. Shear and extrinsic fibrinogen-dependent effects. Thromb Haemost 71(1):78–90, 1994.

    Google Scholar 

  13. Grabowski, E. F., E. A. Jaffe, and B. B. Weksler. Prostacyclin production by cultured endothelial cell monolayers exposed to step increase in shear stress. J. Lab. Clin. Med. 105:36–43, 1985.

    Google Scholar 

  14. Grabowski, E. F., A. J. Reininger, P. G. Petteruti, O. Tsukurov, and R. W. Orkin. Shear stress decreases endothelial cell tissue factor activity by augmenting secretion of tissue factor pathway inhibitor. Arterioscler. Thromb. Vasc. Biol. 21:157–162, 2001.

    Google Scholar 

  15. Harris, P. L., and T. V. How. Haemodynamics of cuffed arterial anastomoses. Crit. Ischaemia 9(1):20–26, 1999.

    Google Scholar 

  16. Hellums, J. D. 1993 Whitaker Lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22(5):445–455, 1994.

    Google Scholar 

  17. Hoedt, M. T. C., H. van Urk, W. C. J. Hop, A. van der Lugt, and C. H. A. Wittens. A comparison of distal end-to-side and end-to-end anastomoses in femoropopliteal bypasses. Eur. J. Vasc. Endovasc. Surg. 21:266–270, 2001.

    Article  Google Scholar 

  18. How, T. V., C. S. Rowe, G. L. Gilling-Smith, and L. Harris. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery. J. Vasc. Surg. 31:1008–1017, 2000.

    Article  Google Scholar 

  19. Karino, T., and H. L. Goldsmith. Flow behaviour of blood cells and rigid spheres in an annular vortex. Philos. Trans. R. Soc. Lon. Ser. B 279:413–445, 1977.

    Google Scholar 

  20. Keynton, R. S., M. M. Evancho, R. L. Sims, and S. E. Rittgers. The effect of graft caliber upon wall shear within in vivo distal vascular anastomoses. ASME J. Biomech. Eng. 121:79–88, 1999.

    Google Scholar 

  21. Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anatomoses: An in vivo model study. J. Biomech. Eng. 123:464–473, 2001.

    Article  Google Scholar 

  22. Keynton, R. S., S. E. Rittgers, and M. C. S. Shu. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: An in vitro model study. ASME J. Biomech. Eng. 113:458–463, 1991.

    Google Scholar 

  23. Kissin, M., N. Kansal, P. J. Pappas, D. O. DeFouw, W. N. Duran, and R. W. Hobson. Vein interpositioned cuffs decrease the intimal hyperplastic response of polytetrafluoroethylene bypass grafts. J. Vasc. Surg. 31:69–83, 2000.

    Article  Google Scholar 

  24. Kleinstreuer, C., S. Hyun, J. R. Buchanan, P. W. Longest, J. P. Archie, and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng. 29(1):1–64, 2001.

    Google Scholar 

  25. Lei, M., C. Kleinstreuer, and J. P. Archie. Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomech. 29(12):1605–1614, 1996.

    Article  Google Scholar 

  26. Lei, M., C. Kleinstreuer, and J. P. Archie. Hemodynamic simulations and computer-aided designs of graft-artery junctions. ASME J. Biomech. Eng. 119:343–348, 1997.

    Google Scholar 

  27. Leuprecht, A., K. Perktold, M. Prosi, T. Berk, W. Trubel, and H. Schima. Numerical study of hemodynamics and wall mechanics in dital end-to-side anastomoses of bypass grafts. J. Biomech. 35:225–236, 2002.

    Article  Google Scholar 

  28. Li, X., and S. E. Rittgers. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios. ASME J. Biomech. Eng. 123:270–276, 2001.

    Google Scholar 

  29. Liu, S. Q. Biomechanical basis of vascular tissue engineering. Crit. Rev. Biomed. Eng. 27(1&2):75–148, 1999.

    Google Scholar 

  30. Longest, P. W., and C. Kleinstreuer. Computational haemodynamics analysis and comparison study of arterio-venous grafts. J. Med. Eng. Technol. 24(3):102–110, 2000.

    Google Scholar 

  31. Longest, P. W., and C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36(3):421–430, 2003.

    Google Scholar 

  32. Longest, P. W., and C. Kleinstreuer. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses. J. Biomech. Eng. Transac. ASME 125(5):671–681, 2003.

    Google Scholar 

  33. Longest, P. W., and C. Kleinstreuer. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med. Eng. Phys. 25(10):843–858, 2003.

    Article  Google Scholar 

  34. Longest, P. W., C. Kleinstreuer, and P. J. Andreotti. Computational analyses and design improvements of graft-to-vein anastomoses. Crit. Rev. Biomed. Eng. 28(1–2):141–147, 2000.

    Google Scholar 

  35. Longest, P. W., C. Kleinstreuer, and J. P. Archie. Particle hemodynamics analysis of Miller cuff arterial anastomosis. J. Vasc. Surg. 38(6):1353–1362, 2003.

    Article  Google Scholar 

  36. Longest, P. W., C. Kleinstreuer, and J. R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33(4):577–601, 2004.

    Article  MATH  Google Scholar 

  37. 37ss Longest, P. W., C. Kleinstreuer, G. A. Truskey, and J. R. Buchanan. Relation between near-wall residence times of monocytes and early lesion growth in the rabbit aorto-celiac junction. Ann. Biomed. Eng. 31(1):53–64, 2003.

    Article  Google Scholar 

  38. Loth, F., S. Jones, C. K. Zarins, D. P. Giddens, R. F. Nassar, S. Glagov, and H. S. Bassiouny. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses. J. Biomech. Eng. 124:44–51, 2002.

    Article  Google Scholar 

  39. Miller, J. H., R. K. Foreman, L. Ferguson, and I. Fads. Interposition vein cuff for anastomosis of prosthesis to small artery. Aust. N. Z. J. Surgery 54:283–285, 1984.

    Google Scholar 

  40. Nielsen, T. G., F. von Jessen, H. Sillesen, and T. V. Schroeder. Doppler spectral characteristics of infrainguinal vein bypasses. Eur. J. Vasc. Surg. 7:610–615, 1993.

    Article  Google Scholar 

  41. Noori, N., R. Scherer, K. Perktold, M. Czerny, G. Karner, W. Trubel, P. Polterauer, and H. Schima. Blood flow in distal end-to-side anastomoses with PTFE and a venous patch: Results of an in vitro flow visualization study. Eur. J. Endovasc. Surg. 18:191–200, 1999.

    Google Scholar 

  42. Ojha, M., C. R. Ethier, K. W. Johnston, and R. S. C. Cobbold. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model. J. Vasc. Surg. 12:747–753, 1990.

    Article  Google Scholar 

  43. Okadome, K., T. Onohara, S. Yamamura, and K. Sugimachi. Intraoperative flow waveform analysis aids in preventing early graft failure following reconstruction of arteries of the legs. Ann. Vasc. Surg. 5:413–418, 1991.

    Article  Google Scholar 

  44. Papanicolaou, G., K. W. Beach, R. E. Zierler, and D. E. Strandness. Systolic flow limitation in stenotic lower-extremity vein grafts. J. Vasc. Surg. 23:394–400, 1996.

    Google Scholar 

  45. Pearson, J. D. Endothelial cell function and thrombosis. Baillieres Clin. Haematol. 7:441–452, 1994.

    Google Scholar 

  46. Perktold, K., A. Leuprecht, M. Prosi, T. Berk, M. Czerny, W. Trubel, and H. Schima. Fluid dynamics, wall mechanics, and oxygent transfer in peripheral bypass anastomoses. Ann. Biomed. Eng. 30:447–460, 2002.

    Article  Google Scholar 

  47. Sorom, A. J., C. B. Hughes, J. T. McCarthy, B. M. Jenson, M. Prieto, and J. M. Panneton. Prospective, randomized evaluation of a cufed expanded polytetrafluoroethylene graft for hemodialysis vascular acess. Surgery 132(2):135–140, 2002.

    Article  Google Scholar 

  48. Sottiurai, V. S. Distal anastomotic intimal hyperplasia: Histocytomorphology, pathophysiology, etiology, and prevention. Int. J. Angiol. 8:1–10, 1999.

    Google Scholar 

  49. Sottiurai, V. S., J. S. T. Yao, R. C. Batson, S. L. Sue, R. Jones, and Y. A. Nakamura. Distal anastomotic intimal hyperplasia: Histopathologic character and biogenesis. Ann. Vasc. Surg. 3(1):26–33, 1989.

    Article  Google Scholar 

  50. Sottiurai, V. S., J. S. T. Yao, W. R. Flinn, and R. C. Batson. Intimal hyperplasia and neointima: An ultrastructural analysis of thrombosed grafts in humans. Surgery 93(6):809–817, 1983.

    Google Scholar 

  51. Steinman, D. A., B. Vinh, C. R. Ethier, M. Ojha, R. S. C. Cobbold, and K. W. Johnston. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. J. Biomech. Eng. 114:112–118, 1993.

    Google Scholar 

  52. Stonebridge, P. A., R. J. Prescott, and C. V. Ruckley. Randomized trail comparing infrainguinal polytetrafluoroethylene bypass grafting with and without vein interposition cuff at the distal anastomosis. J. Vasc. Surg. 26(4):543–550, 1997.

    Article  Google Scholar 

  53. Taylor, R. S., A. Loh, R. J. McFarland, M. Cox, and I. F. Chester. Improved technique for polytetrafluoroethylene bypass grafting: Long-term results using anastomotic vein patches. Br. J. Surg. 79:348–354, 1992.

    Google Scholar 

  54. Watase, M., J. Kambayashi, T. Itoh, Y. Tsuji, T. Kawasaki, E. Shiba, and M. Hashimoto Sakon, P. H. Ultrastructural analysis of pseudo-intimal hyperplasia of PTFE prostheses implanted into the venous and arterial systems. Eur. J. Vasc. Surg. 6:371–380, 1992.

    Article  Google Scholar 

  55. Westmuckett, A. D., C. Lupu, S. Roquefeuil, T. Krausz, V. V. Kakkar, and F. Lupu. Fluid flow induces upregulation of synthesis and release of tissue factor pathway inhibitor in vitro. Arterioscler. Thromb. Vasc. Biol. 20:2474–2482, 2000.

    Google Scholar 

  56. White, S. S., C. K. Zarins, D. P. Giddens, H. Bassiouny, F. Loth, S. A. Jones, and S. Glagov. Hemodynamic patterns in two models of end-to-side vascular graft anastomoses: effects of pulsatility, Reynolds number and hood length. ASME J. Biomech. Eng. 115:104–111, 1993.

    Google Scholar 

  57. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Ann. Rev. Biomed. Eng. 10:299–329, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Worth Longest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longest, P.W., Kleinstreuer, C. & Deanda, A. Numerical Simulation of Wall Shear Stress and Particle-Based Hemodynamic Parameters in Pre-Cuffed and Streamlined End-to-Side Anastomoses. Ann Biomed Eng 33, 1752–1766 (2005). https://doi.org/10.1007/s10439-005-7784-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7784-2

Keywords

Navigation